Contents

About This Document
In this chapter ... ix
How this document is organized ix
Supported hardware and software x
What’s new in this document x
Document conventions ... xi
 Text formatting .. xi
 Command syntax conventions xi
 Notes, cautions, and warnings xii
 Key terms ... xii
Additional information ... xiii
 Brocade resources .. xiii
 Other industry resources xiii
Getting technical help ... xiii
Document feedback ... xiv

Chapter 1 Introduction to Troubleshooting
In this chapter ... 1
Troubleshooting overview .. 1
 Network time protocol ... 1
Most common problem areas 2
Questions for common symptoms 2
Gathering information for your switch support provider 5
 Setting up your switch for FTP 5
 Capturing a supportSave 6
 Capturing a supportShow 6
 Capturing output from a console 6
 Capturing command output 7
Building a case for your switch support provider 7
 Basic information ... 7
 Detailed problem information 8
 Gathering additional information 9

Chapter 2 General Issues
In this chapter ... 11
Licensing issues .. 11
Time issues ... 11
Switch message logs ... 12
 Checking fan components 13
 Checking the switch temperature 13
 Checking the power supply 14
 Checking the temperature, fan, and power supply 14
Switch boot issues .. 14
Fibre Channel Router connectivity 15
 Generate and route an ECHO 15
 Route and statistical information 17
 Performance issues ... 19
Third party applications 20

Chapter 3 Connections Issues

In this chapter ... 21
Port initialization and FCP auto discovery process 21
Link issues .. 23
Connection problems ... 23
 Checking the logical connection 23
 Checking the name server (NS) 24
Link failures ... 25
 Determining a successful negotiation 26
 Checking for a loop initialization failure 26
 Checking for a point-to-point initialization failure 27
 Correcting a port that has come up in the wrong mode 27
Marginal links ... 28
 Troubleshooting a marginal link 28
Device login issues ... 29
 Pinpointing problems with device logins 31
Media-related issues .. 34
 Testing a port’s external transmit and receive path 34
 Testing a switch’s internal components 34
 Testing components to and from the HBA 35
Segmented fabrics .. 35
 Reconciling fabric parameters individually 36
 Downloading a correct configuration 36
 Reconciling a domain ID conflict 37

Chapter 4 Configuration Issues

In this chapter ... 39
Configupload and download issues 39
 Gathering additional information 41
Brocade configuration form 42
Chapter 13 Working With Diagnostic Features

In this chapter .. 99
About Fabric OS diagnostics 99
Diagnostic information .. 99
Power-on self test ... 100
 Disabling POST .. 102
 Enabling POST ... 102
Switch status ... 102
 Viewing the overall status of the switch 102
 Displaying switch information 103
 Displaying the uptime for a switch 104
Chassis-level diagnostics .. 104
 Spinfab and porttest ... 105
Port information ... 105
 Viewing the status of a port 105
 Displaying the port statistics 106
 Displaying a summary of port errors for a switch 107
Equipment status ... 108
 Displaying the status of the fans 108
 Displaying the status of a power supply 109
 Displaying temperature status 109
System message log .. 110
 Displaying the system message log, with no page breaks 110
 Displaying the system message log one message at a time 110
 Clearing the system message log 110
Port log ... 111
 Viewing the port log ... 111
Syslogd configuration ... 112
 Configuring the host .. 113
 Configuring the switch .. 113
Automatic trace dump transfers 114
 Specifying a remote server 115
 Enabling the automatic transfer of trace dumps 115
 Setting up periodic checking of the remote server 115
 Saving comprehensive diagnostic files to the server 115
Diagnostic tests not supported by M-EOS 9.6.2 and FOS 6.0 ... 116

Connectivity .. 95
Zoning ... 97
Authentication .. 98
<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Switch Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>Hexadecimal</td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>
About This Document

In this chapter

- How this document is organized ... ix
- Supported hardware and software ... x
- What’s new in this document ... x
- Document conventions .. xi
- Additional information .. xiii
- Getting technical help ... xiii
- Document feedback ... xiv

How this document is organized

The document contains the following chapters:

- Chapter 1, “Introduction to Troubleshooting,” gives a brief overview of troubleshooting the Fabric OS, and provides procedures for gathering basic information from your switch and fabric to aid in troubleshooting.
- Chapter 2, “General Issues,” provides information on licensing, hardware, and syslog issues.
- Chapter 3, “Connections Issues,” provides information and procedures on troubleshooting various link issues.
- Chapter 4, “Configuration Issues,” provides troubleshooting information and procedures for configuration file issues.
- Chapter 5, “FirmwareDownload Errors,” provides procedures for troubleshooting firmware download issues.
- Chapter 7, “Virtual Fabrics,” provides procedures to troubleshooting Virtual Fabrics.
- Chapter 8, “ISL Trunking Issues,” provides procedures for resolving trunking issues.
- Chapter 9, “Zone Issues,” provides preparations and procedures for performing firmware downloads, as well troubleshooting information.
- Chapter 10, “FCIP Issues,” provides information and procedures to troubleshoot FCIP tunnel issues.
- Chapter 11, “FICON Fabric Issues,” provides information and procedures to troubleshooting FICON related problems.
- Chapter 12, “iSCSI Issues,” provides information and procedures on iSCSI problems.

• The appendices provide special information to guide you in understanding switch output.

Supported hardware and software

In those instances in which procedures or parts of procedures documented here apply to some switches but not to others, this guide identifies exactly which switches are supported and which are not.

Although many different software and hardware configurations are tested and supported by Brocade Communications Systems, Inc. for 6.2.0, documenting all possible configurations and scenarios is beyond the scope of this document.

The following hardware platforms are supported by this release of Fabric OS:

• Brocade 200E switch
• Brocade 300 switch
• Brocade 4016 switch
• Brocade 4018 switch
• Brocade 4020 switch
• Brocade 4024 switch
• Brocade 4100 switch
• Brocade 4900 switch
• Brocade 5000 switch
• Brocade 5100 switch
• Brocade 5300 switch
• Brocade 5424 switch
• Brocade 7500 switch
• Brocade 7600 switch
• Brocade 48000 director
• Brocade DCX Backbone
• Brocade DCX-4S Backbone

What’s new in this document

• Information that was added:
 - Support for new hardware platforms:
 • Brocade DCX-4S enterprise-class platform (8 Gbps)
 - Virtual Fabrics, including logical switch support
 • Supported on the DCX, DCX-4S, 5300, and 5100
• Support for gathering additional information
 - FCIP troubleshooting support
 • Provided additional information on FTRACE
 - Brocade HBA feature support
 • FC Ping between devices (GUI and CLI support)
 - Miscellaneous
 • FC Ping to switch WWN
 • Path information similar to traceroute CLI output
 • RAS enhancements – system-wide RAS LOG support
 • TI zone troubleshooting information
• Information that was changed:
 - All commands have been updated.
• Information that was deleted:
 - All obsolete information. This information was obsoleted because it was no longer supported in the current version of firmware.

For further information about documentation updates for this release, refer to the release notes.

Document conventions

This section describes text formatting conventions and important notice formats used in this document.

Text formatting

The narrative-text formatting conventions that are used are as follows:

bold text
- Identifies command names
- Identifies the names of user-manipulated GUI elements
- Identifies keywords and operands
- Identifies text to enter at the GUI or CLI

italic text
- Provides emphasis
- Identifies variables
- Identifies paths and Internet addresses
- Identifies document titles

`code text`
- Identifies CLI output
- Identifies command syntax examples

Command syntax conventions

For readability, command names in the narrative portions of this guide are presented in mixed lettercase: for example, switchShow. In actual examples, command lettercase is often all lowercase. Otherwise, this manual specifically notes those cases in which a command is case sensitive. Command syntax in this manual follows these conventions:
Notes, cautions, and warnings

The following notices and statements are used in this manual. They are listed below in order of increasing severity of potential hazards.

NOTE
A note provides a tip, guidance or advice, emphasizes important information, or provides a reference to related information.

ATTENTION
An Attention statement indicates potential damage to hardware or data.

CAUTION
A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.

DANGER
A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Key terms
For definitions specific to Brocade and Fibre Channel, see the Brocade Glossary.

For definitions of SAN-specific terms, visit the Storage Networking Industry Association online dictionary at:

http://www.snia.org/education/dictionary
Additional information

This section lists additional Brocade and industry-specific documentation that you might find helpful.

Brocade resources

To get up-to-the-minute information, join Brocade Connect. It’s free! Go to http://www.brocade.com and click Brocade Connect to register at no cost for a user ID and password.

For practical discussions about SAN design, implementation, and maintenance, you can obtain Building SANs with Brocade Fabric Switches through:

http://www.amazon.com

For additional Brocade documentation, visit the Brocade SAN Info Center and click the Resource Library location:

http://www.brocade.com

Release notes are available on the Brocade Connect Web site and are also bundled with the Fabric OS firmware.

Other industry resources

- White papers, online demos, and data sheets are available through the Brocade Web site at http://www.brocade.com/products/software.jhtml.
- Best practice guides, white papers, data sheets, and other documentation is available through the Brocade Partner Web site.

For additional resource information, visit the Technical Committee T11 Web site. This Web site provides interface standards for high-performance and mass storage applications for Fibre Channel, storage management, and other applications:

http://www.t11.org

For information about the Fibre Channel industry, visit the Fibre Channel Industry Association Web site:

http://www.fibrechannel.org

Getting technical help

Contact your switch support supplier for hardware, firmware, and software support, including product repairs and part ordering. To expedite your call, have the following information available:

1. General Information
 - Switch model
 - Switch operating system version
 - Error numbers and messages received
 - supportSave command output
• Detailed description of the problem, including the switch or fabric behavior immediately following the problem, and specific questions
• Description of any troubleshooting steps already performed and the results
• Serial console and Telnet session logs
• syslog message logs

2. Switch Serial Number

The switch serial number and corresponding bar code are provided on the serial number label, as illustrated below:

```
FT00X0054E9
```

The serial number label is located as follows:
• **Brocade 200E**—On the nonport side of the chassis.
• **Brocade 4016**—On the top of the switch module.
• **Brocade 4018**—On the top of the blade.
• **Brocade 4020 and 4024**—On the bottom of the switch module.
• **Brocade 4100, 4900, and 7500**—On the switch ID pull-out tab located inside the chassis on the port side on the left.
• **Brocade 5000**—On the switch ID pull-out tab located on the bottom of the port side of the switch
• Brocade 300, 5100, and 5300—On the switch ID pull-out tab located on the bottom of the port side of the switch.
• **Brocade 7600**—On the bottom of the chassis.
• **Brocade 48000**—Inside the chassis next to the power supply bays.
• **Brocade DCX and DCX-4S Backbone**—On the bottom right on the port side of the chassis.

3. World Wide Name (WWN)

Use the `wwn` command to display the switch WWN.

If you cannot use the `wwn` command because the switch is inoperable, you can get the WWN from the same place as the serial number, except for the Brocade DCX. For the Brocade DCX, access the numbers on the WWN cards by removing the Brocade logo plate at the top of the nonport side of the chassis.

For the Brocade 4016, 4018, 4020, 4024, and 5424 embedded switches: Provide the license ID. Use the `licenseIdShow` command to display the WWN.

Document feedback

Quality is our first concern at Brocade and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. Forward your feedback to:

documentation@brocade.com
In this chapter

- Troubleshooting overview .. 1
- Most common problem areas .. 2
- Questions for common symptoms 2
- Gathering information for your switch support provider 5
- Building a case for your switch support provider 7

Troubleshooting overview

This book is a companion guide to be used in conjunction with the Fabric OS Administrator’s Guide. Although it provides a lot of common troubleshooting tips and techniques it does not teach troubleshooting methodology.

Troubleshooting should begin at the center of the SAN — the fabric. Because switches are located between the hosts and storage devices and have visibility into both sides of the storage network, starting with them can help narrow the search path. After eliminating the possibility of a fault within the fabric, see if the problem is on the storage side or the host side, and continue a more detailed diagnosis from there. Using this approach can quickly pinpoint and isolate problems.

For example, if a host cannot detect a storage device, run a switch command, for example switchShow to determine if the storage device is logically connected to the switch. If not, focus first on the switch directly connecting to storage. Use your vendor-supplied storage diagnostic tools to better understand why it is not visible to the switch. If the storage can be detected by the switch, and the host still cannot detect the storage device, then there is still a problem between the host and switch.

Network time protocol

One of the most frustrating parts of troubleshooting is trying to synchronize switch’s message logs and portlogs with other switches in the fabric. If you do not have NTP set up on your switches, then trying to synchronize log files to track a problem is more difficult.
Most common problem areas

Table 1 identifies the most common problem areas that arise within SANs and identifies tools to use to resolve them.

TABLE 1 Common troubleshooting problems and tools

<table>
<thead>
<tr>
<th>Problem area</th>
<th>Investigate</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric</td>
<td>• Missing devices</td>
<td>• Switch LEDs</td>
</tr>
<tr>
<td></td>
<td>• Marginal links (unstable connections)</td>
<td>• Switch commands (for example, switchShow or nsAllShow) for diagnostics</td>
</tr>
<tr>
<td></td>
<td>• Incorrect zoning configurations</td>
<td>• Web or GUI-based monitoring and management software tools</td>
</tr>
<tr>
<td></td>
<td>• Incorrect switch configurations</td>
<td></td>
</tr>
<tr>
<td>Storage Devices</td>
<td>• Physical issues between switch and devices</td>
<td>• Device LEDs</td>
</tr>
<tr>
<td></td>
<td>• Incorrect storage software configurations</td>
<td>• Storage diagnostic tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Switch commands (for example, switchShow or nsAllShow) for diagnostics</td>
</tr>
<tr>
<td>Hosts</td>
<td>• Downlevel HBA firmware</td>
<td>• Host operating system diagnostic tools</td>
</tr>
<tr>
<td></td>
<td>• Incorrect device driver installation</td>
<td>• Device driver diagnostic tools</td>
</tr>
<tr>
<td></td>
<td>• Incorrect device driver configuration</td>
<td>• Switch commands (for example, switchShow or nsAllShow) for diagnostics</td>
</tr>
<tr>
<td>Storage Management Applications</td>
<td>• Incorrect installation and configuration of the storage devices that the software references. For example, if using a volume-management application, check for: • Incorrect volume installation • Incorrect volume configuration</td>
<td>• Application-specific tools and resources</td>
</tr>
<tr>
<td>Symptom</td>
<td>Areas to check</td>
<td>Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Blade is faulty</td>
<td>Firmware or application download</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td></td>
<td>Hardware connections</td>
<td>Chapter 5, “Firmware Download Errors”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td>Blade is stuck in the “LOADING” state</td>
<td>Firmware or application download</td>
<td>Chapter 5, “Firmware Download Errors”</td>
</tr>
<tr>
<td>Configupload or download fails</td>
<td>FTP or SCP server or USB availability</td>
<td>Chapter 4, “Configuration Issues”</td>
</tr>
<tr>
<td>E_Port failed to come online</td>
<td>Correct licensing</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td></td>
<td>Fabric parameters</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 9, “Zone Issues”</td>
</tr>
<tr>
<td>EX_Port does not form</td>
<td>Links</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td>Fabric merge fails</td>
<td>Fabric segmentation</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 9, “Zone Issues”</td>
</tr>
<tr>
<td>Fabric segments</td>
<td>Licensing</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td></td>
<td>Zoning</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td></td>
<td>Virtual Fabrics</td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td></td>
<td>Fabric parameters</td>
<td>Chapter 9, “Zone Issues”</td>
</tr>
<tr>
<td>FCIP tunnel bounces</td>
<td>FCIP tunnel</td>
<td>Chapter 10, “FCIP Issues”</td>
</tr>
<tr>
<td>FCIP tunnel does not come online</td>
<td>FCIP tunnel</td>
<td>Chapter 10, “FCIP Issues”</td>
</tr>
<tr>
<td>FCIP tunnel does not form</td>
<td>Licensing</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td></td>
<td>Fabric parameters</td>
<td>Chapter 10, “FCIP Issues”</td>
</tr>
<tr>
<td>FCIP tunnel is sluggish</td>
<td>FCIP tunnel</td>
<td>Chapter 10, “FCIP Issues”</td>
</tr>
<tr>
<td>Feature is not working</td>
<td>Licensing</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td>FCR is slowing down</td>
<td>FCR LSAN tags</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td>FICON switch does not talk to hosts</td>
<td>FICON settings</td>
<td>Chapter 11, “FICON Fabric Issues”</td>
</tr>
<tr>
<td>FirmwareDownload fails</td>
<td>FTP or SCP server or USB availability</td>
<td>Chapter 5, “Firmware Download Errors”</td>
</tr>
<tr>
<td></td>
<td>Firmware version compatibility</td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td></td>
<td>Unsupported features enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firmware versions on switch</td>
<td></td>
</tr>
<tr>
<td>Host application times out</td>
<td>FCR LSAN tags</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td></td>
<td>Marginal links</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td>Intermittent connectivity</td>
<td>Links</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td></td>
<td>Trunking</td>
<td>Chapter 8, “ISL Trunking Issues”</td>
</tr>
<tr>
<td></td>
<td>Buffer credits</td>
<td>Chapter 10, “FCIP Issues”</td>
</tr>
<tr>
<td></td>
<td>FCIP tunnel</td>
<td></td>
</tr>
<tr>
<td>LEDs are flashing</td>
<td>Links</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td>LEDs are steady</td>
<td>Links</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td>License issues</td>
<td>Licensing</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td>LSAN is slow or times-out</td>
<td>LSAN tagging</td>
<td>Chapter 2, “General Issues”</td>
</tr>
<tr>
<td>Marginal link</td>
<td>Links</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
</tbody>
</table>
Questions for common symptoms

<table>
<thead>
<tr>
<th>Acute</th>
<th>Areas to check</th>
<th>Chapter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No connectivity between host and storage</td>
<td>Cables</td>
<td>Chapter 3, “Connections Issues”
SCSI timeout errors
SCSI retry errors
Zoning</td>
</tr>
<tr>
<td>No light on LEDs</td>
<td>Links</td>
<td>Chapter 3, “Connections Issues”</td>
</tr>
<tr>
<td>SCSI retry errors</td>
<td>Buffer credits</td>
<td>Chapter 3, “Connections Issues”
FCIP tunnel bandwidth</td>
</tr>
<tr>
<td>SCSI timeout errors</td>
<td>Links</td>
<td>Chapter 3, “Connections Issues”
HBA
Buffer credits
FCIP tunnel bandwidth</td>
</tr>
<tr>
<td>Switch is unable to join fabric</td>
<td>Security policies</td>
<td>Chapter 3, “Connections Issues”
Zoning
Fabric parameters</td>
</tr>
<tr>
<td>Switch reboots during config up/download</td>
<td>Configuration file discrepancy</td>
<td>Chapter 4, “Configuration Issues”</td>
</tr>
<tr>
<td>Trunk bounces</td>
<td>Cables are on same port group</td>
<td>Chapter 8, “ISL Trunking Issues”
SFPs
Trunked ports</td>
</tr>
<tr>
<td>Trunk failed to form</td>
<td>Licensing</td>
<td>Chapter 2, “General Issues”
Cables are on same port group
SFPs
Trunked ports</td>
</tr>
<tr>
<td>User is unable to change switch settings</td>
<td>RBAC settings</td>
<td>Chapter 6, “Security Issues”
Account settings</td>
</tr>
<tr>
<td>Virtual Fabric does not form</td>
<td>FIDs</td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td>Zone configuration mismatch</td>
<td>Effective configuration</td>
<td>Chapter 9, “Zone Issues”</td>
</tr>
<tr>
<td>Zone content mismatch</td>
<td>Effective configuration</td>
<td>Chapter 9, “Zone Issues”</td>
</tr>
<tr>
<td>Zone type mismatch</td>
<td>Effective configuration</td>
<td>Chapter 9, “Zone Issues”</td>
</tr>
</tbody>
</table>
Gathering information for your switch support provider

If you are troubleshooting a production system, you must gather data quickly. As soon as a problem is observed, perform the following tasks (if using a dual CP system, run the commands on both CPs). For more information about these commands and their operands, refer to the Fabric OS Command Reference.

1. Enter the **supportSave** command to save RASLOG, TRACE, supportShow, core file, FFDC data, and other support information from the switch, chassis, blades, and logical switches.

NOTE
It is recommended that you use the **supportFtp** command to set up the **supportSave** environment for automatic dump transfers using the -n and -c options; this will save you from having to enter or know all the required FTP parameters needed to successfully execute a **supportSave** operation.

- Enter the **supportShow** command to collect information for the local CP to a remote FTP location or using the USB memory device on supporting products. This command does not collect RASLOG, TRACE, core files or FFDC data.

 To capture the data from the **supportShow** command, you will need to run the command through a Telnet or SSH utility or serial console connection.

2. Gather console output and logs.

NOTE
To execute the **supportSave** or **supportShow** command on the chassis, you will need to log in to the switch on an account with the admin role that has the chassis role permission.

For more details about these commands, see the Fabric OS Command Reference.

Setting up your switch for FTP

1. Connect to the switch and log in using an account assigned to the admin role.

2. Type the following command:

   ```
   supportFtp -s [-h hostip][-u username][-p password][-d remotedirectory]
   ```

3. Respond to the prompts as follows:

 -h hostip
 Specifies FTP host IP address. It must be an IP address. hostip should be less than 48 characters.

 -u username
 Enter the user name of your account on the server; for example, “JaneDoe”.

 -d remotedirectory
 Specifies remote directory to store trace dump files. The **supportFtp** command cannot take a slash (/) as a directory name. The remote directory should be less than 48 characters.

 -p password
 Specifies FTP user password. If the user name is anonymous, the password is not needed. password should be less than 48 characters.

Example of supportFTP command

```
switch:admin> supportftp -s
Host IP Addr[1080::8:800:200C:417A]:
User Name[njoe]:
Password[********]:
Remote Dir[support]:
Auto file transfer parameters changed
```
Capturing a supportSave

1. Connect to the switch and log in using an account assigned to the admin role.
2. Type the appropriate `supportSave` command based on your needs:
 - If you are saving to an FTP or SCP server, use the following syntax:
     ```
     supportSave
     ```
 When invoked without operands, this command goes into interactive mode. The following operands are optional:
 - `-n` Does not prompt for confirmation. This operand is optional; if omitted, you are prompted for confirmation.
 - `-c` Uses the FTP parameters saved by the supportFtp command. This operand is optional; if omitted, specify the FTP parameters through command line options or interactively. To display the current FTP parameters, run `supportFtp` (on a dual-CP system, run `supportFtp` on the active CP).
 - On platforms that support USB devices, you can use your Brocade USB device to save the support files. To use your USB device, use the following syntax:
     ```
     supportsave [-U -d remote_dir]
     ```
 `-d` Specifies the remote directory to which the file is to be transferred. When saving to a USB device, the predefined `/support` directory must be used.

Capturing a supportShow

1. Connect to the switch through a Telnet or SSH utility or a serial console connection.
2. Log in using an account assigned to the admin role.
3. Set the Telnet or SSH utility to capture output from the screen.
 - Some Telnet or SSH utilities require this step to be performed prior to opening up a session. Check with your Telnet or SSH utility vendor for instructions.
4. Type the `supportShow` command.

Capturing output from a console

Some information, such as boot information is only outputted directly to the console. In order to capture this information you have to connect directly to the switch through its management interface, either a serial cable or an RJ-45 connection.

1. Connect directly to the switch using Hyperterminal.
2. Log in to the switch using an account assigned to the admin role.
3. Set the utility to capture output from the screen.
 - Some utilities require this step to be performed prior to opening up a session. Check with your utility vendor for instructions.
4. Type the command or start the process to capture the required data on the console.
Capturing command output

1. Connect to the switch through a Telnet or SSH utility.
2. Log in using an account assigned to the admin role.
3. Set the Telnet or SSH utility to capture output from the screen.
 Some Telnet or SSH utilities require this step to be performed prior to opening up a session. Check with your Telnet or SSH utility vendor for instructions.
4. Type the command or start the process to capture the required data on the console.

Building a case for your switch support provider

The following form should be filled out in its entirety and presented to your switch support provider when you are ready to contact them. Having this information immediately available will expedite the information gathering process that is necessary to begin determining the problem and finding a solution.

Basic information

1. What is the switch's current Fabric OS level?
 To determine the switch's Fabric OS level, type the `firmwareShow` command and write the information.

2. What is the switch model?
 To determine the switch model, type the `switchshow` command and write down the value in the `switchType` field. Cross-reference this value with the chart located in Appendix A, “Switch Type”.

3. Is the switch operational? Yes or No

4. Impact assessment and urgency:
 - Is the switch down? Yes or no.
 - Is it a standalone switch? Yes or no.
 - Are there VE, VEX or EX ports connected to the chassis? Yes or no.
 Use the `switchShow` command to determine the answer.
 - How large is the fabric?
 Use the `nsAllShow` command to determine the answer.
 - Do you have encryption blades or switches installed in the fabric? Yes or no.
 - Do you have Virtual Fabrics enabled in the fabric? Yes or no.
 Use the `switchShow` command to determine the answer.
 - Do you have IPsec installed on the switch's Ethernet interface? Yes or no.
 Use the `ipsecConfig --show` command to determine the answer.
 - Do you have Inband Management installed on the switches GigE ports? Yes or no.
 Use the `portShow iproute geX` command to determine the answer.
 - Are you using NPIV? Yes or no.
1. Building a case for your switch support provider

Use the `switchShow` command to determine the answer.

- Are there security policies turned on in the fabric? If so, what are they? (Gather the output from the following commands:
 - `secPolicyShow`
 - `fddCfg --showall`
 - `ipFilter --show`
 - `authUtil --show`
 - `secAuthSecret --show`
 - `fipsCfg --showall`

- Is the fabric redundant? If yes, what is the MPIO software? (List vendor and version.)

5. If you have a redundant fabric, did a failover occur?

6. Was POST enabled on the switch?

7. Which CP blade was active? (Only applicable to the Brocade 24000 and 48000 directors, and the Brocade DCX and DCX-4S Backbones.)

Detailed problem information

Obtain as much of the following informational items as possible prior to contacting the SAN technical support vendor.

Document the sequence of events by answering the following questions:

- What happened prior to the problem?
- Is the problem reproducible?
- If so, what are the steps to produce the problem?
- What configuration was in place when the problem occurred?
- A description of the problem with the switch or the fault with the fabric.
- The last actions or changes made to the system environment:
 - `settings`
 - `supportSave` output; you can save this information on a qualified and installed Brocade USB storage device only on the Brocade 300, 5100, 5300 and the Brocade DCX enterprise-class platform.
 - `supportShow` output
- Host information:
 - OS version and patch level
 - HBA type
 - HBA firmware version
 - HBA driver version
 - Configuration settings
• Storage information:
 □ Disk/tape type
 □ Disk/tape firmware level
 □ Controller type
 □ Controller firmware level
 □ Configuration settings
 □ Storage software (such as EMC Control Center, Veritas SPC, etc.)

8. If this is a Brocade 48000, Brocade DCX or DCX-4S enterprise-class platform, are the CPs in-sync? Yes or no.
 Use the haShow command to determine the answer.

9. List out what and when were the last actions or changes made to the switch, the fabric, and the SAN or metaSAN?

 TABLE 3 Environmental changes

<table>
<thead>
<tr>
<th>Type of Change</th>
<th>Date when change occurred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gathering additional information

Below are features that require you to gather additional information. The additional information is necessary in order for your switch support provider to effectively and efficiently troubleshoot your issue. Refer to the chapter specified for the commands whose data you need to capture.

• Configurations, see Chapter 3, “Connections Issues”.
• Firmwaredownload, see Chapter 5, “FirmwareDownload Errors”.
• Trunking, see Chapter 8, “ISL Trunking Issues”.
• Zoning, see Chapter 9, “Zone Issues”.
• FCIP tunnels, see Chapter 10, “FCIP Issues”.
• FICON, see Chapter 11, “FICON Fabric Issues”.

Building a case for your switch support provider
Chapter 2

General Issues

In this chapter

- Licensing issues .. 11
- Time issues .. 11
- Switch message logs .. 12
- Switch boot issues ... 14
- Fibre Channel Router connectivity 15
- Third party applications ... 20

Licensing issues

Some features need licenses in order to work properly. To view a list of features and their associated licenses, refer to the Fabric OS Administrator’s Guide. Licenses are created using a switch’s License Identifier so you cannot apply one license to different switches. Before calling your switch support provider, verify that you have the correct licenses installed by using the licenseIdShow command.

Symptom

A feature is not working.

Probable cause and recommended action

Refer to the Fabric OS Administrator’s Guide to determine if the appropriate licenses are installed on the local switch and any connecting switches.

Determining installed licenses

1. Connect to the switch and log in using an account assigned to the admin role.
2. Type the licenseShow command.

 A list of the currently installed licenses on the switch will be displayed.

Time issues

Symptom

Time is not in-sync.

Probable cause and recommended action

NTP is not set up on the switches in your fabric. Set up NTP on your switches in all fabrics in your SAN and metaSAN.

For more information on setting up NTP, refer to the Fabric OS Administrator’s Guide.
Switch message logs

Switch message logs (RAS logs) contain information on events that happen on the switch or in the fabric. This is an effective tool in understanding what is going on in your fabric or on your switch. Weekly review of the RAS logs is necessary to prevent minor problems from becoming larger issues, or in catching problems at an early stage.

Below are some common problems that can occur with or in your system message log.

Symptom
Inaccurate information in the system message log

Probable cause and recommended action

In rare instances, events gathered by the track change feature can report inaccurate information to the system message log.

For example, a user enters a correct user name and password, but the login was rejected because the maximum number of users had been reached. However, when looking at the system message log, the login was reported as successful.

If the maximum number of switch users has been reached, the switch will still perform correctly in that it will reject the login of additional users, even if they enter the correct user name and password information.

However, in this limited example, the Track Change feature will report this event inaccurately to the system message log; it will appear that the login was successful. This scenario only occurs when the maximum number of users has been reached; otherwise, the login information displayed in the system message log should reflect reality.

See the Fabric OS Administrator’s Guide for information regarding enabling and disabling track changes (TC).

Symptom
MQ errors are appearing in the switch log.

Probable cause and recommended action

An MQ error is a message queue error. Identify an MQ error message by looking for the two letters MQ followed by a number in the error message:

```
2004/08/24-10:04:42, [MQ-1004], 218,, ERROR, ras007, mqRead, queue = raslog-test-string0123456-raslog, queue D = 1, type = 2
```

MQ errors can result in devices dropping from the switch’s Name Server or can prevent a switch from joining the fabric. MQ errors are rare and difficult to troubleshoot; resolve them by working with the switch supplier. When encountering an MQ error, issue the **supportSave** command to capture debug information about the switch; then, forward the **supportSave** data to the switch supplier for further investigation.
Symptom *I2C bus errors are appearing in the switch log.*

Probable cause and recommended action

I2C bus errors generally indicate defective hardware or poorly seated devices or blades; the specific item is listed in the error message. See the *Fabric OS Message Reference* for information specific to the error that was received. Some Chip-Port (CPT) and Environmental Monitor (EM) messages contain I2C-related information.

If the I2C message does not indicate the specific hardware that may be failing, begin debugging the hardware, as this is the most likely cause. The next sections provide procedures for debugging the hardware.

Symptom *Core file or FFDC warning messages appear on the serial console or in the system log.*

Probable cause and recommended action

Issue the supportSave command. The messages can be dismissed by issuing the supportSave -R command after all data is confirmed to be collected properly.

Error example:

```
*** CORE FILES WARNING (10/22/08 - 05:00:01 ) ***
3416 KBytes in 1 file(s)
use "supportsave" command to upload
```

Checking fan components

1. Log in to the switch as user.
2. Enter the *fanShow* command.
3. Check the fan status and speed output.

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Fan is functioning correctly.</td>
</tr>
<tr>
<td>absent</td>
<td>Fan is not present.</td>
</tr>
<tr>
<td>below minimum</td>
<td>Fan is present but rotating too slowly or stopped.</td>
</tr>
<tr>
<td>above minimum</td>
<td>Fan is rotating too quickly.</td>
</tr>
<tr>
<td>unknown</td>
<td>Unknown fan unit installed.</td>
</tr>
<tr>
<td>faulty</td>
<td>Fan has exceeded hardware tolerance and has stopped. In this case, the last known fan speed is displayed.</td>
</tr>
</tbody>
</table>

The output from this command varies depending on switch type and number of fans present. Refer to the appropriate hardware reference manual for details regarding the fan status. You may first consider re-seating the fan (unplug it and plug it back in).

Checking the switch temperature

1. Log in to the switch as user.
2. Enter the *tempShow* command.
3. Check the temperature output.

Refer to the hardware reference manual for your switch to determine the normal temperature range.
Checking the power supply

1. Log in to the switch as user.
2. Enter the `psShow` command.
3. Check the power supply status. Refer to the appropriate hardware reference manual for details regarding the power supply status.

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Power supply functioning correctly.</td>
</tr>
<tr>
<td>absent</td>
<td>Power supply not present.</td>
</tr>
<tr>
<td>unknown</td>
<td>Power supply unit installed.</td>
</tr>
<tr>
<td>predicting failure</td>
<td>Power supply is present but predicting failure.</td>
</tr>
<tr>
<td>faulty</td>
<td>Power supply present but faulty (no power cable, power switch turned off, fuse blown, or other internal error).</td>
</tr>
</tbody>
</table>

If any of the power supplies show a status other than OK, consider replacing the power supply as soon as possible.

For certain switch models, the OEM serial ID data displays after each power supply status line.

Checking the temperature, fan, and power supply

1. Log in to the switch as user.
2. Enter the `sensorShow` command. See the Fabric OS Command Reference for details regarding the sensor numbers.
3. Check the temperature output.
 Look for indications of high or low temperatures.
4. Check the fan speed output.
 If any of the fan speeds display abnormal RPMs, replace the fan FRU.
5. Check the power supply status.
 If any power supplies show a status other than OK, consider replacing the power supply as soon as possible.

Switch boot issues

Symptom
The enterprise-class platform model rebooted again after an initial bootup.

Probable cause and recommended action
This issue can occur during an enterprise-class platform boot up with two CPs. If any failure occurs on active CP, before the standby CP is fully functional and has obtained HA sync, the Standby CP may not be able to take on the active role to perform failover successfully.

In this case, both CPs will reboot to recover from the failure.
Fibre Channel Router connectivity

This section describes tools you can use to troubleshoot Fibre Channel routing connectivity and performance.

Generate and route an ECHO

The FC-FC Routing Service enables you to route the ECHO generated when an fcPing command is issued on a switch, providing fcPing capability between two devices in different fabrics across the FC router.

The fcPing command sends a Fibre Channel ELS ECHO request to a pair of ports. It performs a zone check between the source and destination. In addition, two Fibre Channel Extended Link Service (ELS) requests will be generated. The first ELS request is from the domain controller to the source port identifier. The second ELS request is from the domain controller to the destination port identifiers. The ELS ECHO request will elicit an ELS ECHO response from a port identifier in the fabric and validates link connectivity.

To validate link connectivity to a single device or between a pair of devices, use the fcPing command in the following syntax:

```
fcping [ --number frames] [--length size] [--interval wait] [--pattern pattern] [--bypasszone]
[ --quiet] [source] destination [ --help]
```

Where:

- `--number frames` Specifies the number of ELS Echo requests to send. The default value is 5.
- `--length size` Specifies the frame size of the requests in bytes. The default value is 0. Without data, the Fibre Channel Echo request frame size is 12 bytes. The total byte count includes four bytes from the Echo request header and eight bytes from the timestamp. The maximum allowed value is 2,036 bytes. The length must be word-aligned.
- `--interval wait` Specifies the interval, in seconds, between successive ELS Echo requests. The default value is 0 seconds.
- `--pattern pattern` Specifies up to 16 "pad" bytes, which are used to fill out the request frame payload sent. This is useful for diagnosing data-dependent problems in the fabric link. The pattern bytes are specified as hexadecimal characters. For example, the `--pattern ff` fills the request frame with instances of the number 1. If a non-byte aligned pattern is specified, the upper nibble of the last pattern byte is filled with zeros. For example, `--pattern 123` fills the payload with a pattern of 0x1203.
- `--bypasszone` Bypasses the zone check
- `--quiet` Suppresses the diagnostic output. Only zoning information, if applicable, and the summary line are displayed.
- `source` Specifies the source port ID, port WWN, or node WWN. This operand is optional.
- `destination` Specifies the destination. When using fcPing between a source and a destination, specify the destination as a port WWN or a node WWN. When using fcPing to ping a single device, specify the destination as a switch WWN, a domain ID, or a switch domain controller ID.
- `--help` Displays the command usage.
On the edge Fabric OS switch, make sure that the source and destination devices are properly configured in the LSAN zone before entering the `fcPing` command. This command performs the following functions:

- Checks the zoning configuration for the two ports specified.
- Generates an ELS (extended link service) ECHO request to the source port specified and validates the response.
- Generates an ELS ECHO request to the destination port specified and validates the response.

```
switch:admin> fcping 0x060f00 0x05f001
Source: 0x60f00
Destination: 0x5f001
Zone Check: Zoned

Pinging 0x60f00 with 12 bytes of data:
received reply from 0x60f00: 12 bytes time:501 usec
received reply from 0x60f00: 12 bytes time:437 usec
received reply from 0x60f00: 12 bytes time:506 usec
received reply from 0x60f00: 12 bytes time:430 usec
received reply from 0x60f00: 12 bytes time:462 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 430/467/506 usec

Pinging 0x5f001 with 12 bytes of data:
received reply from 0x5f001: 12 bytes time:2803 usec
received reply from 0x5f001: 12 bytes time:2701 usec
received reply from 0x5f001: 12 bytes time:3193 usec
received reply from 0x5f001: 12 bytes time:2738 usec
received reply from 0x5f001: 12 bytes time:2746 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 2701/2836/3193 usec
```

Regardless of the device’s zoning configuration, the `fcPing` command sends the ELS frame to the destination port. A destination device can take any one of the following actions:

- Send an ELS Accept to the ELS request.
- Send an ELS Reject to the ELS request.
- Ignore the ELS request.

There are some devices that do not support the ELS ECHO request. In these cases, the device will either not respond to the request or send an ELS reject. When a device does not respond to the ELS request, further debugging is required; however, do not assume that the device is not connected.

For details about the `fcPing` command, see the *Fabric OS Command Reference*.

Example of one device that accepts the request and another device that rejects the request:

```
switch:admin> fcping 10:00:00:00:c9:29:0e:c4 21:00:00:20:37:25:ad:05
Source: 10:00:00:00:c9:29:0e:c4
Destination: 21:00:00:20:37:25:ad:05
Zone Check: Not Zoned
Pinging 10:00:00:00:c9:29:0e:c4 [0x20800] with 12 bytes of data:
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1162 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1013 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1162 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1442 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1052 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1012 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
```
Fibre Channel Router connectivity

Round-trip min/avg/max = 1012/1136/1442 usec
Pinging 21:00:00:20:37:25:ad:05 [0x211e8] with 12 bytes of data:
Request rejected
Request rejected
Request rejected
Request rejected
Request rejected
5 frames sent, 0 frames received, 5 frames rejected, 0 frames timeout
Round-trip min/avg/max = 0/0/0 usec

Example To use fcPing with a single destination (in this example, the destination is a device node WWN):

switch:admin> fcping 20:00:00:00:c9:3f:7c:b8
Destination: 20:00:00:00:c9:3f:7c:b8
Pinging 20:00:00:00:c9:3f:7c:b8 [0x370501] with 12 bytes of data:
 received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:825 usec
 received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:713 usec
 received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:714 usec
 received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:741 usec
 received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:880 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 713/774/880 usec

Route and statistical information

The pathInfo command displays routing and statistical information from a source port index on the local switch to a destination port index on another switch. This routing information describes the full path that a data stream travels between these ports, including all intermediate switches.

The routing and statistics information are provided by every switch along the path, based on the current routing-table information and statistics calculated continuously in real time. Each switch represents one hop.

Use the pathInfo command to display routing information from a source port on the local switch to a destination port on another switch. The command output describes the exact data path between these ports, including all intermediate switches.

When using this command in Fabric OS v6.2.0 across fabrics connected through an FC router, the command represents backbone information as a single hop. The command captures details about the FC router to which ingress and egress EX_Ports are connected, but it hides the details about the path the frame traverses from the ingress EX_Ports to the egress EX_Ports in the backbone.

To use pathInfo across remote fabrics, you must specify both the fabric ID (FID) and the domain ID of the remote switch. You cannot use the command to obtain source port information across remote FCR fabrics. When obtaining path info across remote fabrics, the destination switch must be identified by its domain ID. Identifying the switch by name or WWN is not accepted.

Use the pathInfo command in the following syntax:

```plaintext
pathinfo destination_switch [source_port[destination_port]] [-r] [-t]
```
Where:

destination_switch
Specifies the destination switch. The destination switch can be identified by its Domain ID, by the switch WWN, or by the switch name. This operand is optional; if omitted, the command runs interactively.

source_port
Specifies the port whose path to the destination domain is traced. For bladed systems and ports above 256, the destination is specified as the port index; otherwise, it is the port area. The embedded port (-1) is the default. The embedded port can be selected manually by entering the value of MAX_PORT. MAX_PORT stands for the maximum number of ports supported by the local switch.

destination_port
Specifies the port on the destination switch for the path being traced. This operand returns the state of this port. The embedded port (-1) is used by default, or if you specify a destination port that is not active. For bladed systems and ports above 256, the destination is specified as the port index; otherwise, it is the port area.

-r
Displays the reverse path in addition to the forward path. This operand is optional.

-t
Displays the command output in traceroute format. When this operand is used, only routing information is displayed. The output includes the time it takes, in microseconds, to reach each hop. Basic and extended statistics are not available in the traceroute format.

To display basic path information to a specific domain in command line mode:

```
switch:admin> pathinfo 91
Target port is Embedded
Hop  In  Port  Domain ID (Name)  Out  Port  BW  Cost
---------------------------------------------------------
 0    E    9 (web226)    2    1G    1000
 1    3    10 (web229)    8    1G    1000
 2    8    8 (web228)    9    1G    1000
 3    6    91 (web225)    E   -   -
```

To display basic and extended statistics in interactive mode:

```
switch:admin> pathinfo
Max hops: (1..127) [25]
Fabric Id: (1..128) [-1]
Domain|Wwn|Name: [ ] 8
Source port: (0..15) [-1]
Destination port: (0..255) [-1]
Basic stats (yes, y, no, n): [no] y
Extended stats (yes, y, no, n): [no] y
Trace reverse path (yes, y, no, n): [no]
Source route (yes, y, no, n): [no]
Timeout: (1..30) [5]
Target port is Embedded
Hop  In  Port  Domain ID (Name)  Out  Port  BW  Cost
---------------------------------------------------------
 0    E    9 (web226)    2    1G    1000
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Tx</th>
<th>Rx</th>
<th>Tx</th>
<th>Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

destination_switch
Specifies the destination switch. The destination switch can be identified by its Domain ID, by the switch WWN, or by the switch name. This operand is optional; if omitted, the command runs interactively.

source_port
Specifies the port whose path to the destination domain is traced. For bladed systems and ports above 256, the destination is specified as the port index; otherwise, it is the port area. The embedded port (-1) is the default. The embedded port can be selected manually by entering the value of MAX_PORT. MAX_PORT stands for the maximum number of ports supported by the local switch.

destination_port
Specifies the port on the destination switch for the path being traced. This operand returns the state of this port. The embedded port (-1) is used by default, or if you specify a destination port that is not active. For bladed systems and ports above 256, the destination is specified as the port index; otherwise, it is the port area.

- Displays the reverse path in addition to the forward path. This operand is optional.

- Displays the command output in traceroute format. When this operand is used, only routing information is displayed. The output includes the time it takes, in microseconds, to reach each hop. Basic and extended statistics are not available in the traceroute format.
Performance issues

Symptom
General slow-down in FCR performance and scalability.

Probable cause and recommended action

As LSAN zone databases get bigger, it takes more switch resources to process them. Use the `enforce tag` feature to prevent a backbone switch from accepting unwanted LSAN zone databases into its local database.

Symptom
Host application times out.

Probable cause and recommended action

The FCR tends to take a long time, more than 5 seconds, to present and setup paths for the proxy devices. Certain hosts are able to do discovery much faster as a result they end up timing out. Use the `speed tag` feature to always present target proxy to the host and import them faster. This helps sensitive hosts to do a quick discovery without timing out or cause an application failure.
Third party applications

Symptom Replication application works for a while and then an error or malfunction is reported.

Probable cause and recommended action

Some third party applications will work when they are first set up and then cease to work because of an incorrect parameter setting. Check each of the following parameters and your application vendor documentation to determine if these are set correctly:

- Port-base routing
 Use the `aptPolicy` command to set this feature.

- In-order delivery
 Use the `iodSet` command to turn this feature on and the `iodReset` command to turn this feature off.

- Load balancing
 In most cases this should be set to off. Use the `disReset` command to turn off the function.
Port initialization and FCP auto discovery process

The steps in the port initialization process represent a protocol used to discover the type of connected device and establish the port type and port speed. The possible port types are as follows:

- **U_Port**—Universal FC port. The base Fibre Channel port type and all unidentified, or uninitiated ports are listed as U_Ports.
- **L_/FL_Port**—Fabric Loop port. Connects public loop devices.
- **E_Port**—Expansion port. Assigned to ISL links.
- **F_Port**—Fabric port. Assigned to fabric-capable devices.
- **EX_Port**—A type of E_Port. It connects a Fibre Channel router to an edge fabric. From the point of view of a switch in an edge fabric, an EX_Port appears as a normal E_Port. It follows applicable Fibre Channel standards as other E_Ports. However, the router terminates EX_Ports rather than allowing different fabrics to merge as would happen on a switch with regular E_Ports.
- **M_Port**—A mirror port. A mirror port lets you configure a switch port to connect to a port to mirror a specific source port and destination port traffic passing though any switch port. This is only supported between F_Ports.
- **VE_Port**—A virtual E_Port. A Gigabit Ethernet switch port configured for an FCIP tunnel is called a VE port (virtual E-port). However, with a VEX_Port at the other end it does not propagate fabric services or routing topology information from one edge fabric to another.
• VEX_Port—A virtual EX_Port. It connects a Fibre Channel router to an edge fabric. From the point of view of a switch in an edge fabric, a VEX_Port appears as a normal VE_Port. It follows the same Fibre Channel protocol as other VE_Ports. However, the router terminates VEX_Ports rather than allowing different fabrics to merge as would happen on a switch with regular VE_Ports.

Figure 1 shows the process behind port initialization. Understanding this process can help you determine where a problem resides. For example, if your switch cannot form an E_Port, you understand that the process never got to that point or does not recognize the switch as an E_Port. Possible solutions would be to look at licensing and port configuration. Verify that the correct licensing is installed or that the port is not configured as a loop port, a G_Port, or the port speed is not set.

FIGURE 1 Simple port initialization process

The FCP auto discovery process enables private storage devices that accept the process login (PRLI) to communicate in a fabric.

If device probing is enabled, the embedded port logs in (PLOGI) and attempts a PRLI into the device to retrieve information to enter into the name server. This enables private devices that do not perform a fabric login (FLOGI), but accept PRLI, to be entered in the name server and receive full fabric citizenship. Private hosts require the QuickLoop feature which is not available in Fabric OS v4.0.0 and later.

A fabric-capable device will register information with the Name Server during a FLOGI. These devices will typically register information with the name server before querying for a device list. The embedded port will still PLOGI and attempt PRLI with these devices.

To display the contents of a switch’s Name Server, use the `nsShow` or `nsAllShow` command. For more information about these name server commands, refer to Fabric OS Command Reference.
Link issues

Symptom Port LEDs are flashing.

Probable cause and recommended action
Depending on the rate of the flash and the color of the port LED this could mean several things. To
determine what is happening on either your port status LED or power status LED, refer to that
switch’s model hardware reference manual. There is a table that describes the LEDs purpose and
explains the current behavior as well as provides suggested resolutions.

Symptom Port LEDs are steady.

Probable cause and recommended action
The color of the port LED is important in this instance. To determine what is happening on either
your port status LED or power status LED, refer to that switch’s model hardware reference manual.
There is a table that describes the LEDs purpose and explains the current behavior as well as
provides suggested resolutions.

Symptom No light from the port LEDs.

Probable cause and recommended action
If there is no light coming from the port LED, then no signal is being detected. Check your cable and
SFP to determine the physical fault.

Connection problems

If a host is unable to detect its target, for example, a storage or tape device, you should begin
troubleshooting the problem at the switch. Determine if the problem is the target or the host, then
continue to divide the suspected problem-path in half until you can pinpoint the problem. One of
the most common solutions is zoning. Verify that the host and target are in the same zone. For
more information on zoning, refer to Chapter 9, “Zone Issues”.

Checking the logical connection

1. Enter the `switchShow` command.

2. Review the output from the command and determine if the device successfully logged into the
switch.
 • A device that is logically connected to the switch is registered as an F_, L_, E_, EX_, VE_,
VEX_, or N_PORT.
 • A device that is not logically connected to the switch will be registered as a G_ or U_PORT. If
NPIV is not on the switch.

3. Enter the `slotShow -m` command to verify that all blades are ENABLED and not faulty, disabled
or in some other non-available state.

4. Perform the appropriate actions based on how your missing device is connected:
 • If the missing device is logically connected, proceed to the next troubleshooting procedure
(“Checking the name server (NS)” on page 24).
• If the missing device is not logically connected, check the device and everything on that side of the data path. Also see "Link failures" on page 25 for additional information.

Checking the path includes the following for the Host. Verify the following:

• All aspects of the Host OS.
• The third-party vendor multi-pathing input/output (MPIO) software if it is being used.
• The driver settings and binaries are up to date.
• The device Basic Input Output System (BIOS) settings are correct.
• The HBA configuration is correct according to manufacturers specifications.
• The SFPs in the HBA are compatible with the Hosts HBA.
• The cable going from the switch to the Host HBA is not damaged.
• The SFP on the switch is compatible with the switch.
• All switch settings related to the Host.

Checking the path includes the following for the Target:

• The driver settings and binaries are up to date.
• The device Basic Input Output System (BIOS) settings are correct.
• The HBA configuration is correct according to the manufacturers specifications.
• The SFPs in the HBA are compatible with the Target HBA.
• The cable going from the switch to the Target HBA is not damaged.
• All switch settings related to the Target.

See “Checking for a loop initialization failure” on page 26 as the next potential trouble spot.

Checking the name server (NS)

1. Enter the nsShow command on the switch to determine if the device is attached:

 The Local Name Server has 9 entries {
 Type Pid COS PortName NodeName TTL(sec)
*N 021a00; 2,3;20:00:00:e0:69:f0:07:c6;10:00:00:e0:69:f0:07:c6; 895
 Fabric Port Name: 20:0a:00:60:69:10:8d:fd
 NL 051edc; 3;21:00:00:20:37:d9:77:96;20:00:00:20:37:d9:77:96; na
 FC4s: FCP [SEAGATE ST318304FC] 0005
 Fabric Port Name: 20:0e:00:60:69:10:9b:5b
 NL 051ee0; 3;21:00:00:20:37:d9:73:0f;20:00:00:20:37:d9:73:0f; na
 FC4s: FCP [SEAGATE ST318304FC] 0005
 Fabric Port Name: 20:0e:00:60:69:10:9b:5b
 NL 051ee1; 3;21:00:00:20:37:d9:76:b3;20:00:00:20:37:d9:76:b3; na
 FC4s: FCP [SEAGATE ST318304FC] 0005
 Fabric Port Name: 20:0e:00:60:69:10:9b:5b
 NL 051ee2; 3;21:00:00:20:37:d9:77:5a;20:00:00:20:37:d9:77:5a; na
 FC4s: FCP [SEAGATE ST318304FC] 0005
 Fabric Port Name: 20:0e:00:60:69:10:9b:5b
 NL 051ee4; 3;21:00:00:20:37:d9:74:d7;20:00:00:20:37:d9:74:d7; na

2. Look for the device in the NS list, which lists the nodes connected to that switch. This allows you to determine if a particular node is accessible on the network.

 - If the device is *not* present in the NS list, the problem is between the device and the switch. There may be a time-out communication problem between edge devices and the name server, or there may be a login issue. First check the edge device documentation to determine if there is a time-out setting or parameter that can be reconfigured. Also, check the port log for NS registration information and FCP probing failures (using the `fcpProbeShow` command). If these queries do not help solve the problem, contact the support organization for the product that appears to be inaccessible.

 - If the device *is* listed in the NS, the problem is between the storage device and the host. There may be a zoning mismatch or a host/storage issue. Proceed to Chapter 9, “Zone Issues”.

3. Enter the `portLoginShow` command to check the port login status.

4. Enter the `fcpProbeShow` command to display the FCP probing information for the devices attached to the specified F_Port or L_Port. This information includes the number of successful logins and SCSI INQUIRY commands sent over this port and a list of the attached devices.

5. Check the port log to determine whether or not the device sent the FLOGI frame to the switch, and the switch probed the device.

Link failures

A link failure occurs when a server, storage, or switch device is connected to a switch, but the link between the devices does not come up. This prevents the devices from communicating to or through the switch.

If the `switchShow` command or LEDs indicate that the link has not come up properly, use one or more of the following procedures.

The port negotiates the link speed with the opposite side. The negotiation usually completes in one or two seconds; however, sometimes the speed negotiation fails.

NOTE
Skip this procedure if the port speed is set to a static speed through the `portCfgSpeed` command.
Determining a successful negotiation

1. Enter the `portCfgShow` command to display the port speed settings of all the ports.
2. Enter the `switchShow` command to determine if the port has module light.
3. Determine whether or not the port completes speed negotiation by entering the `portCfgSpeed` command. Then change the port speed to 1, 2, 4 or 8Gbps, depending on what speed can be used by both devices. This should correct the negotiation by setting to one speed.
4. Enter the `portLogShow` or `portLogDump` command.
5. Check the events area of the output:

```
14:38:51.976  SPEE sn <Port#>   NC  00000001,00000000,00000001
14:39:39.227  SPEE sn <Port#>   NC  00000002,00000000,00000001
```

- **sn** indicates a speed negotiation.
- **NC** indicates negotiation complete.

If these fields do not appear, proceed to the step 6.
6. Correct the negotiation by entering the `portCfgSpeed [slotnumber/]portnumber, speed_level` command if the fields in step 5 do not appear.

```
switch:admin> portcfgspeed
```

Usage: `portCfgSpeed PortNumber Speed_Level`

Speed_Level:
- 0 - Auto Negotiate
- 1 - 1Gbps
- 2 - 2Gbps
- 4 - 4Gbps
- 8 - 8Gbps
- **ax** - Auto Negotiate + enhanced retries

Checking for a loop initialization failure

1. Verify the port is an L_Port.
 a. Enter the `switchShow` command.
 b. Check the comment field of the output to verify that the switch port indicates an L_Port. If a loop device is connected to the switch, the switch port must be initialized as an L_Port.
 c. Check to ensure that the port state is online; otherwise, check for link failures.
2. Verify that loop initialization occurred if the port to which the loop device is attached does not negotiate as an L_Port.
 a. Enter the `portLogShow` or `portLogDump` command.
 b. Check argument number four for the loop initialization soft assigned (LISA) frame (0x11050100).

```
switch:admin> portlogdumpport 4
```

```
time          task       event  port cmd  args
-------------------------------------------------
11:40:02.078  PORT       Rx3     23   20  22000000,00000000,ffffffff,11050100
```

The **LISA frame** indicates that the loop initialization is complete.
3. Skip point-to-point initialization by using the `portCfgLport` Command.

 The switch changes to point-to-point initialization after the LISA phase of the loop initialization. This behavior sometimes causes trouble with old HBAs.

Checking for a point-to-point initialization failure

1. Enter the `switchShow` command to confirm that the port is active and has a module that is synchronized.

 If a fabric device or another switch is connected to the switch, the switch port must be online.

2. Enter the `portLogShow` or `portLogDump` commands.

3. Verify the event area for the port state entry is `pstate`. The command entry `AC` indicates that the port has completed point-to-point initialization.

   ```
   switch:admin> portlogdumpport 4
   time          task       event  port cmd  args
   --------------------
   11:38:21.726  INTR       pstate   4   AC
   ```

4. Skip over the loop initialization phase.

 After becoming an active port, the port becomes an F_Port or an E_Port depending on the device on the opposite side. If the opposite device is a fabric device, the port becomes an F_Port. If the opposite device is another switch, the port becomes an E_Port.

 If there is a problem with the fabric device, enter the `portCfgGPort` to force the port to try to come up as point-to-point only.

Correcting a port that has come up in the wrong mode

1. Enter the `switchShow` command.

2. Check the output from the `switchShow` command and follow the suggested actions in Table 4.

<table>
<thead>
<tr>
<th>Output</th>
<th>Suggested action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>If the port is disabled (for example, because persistent disable or security reasons), attempt to resolve the issue and then enter the <code>portEnable</code> or <code>portCfgPersistentEnable</code> command.</td>
</tr>
<tr>
<td>Bypassed</td>
<td>The port may be testing.</td>
</tr>
<tr>
<td>Loopback</td>
<td>The port may be testing.</td>
</tr>
<tr>
<td>E_Port</td>
<td>If the opposite side is not another switch, the link has come up in a wrong mode. Check the output from the <code>portLogShow</code> or <code>PortLogDump</code> commands and identify the link initialization stage where the initialization procedure went wrong.</td>
</tr>
<tr>
<td>F_Port</td>
<td>If the opposite side of the link is a private loop device or a switch, the link has come up in a wrong mode. Check the output from <code>portLogShow</code> or <code>PortLogDump</code> commands.</td>
</tr>
</tbody>
</table>
Marginal links

A marginal link involves the connection between the switch and the edge device. Isolating the exact cause of a marginal link involves analyzing and testing many of the components that make up the link (including the switch port, switch SFP, cable, edge device, and edge device SFP).

Table 5 shows the different loopback modes you can use when using the `portLoopbackTest` to test a marginal link.

<table>
<thead>
<tr>
<th>Loopback mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Port Loopback (loopback plugs)</td>
</tr>
<tr>
<td>2</td>
<td>External Serializer/Deserializer (SerDes) loopback</td>
</tr>
<tr>
<td>5</td>
<td>Internal (parallel) loopback (indicates no external equipment)</td>
</tr>
<tr>
<td>7</td>
<td>Back-end bypass and port loopback</td>
</tr>
<tr>
<td>8</td>
<td>Back-end bypass and SerDes loopback</td>
</tr>
<tr>
<td>9</td>
<td>Back-end bypass and internal loopback</td>
</tr>
</tbody>
</table>

Troubleshooting a marginal link

1. Enter the `portErrShow` command.
2. Determine whether there is a relatively high number of errors (such as CRC errors or ENC_OUT errors), or if there are a steadily increasing number of errors to confirm a marginal link.
3. If you suspect a marginal link, isolate the areas by moving the suspected marginal port cable to a different port on the switch. Reseating of SFPs may also cure marginal port problems.
 - If the problem stops or goes away, the switch port or the SFP is marginal (proceed to step 4)
 - If the problem does not stop or go away, see step 7.
4. Replace the SFP on the marginal port.
5. Run the `portLoopbackTest` on the marginal port. You will need an adapter to run the loopback test for the SFP. Otherwise, run the test on the marginal port using the loopback mode `lb=5`. Use the different modes shown in Table 5 to test the port. See the Fabric OS Command Reference for additional information on this command.

6. Check the results of the loopback test and proceed as follows:
 - If the loopback test failed, the port is bad. Replace the port blade or switch.
 - If the loopback test did not fail, the SFP was bad.

7. Perform the following steps to rule out cabling issues:
 a. Insert a new cable in the suspected marginal port.
 b. Enter the `portErrShow` command to determine if a problem still exists.
 - If the `portErrShow` output displays a normal number of generated errors, the issue is solved.
 - If the `portErrShow` output still displays a high number of generated errors, follow the troubleshooting procedures for the Host or Storage device in the following section, “Device login issues”.

Device login issues

A correct login is when the port type matches the device type that is plugged in. In the example below, it shows that the device connected to Port 1 is a fabric point-to-point device and it is correctly logged in an F_Port.

```
brcd5300:admin> switchshow
switchName:brcd5300
switchType:64.3
switchState:Online
switchMode:Native
switchRole:Subordinate
switchDomain:1
switchId:fffc01
switchWwn:10:00:00:05:1e:40:ff:c4
zoning:OFF
switchBeacon:OFF
FC Router:OFF
FC Router BB Fabric ID:1
```

<table>
<thead>
<tr>
<th>Area</th>
<th>Port</th>
<th>Media</th>
<th>Speed</th>
<th>State</th>
<th>Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Device login issues

<table>
<thead>
<tr>
<th>ID</th>
<th></th>
<th>Device</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>57</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>59</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>61</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>62</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>63</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>id</td>
<td>N2</td>
<td>Online E-Port 10:00:00:05:1e:34:d0:05 "1_d1"</td>
</tr>
<tr>
<td>(Trunk master)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>66</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td>id</td>
<td>AN</td>
<td>No_Sync</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>id</td>
<td>N2</td>
<td>Online L-Port 13 public</td>
</tr>
<tr>
<td>69</td>
<td>69</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>71</td>
<td>id</td>
<td>N2</td>
<td>Online L-Port 13 public</td>
</tr>
</tbody>
</table>
Device login issues

Pinpointing problems with device logins

1. Log in to the switch as admin.
2. Enter the `switchShow` command; then, check for correct logins.
3. Enter the `portCfgShow` command to see if the port is configured correctly.

 In some cases, you may find that the port has been locked as an L_Port and the device attached is a fabric point-to-point device such as a host or switch. This would be an incorrect configuration for the device and therefore the device cannot log into the switch.

 To correct this type of problem, remove the Lock L_Port configuration using the `portCfgDefault` command.

   ```
   switch:admin> portcfgshow
   Ports of Slot 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
   -----------------+--+--+--+--+----+--+--+--+----+--+--+--+----+--+--+--
   Speed             AN AN AN AN   AN AN AN AN   AN AN AN AN   AN AN AN AN
   Trunk Port        ON ON ON ON   ON ON ON ON   ON ON ON ON   ON ON ON ON
   Long Distance     .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
   VC Link Init      .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
   Locked L_Port     .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
   Locked G_Port     .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
   Disabled E_Port   .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
   ISL R_RDY Mode    .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
   RSCN Suppressed   .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
   Persistent Disable.. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
   NPIV capability   ON ON ON ON   ON ON ON ON   ON ON ON ON   ON ON ON ON
   
   where AN:AutoNegotiate, ..:OFF, ??:INVALID,
   SN:Software controlled AutoNegotiation.
   ```
4. Enter the `portErrShow` command; then, check for errors that can cause login problems. A steadily increasing number of errors can indicate a problem. Track errors by sampling the port errors every five or ten minutes.

 - The `frames tx` and `rx` are the number of frames being transmitted and received.
 - The `crc_err` counter are frames with CRC errors. If this counter goes up then the physical path should be inspected. Check the cables to and from the switch, patch panel, and other devices. Check the SFP by swapping it with a well-known-working SFP.
 - The `crc_g_eof` counter are frames with CRC errors and a good EOF. Once a frame is detected to have a CRC error, the EOF is modified from that point on. So the first place that the CRC is detected is the only place where the CRC with a good EOF is seen. This good EOF error helps identify the source of the CRC error.
Device login issues

- The **enc_out** are errors that occur outside the frame and usually indicating a bad primitive. To determine if you are having a cable problem, take snapshots of the port errors by using the `portErrShow` command in increments of 5 to 10 minutes. If you notice the `crc_err` counter go up, you have a bad or damaged cable, or a bad or damaged device in the path.

- The **disc_c3** errors are discarded class 3 errors, which means that the switch is holding onto the frame longer than the hold time allows. One problem this could be related to is ISL oversubscription.

```
switch:admin> porterrshow

frames  enc  crc  crc  too  too  bad  enc  disc  link  loss  loss  frjt  fbsy
tx  rx  in  err  g_eof  shrt  long  eof  out  c3  fail  sync  sig
============================================================================
0: 665k 7.0k 0 0 0 0 0 0 0 6 0 0 1 2 0 0
1: 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
2: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
3: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
7: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
8: 78 60 0 0 0 0 0 0 7 0 0 3 6 0 0
9: 12 4 0 0 0 0 0 0 3 0 0 1 2 0 0
10: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
11: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
12: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
13: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
15: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
16: 665k 7.4k 0 0 0 0 0 0 6 0 0 1 2 0 0
17: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
18: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
19: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
20: 6.3k 6.6k 0 0 0 0 0 0 7 0 0 1 2 0 0
21: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
22: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
23: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
24: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
25: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
26: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
27: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
28: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
29: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
30: 664k 6.7k 0 0 0 0 0 0 6 0 0 1 2 0 0
31: 12 4 0 0 0 0 0 0 3 0 0 1 2 0 0

(output truncated)
NOTE
When two shared ports on an FC4-48 blade are receiving traffic and the primary port goes offline, all the frames that are out for delivery for the primary port are dropped, but the counters show them as dropped on the secondary port that shares the same area. Error counters increment unexpectedly for the secondary port, but the secondary port is operating properly.

If this occurs, clear the counters using the `portStatsClear` command on the secondary port after the primary port goes offline.

5. Enter the `portFlagsShow` command; then, check to see how a port has logged in and where a login failed (if a failure occurred):

```
switch:admin> portflagsshow
Port SNMP Physical Flags

0 Offline In_Sync PRESENT U_PORT LED
1 Online In_Sync PRESENT ACTIVE F_PORT G_PORT U_PORT LOGICAL_ONLINE LOGIN NOELP LED ACCEPT
2 Offline No_Light PRESENT U_PORT LED
3 Offline No_Module PRESENT U_PORT LED
4 Offline No_Module PRESENT U_PORT LED
5 Offline No_Light PRESENT U_PORT LED
6 Offline No_Module PRESENT U_PORT LED
7 Offline No_Module PRESENT U_PORT LED
8 Offline No_Light PRESENT U_PORT LED
9 Offline No_Light PRESENT U_PORT LED
10 Offline No_Module PRESENT U_PORT LED
11 Offline No_Module PRESENT U_PORT LED
12 Offline No_Module PRESENT U_PORT LED
13 Offline No_Module PRESENT U_PORT LED
14 Online In_Sync PRESENT ACTIVE F_PORT G_PORT U_PORT LOGICAL_ONLINE LOGIN NOELP LED ACCEPT
15 Online In_Sync PRESENT ACTIVE E_PORT G_PORT U_PORT SEGMENTED LOGIN LED
```

6. Enter the `portLogDumpPort portid` command where the port ID is the port number; then, view the device-to-switch communication.

```
switch:admin> portlogdumpport 8 | more
```

```
time task event port cmd args

Thu Nov 6 16:52:39 2008
16:52:39.066 PORT scn 8 1 00010004,4302000f,02000000
16:52:39.066 PORT scn 8 2 ce3dfab0,d9672800,00000002
16:52:39.066 PORT scn 8 2 ce3dfab0,d9672800,00000080
16:52:39.066 PORT scn 8 5 00000000,00000000,00000002
16:52:39.066 PORT scn 8 1 00100004,4302000f,02000000
16:52:39.066 PORT scn 8 1 00100004,4302000f,02000000
16:52:39.071 PORT ioctl 88010004 1,0 * 4
16:52:42.311 SPEE sn 8 WS 00000000,00000000,00000000
16:52:42.558 SPEE sn 8 NM 00000000,00000000,00000000
16:52:42.558 SPEE sn 8 NF 00000000,00000000,00000000
16:52:42.558 SPEE sn 8 NC 00000000,00000000,00000000
16:52:42.559 LOOP loopscn 8 LIP 8002
16:52:42.559 LOOP loopscn 8 LIP f7f7
16:52:42.572 LOOP loopscn 8 LIM 0
16:52:42.572 PORT Tx3 8 12 22000000,00000000,fffff,11010000
16:52:42.572 PORT Rx3 8 12 22000000,00000000,fffff,11010000
```
Media-related issues

This section provides procedures that help pinpoint any media-related issues, such as bad cables and SFPs, in the fabric. The tests listed in Table 6 are a combination of structural and functional tests that can be used to provide an overview of the hardware components and help identify media-related issues.

- **Structural** tests perform basic testing of the switch circuit. If a structural test fails, replace the main board or port blade.
- **Functional** tests verify the intended operational behavior of the switch by running frames through ports or bypass circuitry.

<table>
<thead>
<tr>
<th>TABLE 6 Component test descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test name</td>
</tr>
<tr>
<td>portTest</td>
</tr>
</tbody>
</table>

The following procedures are for checking switch-specific components.

Testing a port’s external transmit and receive path

1. Connect to the switch and log in as admin.
2. Connect the port you want to test to any other switch port with the cable you want to test.
3. Enter the `portLoopbackTest -lb_mode 2` command.

Testing a switch’s internal components

1. Connect to the switch and log in as admin.
2. Connect the port you want to test to any other switch port with the cable you want to test.
3. Enter the `portLoopbackTest -lb_mode 5` command where 5 is the operand that causes the test to run on the internal switch components (this is a partial list—see the Fabric OS Command Reference for additional command information):
[-nframes count]—Specify the number of frames to send.
[-lb_mode mode]—Select the loopback point for the test.
[-spd_mode mode]—Select the speed mode for the test.
[-ports itemlist]—Specify a list of user ports to test.

Testing components to and from the HBA

1. Connect to the switch and log in as admin.
2. Enter the `portTest` command (see the Fabric OS Command Reference for information on the command options).

See Table 7 on page 35 for a list of additional tests that can be used to determine the switch components that are not functioning properly. See the Fabric OS Command Reference for additional command information.

### TABLE 7  Switch component tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>portLoopbackTest</td>
<td>Performs a functional test of port N to N path. Verifies the functional components of the switch.</td>
</tr>
<tr>
<td>turboRamTest</td>
<td>Verifies that the on chip SRAM located in the 2 Gbps ASIC is using the Turbo-Ram BIST circuitry. This allows the BIST controller to perform the SRAM write and read operations at a much faster rate.</td>
</tr>
</tbody>
</table>

Related Switch Test Option:

| itemList             | Restricts the items to be tested to a smaller set of parameter values that you pass to the switch. |

Segmented fabrics

Fabric segmentation is generally caused by one of the following conditions:

- Incorrect PID setting (see Fabric OS Administrator’s Guide).
- Incompatible zoning configuration (see Chapter 9, “Zone Issues”).
- Domain ID conflict (see “Reconciling fabric parameters individually” on page 36).
- Fabric ID conflict (see Chapter 7, “Virtual Fabrics”).
- Incompatible security policies.
- Incorrect fabric mode.
- Incorrect policy distribution.

There are a number of settings that control the overall behavior and operation of the fabric. Some of these values, such as the domain ID, are assigned automatically by the fabric and can differ from one switch to another in the fabric. Other parameters, such as the BB credit, can be changed for specific applications or operating environments, but must be the same among all switches to allow the formation of a fabric.

The following fabric parameters must be identical on each switch for a fabric to merge:
Segmented fabrics

- R_A_TOV
- E_D_TOV
- Data field size
- Sequence level switching
- Disable device probing
- Suppress class F traffic
- Per-frame route priority
- Long distance fabric (not necessary on Bloom-based, Condor, GoldenEye, Condor2, or GoldenEye2 fabrics. For more information regarding these ASIC types, refer to Appendix A, “Switch Type”.)
- BB credit
- PID format

Reconciling fabric parameters individually

1. Log in to one of the segmented switches as admin.
2. Enter the `configShow -pattern "fabric.ops"` command.
3. Log in to another switch in the same fabric as admin.
4. Enter the `configShow -pattern "fabric.ops"` command.
5. Compare the two switch configurations line by line and look for differences. Do this by comparing the two Telnet windows or by printing the `configShow -pattern "fabric.ops"` output. Also, verify that the fabric parameter settings (see the above list) are the same for both switches.
6. Connect to the segmented switch after the discrepancy is identified.
7. Disable the switch by entering the `switchDisable` command.
8. Enter the `configure` command to edit the fabric parameters for the segmented switch. See the Fabric OS Command Reference for more detailed information.
9. Enable the switch by entering the `switchEnable` command.

Alternatively, you can reconcile fabric parameters by entering the `configUpload` command for each switch and upload a known-good configuration file. If you do this option, the two switches will need to be the same model.

Downloading a correct configuration

You can restore a segmented fabric by downloading a previously saved correct backup configuration to the switch. Downloading in this manner reconciles any discrepancy in the fabric parameters and allows the segmented switch to rejoin the main fabric. For details on uploading and downloading configurations, see the Fabric OS Administrator’s Guide.
Reconciling a domain ID conflict

If a domain ID conflict appears, the conflict is only reported at the point where the two fabrics are physically connected. However, there may be several conflicting domain IDs, which appear as soon as the initial conflict is resolved.

Typically, the fabric automatically resolves domain conflicts during fabric merges or builds unless Insistent Domain ID (IDID) is configured. If IDID is enabled, switches that cannot be programmed with a unique domain ID are segmented out. Check each switch that has IDID configured and make sure their domain IDs are unique within the configuration.

Repeat the following procedure until all domain ID conflicts are resolved.

1. Enter the `fabricShow` command on a switch from one of the fabrics.

2. In a separate Telnet window, enter the `fabricShow` command on a switch from the second fabric.

3. Compare the `fabricShow` output from the two fabrics. Note the number of domain ID conflicts; there may be several duplicate domain IDs that must be changed. Determine which switches have domain overlap and change the domain IDs for each of those switches.

4. Choose the fabric on which to change the duplicate domain ID; connect to the conflicting switch in that fabric.

5. Enter the `switchDisable` command.

6. Enter the `switchEnable` command.

   This will enable the joining switch to obtain a new domain ID as part of the process of coming online. The fabric principal switch will allocate the next available domain ID to the new switch during this process.

7. Repeat step 4 through step 6 if additional switches have conflicting domain IDs.
Segmented fabrics
Chapter 4

Configuration Issues

In this chapter

- Configupload and download issues ........................................ 39
- Brocade configuration form .................................................. 42

Configupload and download issues

It is important to maintain consistent configuration settings on all switches in the same fabric because inconsistent parameters (such as inconsistent PID formats) can cause fabric segmentation. As part of standard configuration maintenance procedures, it is recommended that you back up all important configuration data for every switch on a host computer server for emergency reference.

**NOTE**

For information about AD-enabled switches using Fabric OS v5.2.0 or later, see the *Fabric OS Administrator’s Guide*.

For information about Virtual Fabrics using Fabric OS v6.2.0 or later, see the *Fabric OS Administrator’s Guide*.

**Symptom**

The configuration upload fails.

**Probable cause and recommended action**

If the configuration upload fails, it may be because of one or more of the following reasons:

- The FTP or SCP server’s host name is not known to the switch.
  Verify with your network administrator that the switch has access to the FTP server.

- The USB path is not correct.
  If your platform supports a USB memory device, verify that it is connected and running. Verify that the path name is correct by using the `usbStorage -l` command.

  **Example of `usbStorage -l` command**

  ```
 switch:admin> usbstorage -l
 firmwarekey\ 0B 2007 Aug 15 15:13
 support\ 106MB 2007 Aug 24 05:36
 support1034\ 105MB 2007 Aug 23 06:11
 config\ 0B 2007 Aug 15 15:13
 firmware\ 380MB 2007 Aug 15 15:13
 FW_v6.0.0\ 380MB 2007 Aug 15 15:13
 Available space on usbstorage 74%
  ```
• The FTP or SCP server’s IP address cannot be contacted.
Verify that you can connect to the FTP server. Use your local PC to connect to the FTP server or ping the FTP server.

**Example of a successful ping**

```
C:\>ping 192.163.163.50
Pinging 192.163.163.50 with 32 bytes of data:
Reply from 192.163.163.50: bytes=32 time=5ms TTL=61
Ping statistics for 192.163.163.50:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 4ms, Maximum = 5ms, Average = 4ms
```

If your ping is successful from your computer, but you cannot reach it from inside your data center, there could be a block on the firewall to not allow FTP connections from inside the data center. Contact your network administrator to determine if this is the cause and to resolve it by opening the port up on both inbound and outbound UDP and TCP traffic.

**Example of a failed ping**

```
C:\> ping 192.163.163.50
Pinging 192.163.163.50 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.163.163.50:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

If your ping has failed then you should verify the following:

- The ports are open on the firewall.
- The FTP server is up and running.

**Example of a failed login to the FTP server**

The output should be similar to the following on an unsuccessful login:

```
C:\>ftp 192.163.163.50
Connected to 192.163.163.50
220 Welcome to Education Services FTP service.
User (10.255.252.50:(none)): upd20
331 Please specify the password.
Password:
530 Login incorrect.
Login failed.
```

If your login to the FTP or SCP server has failed, verify the username and password are correct.

• You do not have configuration upload permission on the switch.
There may be some restrictions if you are using Admin Domains or Role-Based Access Control. For more information on these types of restrictions, refer to the *Fabric OS Administrator’s Guide*.

• You do not have permission to write to directory on the FTP or SCP server.
When troubleshooting configupload and download issues, it's important to implement one change at a time and issue the command again. This will help you determine what works and what does not work, allowing you to avoid similar problems in the future.

**Symptom**

- The configuration download fails.

**Probable cause and recommended action**

If the configuration download fails, there could be several reasons:

- The FTP or SCP server’s host name is not known to the switch. Verify with your network administrator that the switch has access to the FTP server.
- The USB path is incorrect. Verify that the path name is correct; it should be the relative path from `/usb/usbstorage/brocade/configdownload` or use absolute path.
- The FTP or SCP server’s IP address cannot be contacted. Verify you can connect to the FTP server or ping the FTP server.
- There was a reason to disable the switch. Note, however, that you must disable the switch for some configuration downloads. For more information on how to perform a configuration download without disabling a switch, refer to the Fabric OS Administrator’s Guide.
- You do not have permission on the host to perform configuration download. There may be some restrictions if you are using Admin Domains or Role-Based Access Control. For more information on these types of restrictions, refer to the Fabric OS Administrator’s Guide.
- The configuration file you are trying to download does not exist on the host.
- The configuration file you are trying to download is not a switch configuration file.
- If you selected the (default) FTP protocol, the FTP server is not running on the host.
- The configuration file uses incorrect syntax.
- The username and password are incorrect.

**Symptom**

- The switch reboots during the configuration download.

**Probable cause and recommended action**

Issue the command again.

**Gathering additional information**

Be sure to capture the output from the commands you are issuing both from the switch and from your computer when you are analyzing the problem. Send this and all logs to your switch support provider.
**Messages captured in the logs**

Configuration download generates both RASLog and Audit log messages resulting from execution of the `configDownload` command.

The following messages are written to the logs:

- `configDownload completed successfully` ... (RASLog and Audit log)
- `configUpload completed successfully` ... (RASLog)
- `configDownload not permitted` ... (Audit log)
- `configUpload not permitted` ... (RASLog)
- (Warning) Downloading configuration without disabling the switch was unsuccessful. (Audit log)

**Brocade configuration form**

Use this form as a hard copy reference for your configuration information.

In the hardware reference manuals for the Brocade 48000 and DCX modular switches there is a guide for FC port setting tables. The tables can be used to record configuration information for the various blades.

<table>
<thead>
<tr>
<th>TABLE 8</th>
<th>Brocade configuration and connection</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Brocade configuration settings</strong></td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td></td>
</tr>
<tr>
<td>Gateway address</td>
<td></td>
</tr>
<tr>
<td>Chassis configuration option</td>
<td></td>
</tr>
<tr>
<td><strong>Management connections</strong></td>
<td></td>
</tr>
<tr>
<td>Serial cable tag</td>
<td></td>
</tr>
<tr>
<td>Ethernet cable tag</td>
<td></td>
</tr>
<tr>
<td><strong>Configuration information</strong></td>
<td></td>
</tr>
<tr>
<td>Domain ID</td>
<td></td>
</tr>
<tr>
<td>Switch name</td>
<td></td>
</tr>
<tr>
<td>Ethernet IP address</td>
<td></td>
</tr>
<tr>
<td>Ethernet subnet mask</td>
<td></td>
</tr>
<tr>
<td>Total number of local devices <em>(nsShow)</em></td>
<td></td>
</tr>
<tr>
<td>Total number of devices in fabric <em>(nsAllShow)</em></td>
<td></td>
</tr>
<tr>
<td>Total number of switches in the fabric <em>(fabricShow)</em></td>
<td></td>
</tr>
</tbody>
</table>
FirmwareDownload Errors

In this chapter

- Blade troubleshooting tips ........................................... 43
- Firmware download issues ........................................... 44
- Troubleshooting firmwareDownload ................................... 46
- USB error handling ..................................................... 46
- Considerations for downgrading firmware ................................. 47

Blade troubleshooting tips

This chapter refers to the following specific types of blades inserted into either the Brocade 48000 director or Brocade DCX or DCX-4S Backbone:

- FC blades or port blades contain only Fibre Channel ports: Brocade FC4-16/32/48, FC10-6, and FC8-16/32/48.
- AP blades contain extra processors and specialized ports: Brocade FR4-18i and FC4-16IP, and FA4-18.
- CP blades have a control processor (CP) used to control the entire switch; they can be inserted only into slots 5 and 6 on the Brocade 48000, slots 6 and 7 on the Brocade DCX, and slots 4 and 5 on the Brocade DCX-4S.
- CORE8 and CR4S-8 core blades provide ICL functionality between two Brocade DCX Backbones. CORE8 blades can be inserted only into slots 5 and 8 on the Brocade DCX. CR4S-8 blades can be inserted only into slots 3 and 6 on the Brocade DCX-4S.

Typically, issues detected during firmware download to AP blades do not require recovery actions on your part.

If you experience frequent failovers between CPs that have different versions of firmware, then you may notice multiple blade firmware downloads and a longer startup time.

**ATTENTION**

*Brocade 48000 with FC8-16 blades:* If you are running Fabric OS v6.0, then you cannot downgrade to earlier versions without removing the blades.

*Brocade DCX Director with FC8-16/32/48 blades:* If you are running Fabric v6.1.0, then you cannot downgrade to pre-Fabric OS v6.0.0 versions as they are not supported on this director.
Symptom: The blade is faulty (issue slotShow to confirm).

Probable cause and recommended action

If the port or application blade is faulty, enter the slotPowerOff and slotPowerOn commands for the port or application blade. If the port or application blade still appears to be faulty, remove it and re-insert it into the chassis.

Symptom: The AP blade is stuck in the “LOADING” state (issue slotShow to confirm).

Probable cause and recommended action

If the blade remains in the loading state for a significant period of time, the firmware download will time out. Remove the blade and re-insert it. When it boots up, autoleveling will be triggered and the firmware download will be attempted again.

Firmware download issues

The following symptoms describe common firmware download issues and their recommended actions.

Symptom: Server is inaccessible or firmware path is invalid.

Probable cause and recommended action

- The FTP or SCP server’s host name is not known to the switch.
  Verify with your network administrator that the switch has access to the FTP server.
  Verify the path to the FTP or SCP server is accessible from the switch. For more information on checking your FTP or SCP server, see Chapter 4, “Configuration Issues”.

- The USB path is not correct.
  If your platform supports a USB memory device, verify that it is connected and running. Verify that the path name is correct by using the usbStorage -l command.
  
  Example of usbStorage -l command
  
  switch:admin> usbstorage -l
  firmwarekey\ 0B 2007 Aug 15 15:13
  support\ 106MB 2007 Aug 24 05:36
  support1034\ 105MB 2007 Aug 23 06:11
  config\ OB 2007 Aug 15 15:13
  firmware\ 380MB 2007 Aug 15 15:13
  FW_v6.0.0\ 380MB 2007 Aug 15 15:13
  Available space on usbstorage 74%

Example of error message

switch:admin> firmwaredownload
Server Name or IP Address: 192.126.168.115
User Name: jdoe
File Name: /users/home/jdoe/firmware/v6.2.0
Network Protocol(1-auto-select, 2-FTP, 3-SCP) [1]: 2
Password:
Server IP: 192.126.168.115, Protocol IPv4
Checking system settings for firmwaredownload...
Firmware access timeout.
The server is inaccessible or firmware path is invalid. Please make sure the server name or IP address, the user/password and the firmware path are valid.

**Symptom**  
*Cannot download the requested firmware.*

**Probable cause and recommended action**

The firmware you are trying to download on the switch is incompatible. Check the firmware version against the switch type. If the firmware is incompatible, retrieve the correct firmware version and try again.

**Example of error message**

```
SW3900:admin> firmwaredownload
Server Name or IP Address: 192.168.126.115
User Name: jdoe
File Name: /users/home/jdoe/firmware/v6.2.0
Network Protocol(1-auto-select, 2-FTP, 3-SCP) [1]: 2
Password: <hidden>
Server IP: 192.126.168.115, Protocol IPv4
Checking system settings for firmwaredownload...
Cannot download the requested firmware because the firmware doesn't support this platform. Please enter another firmware path.
```

**Symptom**  
*Cannot download on a switch with Interop mode turned on.*

**Probable cause and recommended action**

On single CP, Interop fabric does not support Coordinated HotCode Load.

Perform a `firmwareDownload -o` command. The operand bypasses the checking of Coordinated HotCode Load (HCL). On single CP systems in interop fabrics, the HCL protocol is used to ensure data traffic is not disrupted during firmware upgrades. This option will allow a firmware download to continue even if HCL is not supported in the fabric or the protocol fails. Using this option may cause traffic disruption for some switches in the fabric.

**Symptom**  
*You receive a firmwaredownload is already in progress message.*

**Probable cause and recommended action**

The firmware download process has already been started and it is in progress. Wait till it completes. You can use the `firmwareDownloadStatus` and `firmwareShow` commands to monitor its progress. If you are sure there is no firmware download in progress and the error still shows up, you can reboot the switch to remedy it. If the problem persists, contact your switch support provider.

**Example of a firmwaredownload already in progress**

```
switch:admin> firmwaredownload

Server Name or IP Address: 192.126.168.115
User Name: jdoe
File Name: /users/home/jdoe/firmware/v6.2.0
Network Protocol(1-auto-select, 2-FTP, 3-SCP) [1]: 2
Password: <hidden>
Server IP: 192.126.168.115, Protocol IPv4
Checking system settings for firmwaredownload...
Sanity check failed because firmwaredownload is already in progress.
```
Troubleshooting firmwareDownload

A network diagnostic script and preinstallation check is a part of the `firmwareDownload` procedure. The script and preinstallation check performs troubleshooting and automatically checks for any blocking conditions. If the firmware download fails, see the Fabric OS Message Reference for details about error messages. Also see, “Considerations for downgrading firmware” on page 47.

If a firmware download fails in a director, the `firmwareDownload` command synchronizes the firmware on the two partitions of each CP by starting a firmware commit operation. Wait at least 15 minutes for this commit operation to complete before attempting another firmware download.

If the firmware download fails in a director or enterprise-class platform, the CPs may end up with different versions of firmware and are unable to achieve HA synchronization. In such cases, issue the `firmwareDownload -s` command on the standby CP; the single mode (-s) option allows you to upgrade the firmware on the standby CP to match the firmware version running on the active CP. Then re-issue the `firmwareDownload` command to download the desired firmware version to both CPs. For example, if CP0 is running v5.2.0 on the primary and secondary partitions, and CP1 is running v5.0.1 on the primary and secondary partitions, then synchronize them by issuing the `firmwareDownload` command.

See the Fabric OS Message Reference for detailed information about .plist-related error messages.

For more information on any of the commands in the Recommended Action section, see the Fabric OS Command Reference.

NOTE
Some of the messages include error codes (as shown in the example below). These error codes are for internal use only and you can disregard them.

Example: Port configuration with EX ports enabled along with trunking for port(s) 63, use the `portCfgEXPort`, `portCfgVEXPort`, and `portCfgTrunkPort` commands to remedy this. Verify blade is ENABLED. (error 3)

Gathering additional information

You should follow these best practices for firmware download before you start the procedure:

- Keep all session logs.
- Enter the `supportSave` or the `supportShow` command before and after entering the `firmwareDownload` command.
- If a problem persists, package together all of the information (the Telnet session logs and serial console logs, output from the `supportSave` command) for your switch support provider. Make sure you identify what information was gathered before and after issuing the `firmwareDownload` command.

USB error handling

The following table outlines how the USB device handles errors under specific scenarios and details what actions you should take after the error occurs.
Considerations for downgrading firmware

To avoid failure of a firmware downgrade, verify the firmware you are downgrading to supports all the blades in the chassis and supports all features you are currently using. If not, you will need to disable or remove those features that are not supported. Also, check for any one of the following conditions:

- If an FC8-32 or FC8-48 port blade, or both, is inserted on a Brocade 48000 director or Brocade DCX or DCX-4S enterprise-class platform, power off and remove the blade prior to downgrading the firmware.
- If an EX_Port is configured and enabled on any one of the FC8-port blades, reconfigure the port back to default prior to downgrading the firmware.
- If port mirroring is configured and enabled on any one of the FC8-port blades, reconfigure the port back to default prior to downgrading the firmware.
- If Access Gateway ADS policy is enabled, disable ADS policy prior to downgrading the firmware.
- If F_Port Trunking is enabled, disable it first prior to downgrading.

Preinstallation messages

The messages in this section are displayed if an exception case is encountered during firmware download. The following example shows feature-related messages that you may see if you were downgrading from v6.2.0 to v6.1.0:

The following items need to be addressed before downloading the specified firmware:

Non-disruptive firmware download is not supported when downgrading to 6.1. Please use firmware download -s to download the 6.1 firmware.

Downgrade is not allowed because VF is enabled. Please run \"lscfg --config\" and \"lscfg --delete\" commands to remove the non-default LS first, then run \"fosconfig --disable vf\" to disable VF before proceeding.

Downgrade is not allowed because AG is enabled. Please run \"ag --modedisable\" command to disable AG mode before proceeding.

This example shows hardware-related messages for the same downgrade example:

ECP:admin> firmwaredownload
Type of Firmware (FOS, SAS, or any application) [FOS]:

**TABLE 9** USB error handling

<table>
<thead>
<tr>
<th>Scenario under which download fails</th>
<th>Error handling</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>An access error occurs during firmwaredownload because the removal of the USB device, or USB device hardware failure, etc.</td>
<td>Firmwaredownload will timeout and commit will be started to repair the partitions of the CPUs that are affected. See previous table for details.</td>
<td>None.</td>
</tr>
<tr>
<td>USB device is not enabled.</td>
<td>Firmwaredownload will fail with an error message</td>
<td>Enable the USB device using the <code>usbStorage -e</code> command and retry firmwaredownload.</td>
</tr>
</tbody>
</table>
Considerations for downgrading firmware

Server Name or IP Address: 192.168.32.10
Network Protocol (1-auto-select, 2-FTP, 3-SCP) [1]:
User Name: userfoo
File Name: /home/userfoo/dist/v6.1.0
Password:
Verifying the input parameters ...
Checking system settings for firmwaredownload...

The following items need to be addressed before downloading the specified firmware:

AP BLADE type 43 is inserted. Please use slotshow to find out which slot it is in and remove it.
Firmwaredownload command failed.

Blade types

This message pertains to any blade in a chassis that may need to be removed or powered off before a firmware download begins.

Message

The FS8-18 (type 43) blade is not supported by the target firmware. Please use slotshow to find out which slot it is in and remove it first.

Probable cause and recommended action

The firmware download operation was attempting to downgrade a system to Fabric OS v6.1.1_enc or earlier with one or more Brocade FC8-18 AP blades (blade ID 43) in the system. Brocade Encryption Blade FC8-18 AP blades are not supported on firmware v6.1.1 or earlier, so the firmware download operation failed.

Use the slotShow command to display which slots the Brocade FC8-18 AP blades occupy. Physically remove the blades from the chassis, or use the micro-switch to turn the blade off. Retry the firmware download operation.

Firmware versions

These messages refer to differences between the current firmware and the firmware you are applying to the switch.

Message

Cannot upgrade directly to v6.1.0. Upgrade your switch to v6.0.0 first before upgrading to the requested version.

Probable cause and recommended action

If the switch is running v5.3.0 or earlier, you will not be allowed to upgrade directly to v6.1.0 because of the “two-version” rule.

Upgrade your switch to Fabric OS version v6.0.0 before upgrading to v6.1.0
**Message**

Cannot upgrade directly to v6.0. Upgrade your switch to v5.2.1_NI1 or v5.3.0 first before upgrading to the requested version.

**Probable cause and recommended action**

If the switch is running v5.2.1 or earlier, you will not be allowed to upgrade directly to v6.0 because of the “two-version” rule.

Upgrade your switch to Fabric OS version v5.2.1_NI1 or v5.3.0 before upgrading to v6.0

**Message**

Non-disruptive firmwaredownload is not supported when downgrading to 6.1. Please use firmwaredownload -s to download the 6.1 firmware.

**Probable cause and recommended action**

If the switch is running v6.2.0, you will not be allowed to downgrade directly to v6.1.x without causing disruption to your fabric.

Downgrade using the firmwaredownload -s command. For more information on using this command, refer to the Fabric OS Administrator’s Guide.

**Message**

Firmwaredownload of blade application firmware failed. Reissue firmwaredownload to recover.

**Probable cause and recommended action**

The firmware download operation was attempting to upgrade the SAS image while the blade was operational.

Retry the firmwaredownload command again.

**IP settings**

This message refers to any IP settings that need to be fixed prior to downgrading the firmware.

**Message**

Cannot downgrade due to the presence of IPv6 addresses on the switch. Please reconfigure these addresses before proceeding. (Firmwaredownload will tell you which addresses are configured with IPv6 and commands used to remedy.)

**Probable cause and recommended action**

If the switch is running v5.3.0 or later, and if there are any IPv6 addresses configured, e.g. switch IP address, syslog IP addresses, radius server, etc. you cannot downgrade to a version that does not support IPv6.

Use the `ipAddrSet` command to change the IPv6 addresses to IPv4 addresses.

**Platform**

These messages are switch features or fabric-wide settings that need to be removed or disabled before downgrading the firmware.
Considerations for downgrading firmware

Message Only platform option 5 is supported by version 6.1.0. Use chassisconfig to reset the option before downloading the firmware.

Probable cause and recommended action
The firmware download operation was attempting to upgrade a system to Fabric OS v6.1.0. The chassisConfig option was set to 1, 2, 3 or 4, which are not supported in v6.1.0, so the firmware download operation was aborted.

Execute the chassisConfig command with a supported option (5 for Brocade 48000 director on v6.1.0), and then retry the firmware download operation.

The supported options are:

- **option 5** One 384-port switch with the following configuration:
  - FC4-16 (blade ID 17), FC4-32 (blade ID 18) FR4-18i (Blade ID 24), FR4-18i (blade ID 31), FA4-18 (blade ID 33), 36, FC10-6 (blade ID 39) on slots 1–4 and 7–10;
  - CP4 (blade ID 16) on slots 5–6

Message Only platform option 5 is supported by version 6.0. Use chassisconfig to reset the option before downloading the firmware.

Probable cause and recommended action
The firmware download operation was attempting to upgrade a system to Fabric OS v6.0.0. The chassisConfig option was set to 2, 3 or 4, which are not supported in v6.0.0, so the firmware download operation was aborted.

Execute the chassisConfig command with a supported option (1 or 5 for Brocade 48000 for Fabric OS v5.3.0; and 5 for Brocade 48000 and the Brocade DCX enterprise-class platform on v6.0.0), and then retry the firmware download operation.

The supported options are:

- **option 1** One 128-port switch with the following configuration:
  - FC2-16 (blade ID 4), FC4-16 (blade ID 17) on slots 1–4 and 7–10;
  - CP2 (blade ID 5), CP4 (blade ID 16) on slots 5–6
- **option 5** One 384-port switch with the following configuration:
  - FC4-16 (blade ID 17), FC4-32 (blade ID 18) FR4-18i (Blade ID 24), FR4-18i (blade ID 31), FA4-18 (blade ID 33), 36, FC10-6 (blade ID 39) on slots 1–4 and 7–10;
  - CP4 (blade ID 16) on slots 5–6

Message Cannot upgrade to firmware v6.0.0. This firmware does not support Brocade 24000 platform.

Probable cause and recommended action
The Brocade 24000 does not support firmware v6.0.0. Download firmware v5.3.x on this platform.

Message The active security DB size is greater than 256 KB, you will not be allowed to downgrade to below v6.0.0.

Probable cause and recommended action
You cannot downgrade because the active security database size is greater than 256 KB. Reduce the size before downgrading.
Considerations for downgrading firmware

**Message**  
Downgrade is not allowed because VF is enabled. Please run "lscfg --config" and "lscfg --delete" commands to remove the non-default LS first, then run "fosconfig --disable vf" to disable VF before proceeding.

**Probable cause and recommended action**
You cannot downgrade because Virtual Fabrics are enabled. Delete the logical switches, delete the base switch, and disable Virtual Fabrics prior to downgrading the firmware.

**Message**  
Downgrade is not allowed because AG is enabled. Please run "ag --modedisable" command to disable AG mode before proceeding.

**Probable cause and recommended action**
You cannot downgrade because Access Gateway mode is enabled. Disable Access Gateway prior to downgrading the firmware.

**Port settings**
These messages refer to port settings that need to be fixed before downgrading the switch’s firmware.

**Message**  
The command failed due to presence of long-distance ports in L0.5 mode. Please remove these settings before proceeding.

**Probable cause and recommended action**
The firmware download operation was attempting to upgrade a system to Fabric OS v6.0.0 with long-distance ports in L0.5, L1, or L2 modes. Long-distance ports in these modes are not supported in firmware v6.0.0 or later, so the firmware upgrade operation failed.

L0  Specify L0 to configure the port to be a regular switch port. A total of 20 full-size frame buffers are reserved for data traffic, regardless of the port’s operating speed; therefore, the maximum supported link distance is 10 km, 5 km, or 2.5 km for the port at speeds of 1 Gbps, 2 Gbps, or 4 Gbps, respectively.

LE  Specify LE mode for E_Ports for distances beyond 5 Km and up to 10 Km. A total of 5, 10, or 20 full-size frame buffers are reserved for port speeds of 1 Gbps, 2 Gbps, or 4 Gbps, respectively. LE does not require an Extended Fabrics license.

LD  Specify LD for automatic long-distance configuration. The buffer credits for the given E_Port are automatically configured, based on the actual link distance. Up to a total of 250 full-size frame buffers are reserved, depending on the distance measured during E_Port initialization. If the desired distance is provided, it is used as the upper limit to the measured distance. For Bloom1-based systems, the number of frame buffers is limited to 63.

LS  Specify LS mode to configure a long-distance link with a fixed buffer allocation. Up to a total of 250 full-size frame buffers are reserved for data traffic, depending on the desired distance value provided with the `portCfgLongDistance` command. For Bloom1-based systems, the number of frame buffers is limited to 63.

**Message**  
An SNMP trap port is set to non-default, you will not be allowed to downgrade to below v6.0.0.

**Probable cause and recommended action**
The SNMP trap port was set to non-default. Remove the SNMP trap port setting before downgrading.
Routing

This message refers to any route settings that need to be changed prior to downgrading the switch’s firmware.

Message  
Downgrade is not allowed because IOD Delay value is configured for one or more domains. Please use \"ioddelayshow and ioddelayreset\" to disable them before downgrading.

Probable cause and recommended action
If the switch is running v6.2.0 or later, and IOD Delay value is configured for one or more domains, you cannot downgrade the switch to v6.1.0 or earlier.
Use the iodDelayReset command to reset the IOD delay to its default value.

Zoning

These messages refer to any zone settings that need to be fixed prior to downgrading the switch’s firmware.

Message  
Cannot downgrade due to the presence of broadcast zone(s). Remove or disable them before proceeding.

Probable cause and recommended action
If the switch is running v5.3.0 or later, and a “broadcast zone” is configured, you cannot downgrade the switch to v5.2.0 or earlier, because a broadcast zone gets a special meaning in v5.3.0, but it will be treated as regular zone in v5.2.0 or earlier.
Use the zoneRemove command to remove the zone or zoneDelete command to delete the zone.

Message  
Cannot downgrade due to LSAN count is set to 3000, please disable it before proceeding.

Probable cause and recommended action
If a switch is running v5.3.0 or later and the LSAN count is at 3000, you cannot downgrade to v5.2.0 or earlier.
Use the fcrLsanMatrix command to disable the LSAN.

Message  
Cannot downgrade due to LSAN zone binding is enabled. Please disable it before proceeding.

Probable cause and recommended action
If switch is running v5.3.0 or later, and if LSAN zone binding is enabled, you cannot downgrade to v5.2.0 or earlier.
Use the fcrLsanMatrix command to disable the LSAN.
Chapter 6

Security Issues

In this chapter

- Password issues .......................................................... 53
- Device authentication issues ........................................... 54
- Protocol and certificate management issues .................... 55
- SNMP issues .............................................................. 56
- FIPS issues ............................................................... 56

Password issues

The following section describes various ways to recover forgotten passwords.

Symptom  
User forgot password.

Probable cause and recommended action
If you know the root password, you can use this procedure to recover the password for the default accounts of user, admin, and factory.

Recovering passwords

1. Open a CLI connection (serial or Telnet) to the switch.
2. Log in as root.
3. Enter the command for the type of password that was lost:
   passwd user
   passwd admin
   passwd factory
4. Enter the requested information at the prompts.

Symptom  
Unable to log in as root password.

Probable cause and recommended action
To recover your root password, contact your switch service provider.
Device authentication issues

Symptom
Unable to log into the boot PROM.

Probable cause and recommended action
To recover a lost boot PROM password, contact your switch service provider. You must have previously set a recovery string to recover the boot PROM password.

This does not work on lost or forgotten passwords in the account database.

Password recovery options

The following table describes the options available when one or more types of passwords are lost.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>If all the passwords are forgotten, what is the password recovery mechanism? Are these procedures non-disruptive recovery procedures?</td>
<td>Contact your switch service provider. A non-disruptive procedure is available.</td>
</tr>
<tr>
<td>If a user has only the root password, what is the password recovery mechanism?</td>
<td>Use passwd command to set other passwords. Use passwdDefault command to set all passwords to default.</td>
</tr>
<tr>
<td>How to recover boot PROM password?</td>
<td>Contact your switch service provider and provide the recovery string. Refer to the Fabric OS Administrator’s Guide for more information on setting the boot PROM password.</td>
</tr>
<tr>
<td>How do I recover a user, admin, or factory password?</td>
<td>Refer to “Password issues” on page 53 for more information.</td>
</tr>
</tbody>
</table>

Symptom
User is unable to modify switch settings.

Probable cause and recommended action
The most common error when managing user accounts is not setting up the default Admin Domain and access control list or role-based access control (RBAC).

Errors such as a user not being able to run a command or modify switch settings are usually related to what role the user has been assigned.

Device authentication issues

Symptom
Switch is unable to authenticate device.

Probable cause and recommended action
When the device authentication policy is set to ON, the switch expects a FLOGI with the FC-SP bit set. If this bit is not set, the switch rejects the FLOGI with reason LS_LOGICAL_ERROR (0x03), in the switch log with the explanation of “Authentication Required” (0x48), and disables the port. Set the device authentication policy mode on the switch to ON.
Protocol and certificate management issues

This section provides information and procedures for troubleshooting standard Fabric OS security features such as protocol and certificate management.

**NOTE**
Secure Fabric OS is not supported in Fabric OS v6.2.0.

### Symptom
**Troubleshooting certificates**

**Probable cause and recommended action**
If you receive messages in the browser or in a pop-up window when logging in to the target switch using HTTPS, refer to Table 11 for recommended actions you can take to correct the problem.

<table>
<thead>
<tr>
<th>Message</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The page cannot be displayed</td>
<td>The SSL certificate is not installed correctly or HTTPS is not enabled correctly. Make sure that the certificate has not expired, that HTTPS is enabled, and that certificate file names are configured correctly.</td>
</tr>
<tr>
<td>The security certificate was issued by a company you have not chosen to trust.</td>
<td>The certificate is not installed in the browser. Install it as described in the Fabric OS Administrator's Guide.</td>
</tr>
<tr>
<td>The security certificate has expired or is not yet valid</td>
<td>Either the certificate file is corrupted or it needs to be updated. Click View Certificate to verify the certificate content. If it is corrupted or out of date, obtain and install a new certificate.</td>
</tr>
<tr>
<td>The name on the security certificate is invalid or does not match the name of the site file</td>
<td>The certificate is not installed correctly in the Java Plug-in. Install it as described in the Fabric OS Administrator's Guide.</td>
</tr>
<tr>
<td>This page contains both secure and nonsecure items. Do you want to display the nonsecure items?</td>
<td>Click No in this pop-up window. The session opens with a closed lock icon on the lower-right corner of the browser, indicating an encrypted connection.</td>
</tr>
</tbody>
</table>

### Gathering additional information
For security-related issues, use the following guidelines to gather additional data for your switch support provider.

- Perform a supportSave -n command.
If not sure about the problem area, collect a `supportSave -n` from all switches in the fabric.

If you think it may be related to E_Port authentication then collect a `supportSave -n` from both switches of the affected E_Port.

If you think this is a policy-related issue, FCS switch or other security server-related issue then use `supportSave -n` to collect data from the Primary FCS switch and all affected switches.

If login-related, then also include the following information:
- Does login problem appear on a Serial, CP IP, or Switch IP address connection?
- Is it CP0 or CP1?
- Is the CP in active or standby?
- Is it the first time login after `firmwareDownload` and reboot?

---

### SNMP issues

This section describes symptoms with associated causes and recommended actions for SNMP-related issues.

**Symptom**  
`SNMP management station server is unable to receive traps from fabric.`

**Probable cause and recommended action**

There are several causes related to this generic issue. You will need to verify the following:

- There are no port filters in the firewalls between the fabric and the SNMP management station.
- If your SNMP management station is a dual-homed server, check that the routing tables are set up correctly for your network.

If you continue to have problems, collect the data in the next section and contact your switch support provider.

**Gathering additional information**

In addition to `supportSave`, gather the MIB browser snapshot with the problem (like Adventnet screen snapshot) for an MIB variable.

---

### FIPS issues

This section describes symptoms with associated causes and recommended actions for problems related to FIPS.

**Symptom**  
`When FIPS is turned on the switch constantly reboots.`

**Probable cause and recommended action**

When FIPS is turned on the switch runs conditional tests each time it is rebooted. These tests run random number generators and are executed to verify the randomness of the random number generator. The conditional tests are executed each time prior to using the random number provided by the random number generator.
The results of all self-tests, for both power-up and conditional, are recorded in the system log or are output to the local console. This includes logging both passing and failing results. If the tests fail on your switch it will constantly reboot. Because boot PROM access is disabled you will not be able to exit out of the reboot. You will need to send the switch back to your switch service provider for repair.
FIPS issues
Virtual Fabrics

In this chapter

• General Virtual Fabric troubleshooting ........................................... 59
• Fabric identification issues .............................................................. 60
• Logical Fabric issues ................................................................. 60
• Base switch issues ................................................................. 61
• Logical switch issues ................................................................. 62
• Switch configuration blade compatibility ........................................ 63

General Virtual Fabric troubleshooting

All of the following constraints apply when the Virtual Fabric feature is enabled:

• The base fabric works only in Brocade native mode, not in an interoperable mode.
• The base switch does not have any devices. The base fabric can have devices in remote layer
two switches; traffic between those devices is supported.
• A non-base switch in a Virtual Fabric-capable chassis must not be part of a fabric that serves
as a base fabric for some other logical fabric traffic. Although software will not detect or
prevent users from deploying such a configuration, such a configuration is not supported.
• ICL ports can only be in the base or default switch. If XISL is turned off, you can connect ICLs to
other logical switches.
• A default switch can be configured as a base switch in the Brocade 5100 and 5300 switches,
but not in a Brocade DCX or DCX-4S. Fabric IDs of default switches cannot be manually
changed.
• The default switch is able to participate in a logical fabric using extended ISLs (XISLs). In the
Brocade DCX and DCX-4S, the default switch will not participate in a logical fabric and will be a
purely layer two logical switch.
• EX_ and VEX_Ports are supported in the base switch. EX_Ports cannot be part of any other
switch other than the base switch.
• EX_ and VEX_Ports cannot connect to a fabric that has a logical switch with the Allow XISL use
mode on. The port will be disabled with the reason Conflict: EX-XISL capability domain.
• Fabric OS v6.2.0 supports external device sharing only through EX_Ports. Internal device
sharing (sharing a device in a logical fabric with other fabrics, without having an EX_Port) is not
supported.
• A logical fabric cannot have EX_Ports using extended ISLs and cannot serve as a backbone to
any EX_Port traffic. Similarly, the default switch cannot be part of a fabric that serves as a
backbone to any EX_Port traffic.
Fabric identification issues

- VE_Ports cannot exist in a logical switch that has XISL use turned on. Although VE_Ports are allowed in a base switch, Fabric OS v6.2 does not support the use of VE_Ports to carry traffic for logical fabrics using XISLs. They can be used to carry FCR traffic through EX_ and VEX_Ports. You should make sure your configuration does not result in the use of VE_Ports in a base switch for logical fabric traffic.
- Admin Domains are mutually exclusive with Virtual Fabrics. When Virtual Fabrics is enabled, all access control is based on the Virtual Fabric context.
- Traffic Isolation zones with no-failover option are not supported in logical fabrics. TI zones defined in the base fabric for logical fabric traffic must allow failover.

**NOTE**

A new option “Disable FID check” has been added to configure fabric parameter options. This can be used to disable FID check for FICON logical switches.

Fabric identification issues

**Symptom**  
*E_Ports directly connecting two logical switches does not form or is disabled.*

**Probable cause and recommended action**

The FIDs on each of the logical switches must be the same.

Use the `lsCfg --show` command to view the current FIDs on the chassis and then the `lsCfg --change FID -newfid FID` command to change the FID.

**Symptom**  
*Invalid FID.*

**Probable cause and recommended action**

FIDs for switches may be from 1 through 128 as long as they are not already in use, except EX_Ports which are only assigned FIDs from 1 through 127.

Use the `lsCfg --show` command to verify if the FID is in use. If it is, use another FID.

**Symptom**  
*The FID is currently in use.*

**Probable cause and recommended action**

You may not create two (2) or more logical switches with the same FID.

Use the `lsCfg --show` and `fcrFabricShow` commands to view FIDs in use.

Logical Fabric issues

**Symptom**  
*Logical port <port_number> disabled.*

**Probable cause and recommended action**

This message indicates an LISL was disabled due to some protocol conflict or security or policy violation. This can result in possible traffic issues. You should resolve the cause of the conflict and re-enable the LISL using the `lfcfg --lisenable` command.
Symptom  The switch with domain <domain> with firmware version <fw version> has joined the FID <fid> fabric and may not be compatible with XISL use.

Probable cause and recommended action
This message indicates the specified switch in the logical fabric using XISLs is running an incompatible firmware version and must be upgraded to Fabric OS v6.2.0.

Base switch issues

All logical switches in a fabric should have the same base switch attribute. If a base switch is connected to a non-base switch, then you must take the appropriate action to resolve the conflict.

Symptom  EX_Port is disabled with reason "Export in non base switch".

Probable cause and recommended action
An EX_Port has to be in the base switch.

Use the `lsCfg --create FID -b base` command to create a base switch. Then use the `lsCfg --config FID -slot [slot | slot_range] -port [port | port_range] [force]` command and move the port to the base switch. If the port is not intended to be used as an EX_Port, use the `portCfgDefault` command to reset the port to its default configuration.

Symptom  An EX_ or VEX_Port is disabled with reason Conflict: EX-XISL capability domain.

Probable cause and recommended action
Use the `configure` command to set the value on the Allow XISL use to OFF on all logical switches of the connecting edge fabric.

Symptom  E_Ports connecting two logical switches are disabled.

Probable cause and recommended action
If a base switch is directly connected to a non-base switch, all E_Ports to that logical switch are disabled.

Symptom  Fabric ID and base switch are conflicted.

Probable cause and recommended action
If there is a Fabric ID conflict and a base switch conflict that exists between two switches, the Fabric ID conflict is detected first.

Use the `lsCfg --change FID -newfid FID` command to change the FID.

Symptom  A base switch already exists on this system.

Probable cause and recommended action
Only one base switch is allowed on a platform. Use the `lsCfg --delete FID` command and then the `lsCfg --create FID -b base` command to remove the current base switch and then create a new one.
Logical switch issues

**CAUTION**

When a logical switch is created, all configuration for the logical switch is set to factory defaults. When a logical switch is deleted, all configuration for the logical switch is deleted permanently and is not recoverable.

**Symptom**  
The indicated slot is empty.

**Probable cause and recommended action**

You used the `lsCfg` command and an empty slot was specified. Reissue the command with the appropriate slot number.

**Symptom**  
A port or ports cannot be moved to the requested switch.

**Probable cause and recommended action**

The port or ports specified may only exist in the default switch. This issue may be seen when attempting to move ports on a Condor-based blade into a non-default switch.

To determine if you have a Condor-based blade, refer to the *Fabric OS Administrator’s Guide*.

**Symptom**  
Validation of switch configuration changes is not supported on this platform.

**Probable cause and recommended action**

This platform is unknown to the logical switch subsystem.

**Symptom**  
Given slot number is not valid on this platform.

**Probable cause and recommended action**

You are specifying a slot number that is not valid on the platform, for example, slot 0 on a Brocade DCX or slot 12 on a Brocade DCX-4S.

**Symptom**  
Slot must be enabled to configure ports.

**Probable cause and recommended action**

You may only attempt to configure ports on enabled blades (blades may be faulted).

**Symptom**  
Unable to determine slot type.

**Probable cause and recommended action**

The slot type is not known to the logical switch. Verify the slot and try again.

**Symptom**  
There are no ports on this slot.

**Probable cause and recommended action**

There are no configurable ports on the slot indicated by the `lsCfg` command. Verify the ports and try again.
Symptom: Unable to remove ports from their current switch.
Probable cause and recommended action:
When moving ports to a switch, they are first removed from the switch in which they reside. This error message is displayed if this step fails.

Symptom: A non-GE blade is within the slot range.
Probable cause and recommended action:
You are attempting to configure a GE port on a slot that does not contain GE ports.

Symptom: A port or ports is already in the current switch.
Probable cause and recommended action:
You may not move a port to the same switch.

Symptom: The maximum number of switches for this platform has been reached.
Probable cause and recommended action:
Each platform that supports Virtual Fabrics has a maximum number of logical switches that may be supported. The platform has reached this limit.

Symptom: Unable to create the switch.
Probable cause and recommended action:
There was an error while creating the switch.

Symptom: A port or ports cannot be moved to the requested switch because it would exceed the 256 area limit for this switch.
Probable cause and recommended action:
The area limit would be exceeded if the lsCfg command were allowed.

Symptom: A port or ports cannot be moved to the requested switch because it may only exist in a base or default switch.
Probable cause and recommended action:
You are attempting to move ports on a core blade into a non-default or non-base switch.

Switch configuration blade compatibility

Symptom: A slot in the chassis displays a FAULTY(91) in the output of the slotShow command.
Probable cause and recommended action:
When an enterprise-class platform is coming up or when a blade is inserted, the switch configuration is checked based on the blade type. If the configuration does not match with the blade type, the blade will be faulted. This is displayed as FAULTY(91) in the output of the slotShow command. All ports on the FR4-18i, both GE and FC, are automatically moved to the default switch. Use the lsCfg –config command to correct the problem. Once the configuration discrepancy has been fixed, you may use slotPowerOff followed by slotPowerOn to recover.
Gathering additional information

For Virtual Fabric-related issues, use the following guidelines to gather additional data for your switch support provider:

- Perform the `supportSave` command.
- If not sure about the problem area, perform the `supportSave` command on all chassis and logical switches in the fabric.
- If you think it may be related to E_Port authentication, then perform the `supportSave -n` command on both switches or logical switches of the affected E_Port.
In this chapter

- Link issues ................................................................. 65
- Buffer credit issues .................................................... 66

Link issues

This section describes trunking link issues that can come up and recommended actions to take to correct the problems.

Symptom

A link that is part of an ISL trunk failed.

Probable cause and recommended action

Use the `trunkDebug port1 port2` command to troubleshoot the problem, as shown in the following procedure.

1. Connect to the switch and log in as admin.
2. Enter the `trunkDebug port1 port2` command:

   where:

   - `port1` Specify the area number or index of port 1. Use the `switchShow` command to view the area or index numbers for a port. This operand is required.
   - `port2` Specify the area number or index of port 2. Use the `switchShow` command to view the area or index numbers for a port. This operand is required.

Example of a unformed E_Port

This example shows that port 3 is not configured as an E_Port:

```
brocdDCXbb:admin> trunkdebug 126, 127
port 126 is not E/EX port
port 127 is not E/EX port
```

Example of a formed E_Port

```
brocdDCXbb1:admin> trunkdebug 100, 101
port 100 and 101 connect to the switch 10:00:00:05:1e:34:02:45
```

The `trunkDebug` command displays the possible reason that two ports cannot be trunked. Possible reasons are:

- The switch does not support trunking.
- A trunking license is required.
- Trunking is not supported in switch interoperability mode.
Buffer credit issues

This section describes a trunk going on- and offline or hosts not being able to talk to a storage device.

**Symptom**  
*Trunk goes offline and online (bounces).*

**Probable cause and recommended action**

A port disabled at one end because of buffer underallocation causes all the disabled ports at the other end to become enabled. Some of these enabled ports become disabled because of a lack of buffers, which in turn triggers ports to be enabled once again at the other end.

While the system is stabilizing the buffer allocation, it warns that ports are disabled because of a lack of buffers, but it does not send a message to the console when buffers are enabled. The system requires a few passes to stabilize the buffer allocation. Ultimately, the number of ports for which buffers are available come up and stabilize. You should wait for stabilization, and then proceed with correcting the buffer allocation situation.

**Getting out of buffer-limited mode**

Occurs on LD_Ports.

1. Change the LD port speed to a lower speed (of non-buffer limited ports).
2. Change the LD port’s estimated distance to a shorter distance (of non-buffer limited ports).
3. Change LD back to L0 (of non-buffer limited ports).
4. If you are in buffer-limited mode on the LD port, then increase the estimated distance.
5. Enable any of these changes on the buffer-limited port or switch by issuing the commands `portDisable` and `portEnable`. 

- Port trunking is disabled.
- The port is not an E_Port.
- The port is not 2 Gbps, 4 Gbps, or 8 Gbps.
- The port connects to a switch other than the one you want it to.
  To correct this issue, connect additional ISLs to the switch with which you want to communicate.
- The ports are not the same speed or they are not set to an invalid speed.
  Manually set port speeds to a speed supported on both sides of the trunk.
- The ports are not set to the same long distance mode.
  Set the long distance mode to the same setting on all ports on both sides of the trunk.
- Local or remote ports are not in the same port group.
  Move all ISLs to the same port group. The port groups begin at port 0 and are in groups of 4 or 8, depending on the switch model. Until this is done, the ISLs will not trunk.
- The difference in the cable length among trunked links is greater than the allowed difference.
In this chapter

- Overview of corrective action ................................................. 67
- Segmented fabrics ............................................................. 68
- Zone conflicts ................................................................. 69
- Gathering additional information ....................................... 74

Overview of corrective action

The following overview provides a basic starting point for you to troubleshoot your zoning problem.

1. Verify that you have a zone problem.
2. Determine the nature of the zone conflict.
3. Take the appropriate steps to correct zone conflict.

To correct a merge conflict without disrupting the fabric, first verify that it was a fabric merge problem, then edit zone configuration members, and then reorder the zone member list if necessary.

The newly changed zone configuration will not be effective until you issue the `cfgEnable` command. This should be done during a maintenance window because this may cause disruption in large fabrics.

Verifying a fabric merge problem

1. Enter the `switchShow` command to validate that the segmentation is because of a zone issue.
2. Review “Segmented fabrics,” next, to view the different types of zone discrepancies and determine what might be causing the conflict.

Verifying a TI zone problem

Use the `zone --show` command to display information about TI zones. This command displays the following information for each zone:

- zone name
- E_Port members
- N_Port members
- configured status (the latest status, which may or may not have been activated by `cfgEnable`)
- enabled status (the status that has been activated by `cfgEnable`)

Verifying a fabric merge problem

1. Enter the `switchShow` command to validate that the segmentation is because of a zone issue.
2. Review “Segmented fabrics,” next, to view the different types of zone discrepancies and determine what might be causing the conflict.

Verifying a TI zone problem

Use the `zone --show` command to display information about TI zones. This command displays the following information for each zone:

- zone name
- E_Port members
- N_Port members
- configured status (the latest status, which may or may not have been activated by `cfgEnable`)
- enabled status (the status that has been activated by `cfgEnable`)
If you enter the `cfgShow` command to display information about all zones, the TI zones appear in
the defined zone configuration only and do not appear in the effective zone configuration.

1. Connect to the switch and log in as admin.
2. Enter the `zone --show` command.

   `zone --show [ name ]`

   where:

   `name` The name of the zone to be displayed. If the name is omitted, the command
displays information about all TI zones in the defined configuration.

To display information about the TI zone purplezone:

   `switch:admin> zone --show purplezone`
   Defined TI zone configuration:

   TI Zone Name: redzone:
   Port List: 1,2; 1,3; 3,3; 4,5
   Configured Status: Activated / Failover-Enabled
   Enabled Status: Activated / Failover-Enabled

   To display information about all TI zones in the defined configuration:

   `switch:admin> zone --show`
   Defined TI zone configuration:

   TI Zone Name: greenzone:
   Port List: 2,2; 3,3; 5,3; 4,11;
   Configured Status: Activated / Failover-Enabled
   Enabled Status: Activated / Failover-Enabled

   TI Zone Name: purplezone:
   Port List: 1,2; 1,3; 3,3; 4,5;
   Configured Status: Activated / Failover-Enabled
   Enabled Status: Deactivated / Failover-Enabled

   TI Zone Name: bluezone:
   Port List: 9,2; 9,3; 8,3; 8,5;
   Configured Status: Deactivated / Failover-Disabled
   Enabled Status: Activated / Failover-Enabled

**Segmented fabrics**

This section discusses fabric segmentation. Fabric segmentation occurs when two or more
switches are joined together by ISLs and do not communicate to each other. Each switch appears
as a separate fabric when you use the `fabricShow` command.
### Symptom

Zones conflict appears in logs and fabric is segmented.

**Probable cause and recommended action**

This issue is usually caused by incompatible zoning configurations. Verify the following are true:

- The effective cfg (zone set) on each end of the segmented ISL is identical.
- Any zone object with the same name has the same entries in the same sequence.

### Symptom

Fabric segmentation is caused by an “Incompatible zone database”.

**Probable cause and recommended action**

If fabric segmentation is caused by an incompatible zone database, check the following:

- Whether the merge of the two fabrics resulted in the merged zone database exceeding the zone database size limitation.
  Different Fabric OS versions support different zone database sizes, for example pre-Fabric OS v5.2.0 supports 256 KB and Fabric OS v5.2.0 and later support 1 MB.
- Whether any port number greater than 255 is configured in a port zone.
  Any pre-Fabric OS v5.2.0 switch will not merge with newer switches that have a port index greater than 255.

### Symptom

Fabric segmentation is caused by a “configuration mismatch”.

**Probable cause and recommended action**

Occurs when zoning is enabled in both fabrics and the zone configurations are different in each fabric.

### Symptom

Fabric segmentation is caused by a “type mismatch”.

**Probable cause and recommended action**

Occurs when the name of a zone object in one fabric is also used for a different type of zone object in the other fabric. A zone object is any device in a zone.

### Symptom

Fabric segmentation is caused by a “content mismatch”.

**Probable cause and recommended action**

Occurs when the definition in one fabric is different from the definition of a zone object with the same name in the other fabric.

### Zone conflicts

Zone conflicts can be resolved by saving a configuration file with the `configUpload` command, examining the zoning information in the file, and performing a cut and paste operation so that the configuration information matches in the fabrics being merged.

After examining the configuration file, you can choose to resolve zone conflicts by using the `cfgDisable` command followed by the `cfgClear` command on the incorrectly configured segmented fabric, then enter the `cfgSave` command followed by the `portDisable` and `portEnable` commands on one of the ISL ports that connects the fabrics. This will cause a merge, making the fabric consistent with the correct configuration.
ATTENTION
Be careful using the `cfgClear` command because it deletes the defined configuration.

Table 12 summarizes commands that are useful for debugging zoning issues.

**TABLE 12** Commands for debugging zoning

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>aliCreate</td>
<td>Use to create a zone alias.</td>
</tr>
<tr>
<td>aliDelete</td>
<td>Use to delete a zone alias.</td>
</tr>
<tr>
<td>cfgCreate</td>
<td>Use to create a zone configuration.</td>
</tr>
<tr>
<td>cfgShow</td>
<td>Displays zoning configuration.</td>
</tr>
<tr>
<td>cfgDisable</td>
<td>Disables the active (effective) configuration</td>
</tr>
<tr>
<td>cfgEnable</td>
<td>Use to enable and activate (make effective) the specified configuration.</td>
</tr>
<tr>
<td>cfgSave</td>
<td>Use to save changes to the zone configuration database.</td>
</tr>
<tr>
<td>cfgTransAbort</td>
<td>Use to abort the current zoning transaction without committing it.</td>
</tr>
<tr>
<td>cfgTransShow</td>
<td>Use to display the ID of the current zoning transaction.</td>
</tr>
<tr>
<td>defZone</td>
<td>Sets the default zone access mode to <code>No Access</code>, initializes a zoning transaction (if one is not already in progress), and creates the reserved zoning objects.</td>
</tr>
<tr>
<td>licenseShow</td>
<td>Displays current license keys and associated (licensed) products.</td>
</tr>
<tr>
<td>switchShow</td>
<td>Displays currently enabled configuration and any E_Port segmentations resulting from zone conflicts.</td>
</tr>
<tr>
<td>zoneAdd</td>
<td>Use to add a member to an existing zone.</td>
</tr>
<tr>
<td>zoneCreate</td>
<td>Use to create a zone. Before a zone becomes active, the <code>cfgSave</code> and <code>cfgEnable</code> commands must be used.</td>
</tr>
<tr>
<td>zoneHelp</td>
<td>Displays help information for zone commands.</td>
</tr>
<tr>
<td>zoneShow</td>
<td>Displays zone information.</td>
</tr>
</tbody>
</table>

For more information about setting up zoning on your switch, refer to the *Fabric OS Administrator’s Guide*. Also, see the *Fabric OS Command Reference* for details about zoning commands.

You can correct zone conflicts by using the `cfgClear` command to clear the zoning database.

ATTENTION
The `cfgClear` command is a disruptive procedure.

**Correcting a fabric merge problem quickly**

1. Determine which switches have the incorrect zoning configuration; then, log in to the switches as admin.
2. Enter the `switchDisable` command on all problem switches.
3. Enter the `cfgDisable` command on each switch.
4. Enter the `cfgClear` command on each switch.
5. Enter the `cfgSave` command on each switch to commit the change.
ATTENTION

The `cfgClear` command clears the zoning database on the switch where the command is run.

6. Enter the `switchEnable` command on each switch once the zoning configuration has been cleared.

   This forces the zones to merge and populates the switches with the correct zoning database. The fabrics will then merge.

Changing the default zone access

A switch is not allowed to merge with another switch that has an active effective configuration if the default zone is set to "no access". Before the switch can join, the default zone setting has to be set to "all access". When the default zone no access option is enabled and the active configuration is disabled by using the `cfgDisable` command, a special hidden configuration with no members is activated. This configuration will not allow the switch to merge with switches that have an active effective configuration.

1. Connect to the switch and log in using an account assigned to the admin role.
2. Display the current setting with the `defZone -show` command.
3. If your default zone is set to "no access" use the `defZone -allaccess` command to change the default zone.
4. Enter the `cfgSave` command to save the current configuration.

Editing zone configuration members

1. Log in to one of the switches in a segmented fabric as admin.
2. Enter the `cfgShow` command and print the output.
3. Start another Telnet session and connect to the next fabric as an admin.
4. Enter the `cfgShow` command and print the output.
5. Compare the two fabric zone configurations line by line and look for an incompatible configuration.
6. Connect to one of the fabrics.
7. Run zone configure edit commands to edit the fabric zone configuration for the segmented switch (see Table 12 on page 70 for specific commands.

   If the zoneset members between two switches are not listed in the same order in both configurations, the configurations are considered a mismatch; this results in the switches being segmented in the fabric.

   For example:

   
   ```
 [cfg1 = z1; z2]
   ```

   is different from

   ```
 [cfg1 = z2; z1]
   ```

   even though the members of the configuration are the same.

   One simple approach to making sure that the zoneset members are in the same order is to keep the members in alphabetical order.
Reordering the zone member list

1. Obtain the output from the `cfgShow` command for both switches.
2. Compare the order in which the zone members are listed. Members must be listed in the same order.
3. Rearrange zone members so the configuration for both switches is the same. Arrange zone members in alphabetical order, if possible.

Checking for Fibre Channel connectivity problems

Enter the `fcPing` command (refer to the Fabric OS Command Reference for more information on this command), which checks the zoning configuration for the two ports specified by:

- Generates an ELS (Extended Link Service frame) ECHO request to the source port specified and validates the response.
- Generates an ELS ECHO request to the destination port specified and validates the response.

Regardless of the device’s zoning, the `fcPing` command sends the ELS frame to the destination port. A device can take any of the following actions:

- Send an ELS Accept to the ELS request.
- Send an ELS Reject to the ELS request.
- Ignore the ELS request.

There are some devices that do not support the ELS ECHO request. In these cases, the device will either not respond to the request or send an ELS reject. When a device does not respond to the ELS request, further debugging is required; however, do not assume that the device is not connected to the Fibre Channel.

Following is sample output from the `fcPing` command in which one device accepts the request and another device rejects the request:

```
switch:admin> fcping 10:00:00:00:c9:29:0e:c4 21:00:00:20:37:25:ad:05
Source: 10:00:00:00:c9:29:0e:c4
Destination: 21:00:00:20:37:25:ad:05
Zone Check: Not Zoned

Pinging 10:00:00:00:c9:29:0e:c4 [0x20800] with 12 bytes of data:
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1162 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1013 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1442 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1052 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1012 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1012/1136/1442 usec

Pinging 21:00:00:20:37:25:ad:05 [0x211e8] with 12 bytes of data:
Request rejected
Request rejected
Request rejected
Request rejected
Request rejected
5 frames sent, 0 frames received, 5 frames rejected, 0 frames timeout
Round-trip min/avg/max = 0/0/0 usec

switch:admin>
```
Following is sample output from the `fcPing` command in which one device accepts the request and another device does not respond to the request:

```
switch:admin> fcping 0x020800 22:00:00:04:cf:75:63:85
Source: 0x20800
Destination: 22:00:00:04:cf:75:63:85
Zone Check: Zoned

Pinging 0x020800 with 12 bytes of data:
 received reply from 0x020800: 12 bytes time:1159 usec
 received reply from 0x020800: 12 bytes time:1006 usec
 received reply from 0x020800: 12 bytes time:1008 usec
 received reply from 0x020800: 12 bytes time:1038 usec
 5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
 Round-trip min/avg/max = 1006/1044/1159 usec

Pinging 22:00:00:04:cf:75:63:85 [0x217d9] with 12 bytes of data:
 Request timed out
 5 frames sent, 0 frames received, 0 frames rejected, 5 frames timeout
 Round-trip min/avg/max = 0/0/0 usec
```

For details about the `fcPing` command, see the Fabric OS Command Reference.

Checking for zoning problems

1. Enter the `cfgActvShow` command to determine if zoning is enabled.
   - If zoning is enabled, it is possible that the problem is being caused by zoning enforcement (for example, two devices in different zones cannot detect each other).
   - If zoning is disabled, check the default zone mode by entering the `defZone --show` command. If it is no access, change it to all access. To modify default zone mode from no access to all access, enter the `defZone --all` command, and then the `cfgSave` command.

2. Confirm that the specific edge devices that must communicate with each other are in the same zone.
   - If they are not in the same zone and zoning is enabled, proceed to step 3.
   - If they are in the same zone, perform the following tasks:
     - Enter the `portCamShow` command on the host port to verify that the target is present.
     - Enter the `portCamShow` command on the target.
     - Enter the `nsZoneMember` command with the port ID for the zoned devices on the host and target to determine whether the name server is aware that these devices are zoned together.

3. Resolve zoning conflicts by putting the devices into the same zoning configuration.

4. Verify that no configuration is active by using the `cfgActvShow` command. Enter the `defZone --show` command to display the current state of the zone access mode and the access level. The `defZone` command sets the default zone access mode to No Access.
Gathering additional information

Collect the data from a `supportSave -n` command. Then collect the data from the `cfgTransShow` command. For the port having the problem, collect the data from the `filterPortShow <port>` command.

```
switch:admin> defzone --show
Default Zone Access Mode
committed - No Access
transaction - No Transaction

See "Zone conflicts" on page 69 for additional information.
```
In this chapter

- FCIP tunnel issues .............................................................. 75
- FCIP links ................................................................. 77
- Port mirroring .............................................................. 79
- FTRACE concepts .......................................................... 82

FCIP tunnel issues

Commands described in this chapter require Admin or root user access. See the Fabric OS Command Reference for detailed information on command syntax.

The following are the most common FCIP tunnel issues and provide recommended actions for you to follow to fix the issue.

Symptom  
FCIP tunnel does not come Online.

Probable cause and recommended action

Confirm the following steps.

1. Confirm GE port is online.

   portshow ge1
   Eth Mac Address: 00.05.1e.37.93.06
   Port State: 1   Online
   Port Phys:   6   In_Sync
   Port Flags: 0x3  PRESENT ACTIVE
   Port Speed: 1G

2. Confirm IP configuration is correct on both tunnel endpoints.

   portshow ipif ge1
   Port: ge1
   Interface       IP Address      NetMask         MTU
   ----------------------------------------------------------
   0             11.1.1.1        255.255.255.0   1500

3. Enter the portCmd --ping command to the remote tunnel endpoint from both endpoints.

   The -s value is the source IP address; the -d value is the destination IP address.

   portcmd --ping ge1 -s 11.1.1.1 -d 11.1.1.2
   Pinging 11.1.1.2 from ip interface 11.1.1.1 on 0/ge1 with 64 bytes of data
   Reply from 11.1.1.2: bytes=64 rtt=0ms ttl=64
   Reply from 11.1.1.2: bytes=64 rtt=0ms ttl=64
   Reply from 11.1.1.2: bytes=64 rtt=0ms ttl=64
FCIP tunnel issues

Reply from 11.1.1.2: bytes=64 rtt=0ms ttl=64

Ping Statistics for 11.1.1.2:
Packets: Sent = 4, Received = 4, Loss = 0 (0 percent loss)
Min RTT = 0ms, Max RTT = 0ms Average = 0ms

If you are able to ping, then you have IP connectivity and your tunnel should come up. If not continue to the next step.

4. Enter the `portCmd --traceroute` command to the remote tunnel endpoint from both endpoints.

```
portcmd --traceroute ge1 -s 11.1.1.1 -d 11.1.1.2
```

Traceroute to 11.1.1.2 from IP interface 11.1.1.1 on 0/1, 64 hops max
1 11.1.1.2 0 ms 0 ms 0 ms
Traceroute complete.

5. The tunnel or route lookup may fail to come online because of a missing but required ipRoute. If there are routed IP connections that provide for the FCIP tunnel, then both ends of the tunnel must have defined ipRoute entries.

Refer to the Fabric OS Administrator’s Guide to review the setup of the ipRoute.

6. Confirm FCIP tunnel is configured correctly.

The Compression, Fastwrite, and Tape Pipelining settings must match the opposite endpoint or the tunnel may not come up. Remote and local IP and WWN should be opposite each other.

```
portshow fciptunnel ge1 all
```

Port: ge1
-------------------------------------------
<table>
<thead>
<tr>
<th>Tunnel ID</th>
<th>Tunnel Description</th>
<th>Remote IP Addr</th>
<th>Local IP Addr</th>
<th>Remote WWN</th>
<th>Local WWN</th>
<th>Compression</th>
<th>Fastwrite</th>
<th>Tape Pipelining</th>
<th>Committed Rate</th>
<th>SACK</th>
<th>Min Retransmit Time</th>
<th>Keepalive Timeout</th>
<th>Max Retransmissions</th>
<th>VC QoS Mapping</th>
<th>DSCP Marking (Control)</th>
<th>DSCP Marking (Data)</th>
<th>VLAN Tagging</th>
<th>TCP Byte Streaming</th>
<th>Status</th>
<th>Connected Count</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not Configured</td>
<td>20.24.60.164</td>
<td>20.23.70.177</td>
<td>Not Configured</td>
<td>10:00:00:05:1e:37:0d:59</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>10000000 Kbps (1.000000 Gbps)</td>
<td>on</td>
<td>100</td>
<td>10</td>
<td>8</td>
<td>off</td>
<td>0, 0</td>
<td>0</td>
<td>Not Configured</td>
<td>off</td>
<td>Active</td>
<td>2</td>
<td>31 seconds</td>
</tr>
</tbody>
</table>

7. Get a GE ethernet sniffer trace.

If all possible blocking factors on the network between the two endpoints are ruled out, (for example, a firewall or proxy server) then simulate a connection attempt using the `portCmd --ping` command, from source to destination, and then take an Ether trace between the two endpoints. The Ether trace can be examined to further troubleshoot the FCIP connectivity.
Symptom  
**FCIP tunnel goes online and offline.**

**Probable cause and recommended action**

A bouncing tunnel is one of the most common problems. This issue is usually because of an over commitment of available bandwidth (trying to push 1 Gbps through a pipe that can only sustain 0.5 Gbps).

- Too much data tries to go over the link.
- Management data gets lost, queued too long, and timeouts expire.
- Data exceeds timeouts multiple times.
- Verify what link bandwidth is available.
- Confirm the IP path is being used exclusively for FCIP traffic.
- Confirm that traffic shaping is configured to limit the bandwidth to available (portshow fciptunnel).

1. If committing a rate, generally recommend setting a little below available to allow for bursting.
2. Type the `portShow fciptunnel <GePort> all -perf -params` command.

Examine data from both routers. This data is not in the supportshow output and shows retransmissions indicating, input and output rates on the tunnels.

Gather this information for both data and management TCP connections.

3. Run the following commands on both sides of the tunnel:
   - `portCmd --ipperf <slot/GePort> -s <local IP> -d <remote IP> -R`
   - `portCmd --ipperf <slot/GePort> -s <local IP> -d <remote IP> -S`

4. Confirm the throughput using the `portCmd --ipperf` command. This command must be run on both sides of the tunnel, simultaneously.

Let IPPERF run for at least 3 minutes in both directions. The last 30 second output will include good recommended committed rates for the tunnel in that direction from the -S side.

If necessary, issue the `portCfg fcipTunnel slot/geX modify <tunnel> -b NEWRATE` command to reset the committed rate for the tunnel to the discovered reliable maximum from IPPERF.

On local side:

```
portcmd --ipperf <slot/GBPort> -s <local IP> -d <remote IP> -R
```

On Remote side:

```
portcmd --ipperf <slot/GBPort> -s <local IP> -d <remote IP> -S
```

5. Repeat each step in the opposite direction to get throughput

## FCIP links

The following list contains information for troubleshooting FCIP links:

- When deleting FCIP links, you must delete them in the exact reverse order they were created. That is, first delete the tunnels, then the IP interfaces, and finally the port configuration. The IP route information is removed automatically at this point.
- IP addresses are retained by slot in the system. If FR4-18i blades are moved to different slots without first deleting configurations, errors can be seen when trying to reuse these IP addresses.
- The `portCmd --ping` command only verifies physical connectivity. This command does not verify that you have configured the ports correctly for FCIP tunnels.
- One port can be included in multiple tunnels, but each tunnel must have at least one port that is unique to that tunnel.
- Ports at both ends of the tunnel must be configured correctly for an FCIP tunnel to work correctly. These ports can be either VE_Ports or VEX_Ports. A VEX_Port must be connected to a VE_Port.
- When configuring routing over an FCIP link for a fabric, the edge fabric will use VE_Ports and the backbone fabric will use VEX_Ports for a single tunnel.
- If an FCIP tunnel fails with the “Disabled (Fabric ID Oversubscribed)” message, the solution is to reconfigure the VEX_Port to the same Fabric ID as all of the other ports connecting to the edge fabric.
- Because of an IPsec RASLog limitation, you may not be able to determine an incorrect configuration that causes an IPsec tunnel to not become active. This misconfiguration can occur on either end of the tunnel. As a result, you must correctly match the encryption method, authentication algorithm, and other configurations on each end of the tunnel.

Gathering additional information

The following commands should be executed and their data collected before a supportsave is run as a supportsave can take upwards of 10 minutes to execute and some of the information is time critical.

- `traceDump -n`
- `portTrace --show all`
- `portTrace --status`

In addition if it is a port/tunnel specific issue, run and collect the data from the following commands:

- `slotShow`
- `portShow [slot number/]<geport number>`

If possible, run and collect the data from the following commands:

- `portShow ipif [slot number/]<geport number>`
  Displays IP interface configuration for each GbE port (IP address, gateway and MTU)
- `portShow arp [slot number/]<geport number>`
- `portShow iproute [slot number/]<geport number>`
- `portShow fciptunnel [slot number/]<geport number> <all | tunnel ID>`
  Displays complete configuration of one or all of the FCIP tunnels
- `portShow fciptunnel -all -params`
- `portShow fciptunnel -all -perf`
- `portShow fciptunnel -all -credits`
- `portCmd <--ping |--traceroute |--perf >`
Port mirroring

With port mirroring, you can configure a switch port to mirror the traffic between a specific source and destination port. This is only supported between F_Ports. This is a useful way to troubleshoot without bringing down the host and destination links to insert an inline analyzer.

Port mirroring captures traffic between two devices. It mirrors only the frames containing the SID/DID to the mirror port. Because of the way it handles mirroring, a single mirror port can mirror multiple mirror connections. This also means that the port cannot exceed the maximum bandwidth of the mirror port. Attempts to mirror more traffic than what available bandwidth allows will result in the port mirror throttling the SID/DID traffic so that traffic does not exceed the maximum available bandwidth.

Use port mirroring to detect missing frames, which may occur with zoning issues or hold timeouts, capture protocol errors, and capture ULP traffic (SCSI/FICON). This feature cannot be used on embedded switch traffic.

Port mirroring is only available using the FOS v5.2.0 or later CLI and is not available through Web Tools. For a complete list of port mirroring commands, see the Fabric OS Command Reference.

To ensure proper failover in HA configurations, both the active and the standby control processors (CP) must have firmware version 5.2.0 or later installed and running. If the OS on the standby CP does not support mirroring, failing over the standby CP could cause the HA failover to fail.

Supported hardware

Port mirroring is supported on following platforms:

- Brocade 300
- Brocade 4100
- Brocade 4900
- Brocade 5000
- Brocade 5100
- Brocade 5300
- Brocade 7500
- Brocade 7600
- Brocade 48000 with chassis option 5
- Brocade DCX Backbone
- Brocade DCX-4S Backbone

Port mirroring can be used on the following blades within a chassis:

- FC4-32 32-port blade
Port mirroring

- FC4-16 16-port blade
- FC4-48 48-port blade
- FC8-16 16-port blade
- FC8-32 32-port blade
- FC8-48 48-port blade
- FA4-18 application blade
- FR4-18i routing and FCIP blade
- FC4-16IP iSCSI blade on Fibre Channel ports only

The FC4- and FC8-48 implement port pairing, meaning that two ports share the same area. Port pairing uses a single area to map to two physical ports. A frame destined to the secondary port is routed to the primary port. The primary port's filtering zone engine is used to redirect the frame to the secondary port. Port mirroring uses the port filter zone engine to redirect the frames to the mirror port. If two F_Ports share the same area, both ports cannot be part of a mirror connection. One of the two ports can be part of the connection as long as the other port is offline. Supported port configurations are shown in Table 13.

**TABLE 13** Port combinations for port mirroring

<table>
<thead>
<tr>
<th>Primary port</th>
<th>Secondary port</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_Port</td>
<td>F_Port</td>
<td>No</td>
</tr>
<tr>
<td>F_Port</td>
<td>Offline</td>
<td>Yes</td>
</tr>
<tr>
<td>Offline</td>
<td>F_Port</td>
<td>Yes</td>
</tr>
<tr>
<td>F_Port</td>
<td>E_Port</td>
<td>Yes</td>
</tr>
<tr>
<td>E_Port</td>
<td>F_Port</td>
<td>Yes</td>
</tr>
<tr>
<td>E_Port</td>
<td>E_Port</td>
<td>No</td>
</tr>
</tbody>
</table>

If IOD is enabled, adding or deleting a port mirror connection causes a frame drop. Port mirroring reroutes a given connection to the mirror port, where the mirror traffic takes an extra route to the mirror port. When the extra route is removed, the frames between the two ports goes directly to the destination port. Since the frames at the mirror port could be queued at the destination port behind those frames that went directly to the destination port, port mirroring drops those frames from the mirror port when a connection is disabled. If IOD has been disabled, port mirroring does not drop any frames but displays an IOD error.

- A port cannot be mirrored to multiple locations. If you define multiple mirror connections for the same F_Port, all the connections must share the same mirror port.
- Local switches cannot be mirrored because FICON CUP frames to a local switch are treated as well-known addresses or embedded frame traffic.
- Using firmware download to downgrade to previous Fabric OS releases that do not support port mirroring requires that you remove all port mirroring connections.

**Port mirroring considerations**

Before creating port mirror connections, consider the following limitations:

- A mirror port can be any port on the same switch as the source identifier port.
- Only one domain can be mirrored per chip; after a domain is defined, only mirror ports on the defined domain can be used.
For example, in a three-domain fabric containing switches 4100A, 4100B, and 4100C, a mirror connection that is created between 4100A and 4100B only allows 4100A to add mirror connections for those ports on 4100B. To mirror traffic between 4100A and 4100C, add a mirror connection on 4100C. The first connection defines the restriction on the domain, which can be either the local domain or a remote domain.

- A switch that is capable of port mirroring can support a maximum of four mirror connections. Each Field Description Block (FDB) defines an offset to search. Each offset can have up to four values that can be defined for a filter. If any of the four values match, the filter will match.

- Mirror port bandwidth limits mirror connections.
  The bandwidth of the mirror port is unidirectional. The host (SID) talks to multiple storage devices (DIDs) and does not send full line rate to a single target. A mirror port configured at 2GB can only support up to 2GB of traffic. A normal 2G F_Port is bidirectional and can support up to 4GB of traffic (two to transmit and two to receive). If the mirror port bandwidth is exceeded, the receiver port is not returned any credits and the devices in the mirror connection see degraded performance.

- Deleting a port mirroring connection with In Order Deliver (IOD) enabled causes frame drop between two endpoints.

- Using the firmware download procedure to downgrade to previous Fabric OS releases that do not support port mirroring requires that you remove all the port mirroring connections. If you downgrade to a previous versions of Fabric OS, you cannot proceed until the mirroring connections are removed.

Port mirroring management

The method for adding a port mirror connection between two local switch ports and between a local switch port and a remote switch port is the same. First you must configure a port to be a mirror port before you can perform a `portMirror --add`, or `portMirror --delete`.

### Configuring a port to be a mirror port

1. Connect to the switch and log in using an account assigned to the admin role.
2. Enter the `portCfg mirrorport [slot number/]<port number> --enable` command.

**NOTE**
The `enable` command enables the port as a mirror port. The `disable` command disables the mirror port configuration.

### Adding a port mirror connection

1. Connect to the switch and log in using an account assigned to the admin role.
2. Enter the `portMirror --add slotnumber/portnumber SourceID DestID` command.

**NOTE**
The lower 8 bits of the address is ignored. For example, the ALPA for loop devices.
The configuration database keeps information about the number of port mirror connections configured on a switch, the number of chunks of port mirroring data that are stored, and the chunk number. When removing a mirror connection, always use this method to ensure that the data is cleared. Deleting a connection removes the information from the database.

**Deleting a port mirror connection**

1. Connect to the switch and log in using an account assigned to the admin role.
2. Enter the `portMirror --del SourceID DestID` command.

   For example, to delete the port mirror connection on mirror port 2, you might type:

   ```bash
 switch:admin> portMirror --del 0x011400 0x240400
   ```

**Displaying port mirror connections**

1. Connect to the switch and log in using an account assigned to the admin role.
2. Enter the `portMirror --show` command.

   You should see output similar to the following:

   ```bash
 switch:admin> portmirror --show
 Number of mirror connection(s) configured: 4
 Mirror_Port SID DID State
 --
 18 0x070400 0x0718e2 Enabled
 18 0x070400 0x0718e3 Enabled
 18 0x070400 0x0718ef Enabled
 18 0x070400 0x0718e0 Enabled
   ```

**FTRACE concepts**

FTRACE is a support tool that can be used in a manner similar to that of a channel protocol analyzer. FTRACE enables troubleshooting of problems using a Telnet session rather than sending an analyzer or technical support personnel to the site. FTRACE record events that occur on the FC interface, including user defined messages and events. FTRACE includes the ability to freeze traces on certain events, and to retain the trace information for future examination.

**Fibre Channel trace information**

Frame trace (FTRACE) records user-defined messages and events on the Brocade FR4-18i and the 7500. The `portCfg` command uses the `ftrace` option to capture trace information on a per FCIP tunnel basis. You can configure up to eight FCIP tunnels on a single physical GE port. FTRACE is subject to the same FCIP tunnel limitations, such as tunnel disruption, port of switch disable or enable, and reboot requirements.
Tracing every FICON event affects performance. To avoid this, the default trace mask is set to 0x80000C7b. The mask is a filter where a bit specifies which frames and events will be captured and displayed. For troubleshooting, you should set the trace mask to 0-0xFFFFFFFF. The following table describes the configurable FTRACE parameters.

**Table 14** FTRACE configurable parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto check Out</td>
<td>False</td>
<td>T/F</td>
<td>Boolean</td>
</tr>
<tr>
<td>Buffers</td>
<td>0</td>
<td>0-8</td>
<td>Integer</td>
</tr>
<tr>
<td>Display Mask</td>
<td>0xFFFFFFFF</td>
<td>0-0xFFFFFFFF</td>
<td>Integer</td>
</tr>
<tr>
<td>Enable</td>
<td>False</td>
<td>T/F</td>
<td>Boolean</td>
</tr>
<tr>
<td>Post Percentage</td>
<td>5</td>
<td>0-100</td>
<td>Integer</td>
</tr>
<tr>
<td>Trace Mask</td>
<td>0x8000</td>
<td>0-0xFFFFFFFF</td>
<td>Integer</td>
</tr>
<tr>
<td>Trigger Mask</td>
<td>0x80000d7b</td>
<td>0-0xFFFFFFFF</td>
<td>Integer</td>
</tr>
</tbody>
</table>

After information is captured, you can use the portshow command to display FTRACE information on a GE port for a tunnel. You can save trace events for future analysis.

**Displaying the trace for a tunnel**

1. Log on to the switch as admin.
2. Enter the `portShow ftrace <slot>/geX tunnelId stats` command with the following options:

   ```
 switch:admin> portshow ftrace ge0 1 stats
   ```

   This displays the trace stats for the GE port 0 for tunnel 1.

**NOTE**

The configuration file includes key FCIP FTRACE configuration values. Configurations are stored on a slot basis and not on blades, such as the FR4-18i. If the FR4-18i is swapped, the configuration stays the same for the new FR4-18i corresponding to the slot they are plugged in.

When performing a `configDownload`, the FCIP configuration is applied to the switch only on a slot power OFF or ON, for example slots containing the FR4-18i. The Brocade 7500, which is not slot based, requires a reboot. See the [Fabric OS Reference](fabric-os-reference) for more information on any of these commands.

FTRACE is a support tool used primarily by your switch support provider. FTRACE includes the ability to freeze traces on certain events, and to retain the trace information for future examination. The syntax for the `portCfg ftrace` command is as follows:

`portCfg ftrace [slot[/]ge0|ge1 tunnel_id cfg [-a 1|0] [-b value] [-e 1|0] [-i value] [-p value] [-r value] [-s value] [-t value] [-z value]`  

Where:

- **slot**: The number of a slot in a 48000 or DCX director chassis that contains an FC4-18i blade. This parameter does not apply to the stand-alone 7500.
- **ge0|ge1**: The Ethernet port used by the tunnel (ge0 or ge1).
- **tunnelId**: The tunnel number (0 - 7).
**FTRACE concepts**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>cfg</strong></td>
<td>Creates an FTRACE configuration.</td>
</tr>
<tr>
<td><strong>-a</strong> 1</td>
<td>0</td>
</tr>
<tr>
<td><strong>-b</strong> value</td>
<td>Number of buffers (range 0 to 8).</td>
</tr>
<tr>
<td><strong>-e</strong> 1</td>
<td>0</td>
</tr>
<tr>
<td><strong>-i</strong> value</td>
<td>Display mask value (range 0 to FFFFFFFF). Default is FFFFFFFF.</td>
</tr>
<tr>
<td><strong>-p</strong> value</td>
<td>Post trigger percentage value (range 0-100). Default is 5.</td>
</tr>
<tr>
<td><strong>-r</strong> value</td>
<td>Number of records (range 0 through 1,677,721). Default is 200000.</td>
</tr>
<tr>
<td><strong>-s</strong> value</td>
<td>Trigger mask value (range 00000000 to FFFFFFFF). Default is 00000003.</td>
</tr>
<tr>
<td><strong>-t</strong> value</td>
<td>Trace mask value (range 00000000 to FFFFFFFF). Default is 80000C7B.</td>
</tr>
<tr>
<td><strong>-z</strong> value</td>
<td>Trace record size (range 80 to 240 bytes). Default is 80 bytes.</td>
</tr>
</tbody>
</table>

The following example configures FTRACE with ACO disabled, and FTRACE enabled with a trigger mask value of 00000003, and a trace mask value of fffffff. 

```
switch:admin> portcfg ftrace ge0 3 cfg -a 0 -e 1 -p 5 -s 00000003 -t fffffff
```

**Capturing an FTRACE for a tunnel**

Use the following syntax to configure an FTRACE.

```
portCfg ftrace [slot/]Ge_Port tunnel_Id cfg | del [FeatureArgs]
```

To capture an end-to-end FTRACE on a tunnel follow this procedure:

1. Enable an FTRACE
2. Activate the FTRACE without a slot or chassis reboot.

**Enabling a trace**

1. Log on to the switch as admin.
2. Enter the `portCfg ftrace` command with the following options:

```
switch:admin> portcfg ftrace ge1 0 cfg -e 1
```

   This disables Auto Checkout and enables FTRACE for GigE 0, tunnel 1.

**NOTE**

The `-e 1` enables FTRACE with all of the default options. There may be times that the default parameters must be modified to capture more information.

**Activating an FTRACE without a slot or chassis reboot**

1. Enter the `portShow ftrace <slot>/geX tunnelId con` command,
2. Enter the `portShow ftrace <slot>/geX tunnelId stats` command.
Deleting a configuration for a tunnel

1. Log on to the switch as admin.
2. Enter the `portCfg ftrace [slot/]Ge_Port tunnel_Id del` command.
   ```
 switch:admin> portcfg ftrace ge1 1 del
   ```
   This deletes the FTRACE configuration for GigE 1, tunnel 1.

Displaying FTRACE for a tunnel

The `portShow` command uses the `ftrace` option to display a trace for a tunnel.

Use the following syntax to display a trace:

```
portShow ftrace [slot/]Ge_Port tunnel_Id [FeatureArgs]
```

Example of Capturing an FTRACE on a GE tunnel

This process defines how to capture an FTRACE buffer, save it, and then enter the `supportSave` command that includes that data.

1. Enable FTRACE on ge1 interface tunnel 0 using the default parameters:
   ```
 switch:admin> portcfg ftrace ge1 0 cfg -e 1
   ```
   **NOTE**
   The `-e 1` enables FTRACE with all of the default options. There may be times that the default parameters must be modified to capture more information.

2. Verify an FTRACE has occurred
   To verify if an FTRACE was generated on ge1 tunnel 0, issue the `portShow ftrace ge1 0 stats` command. You will notice the status of buffer ID 0 changed from Current to Triggered. The status of buffer 1 will change from unused to Current.

<table>
<thead>
<tr>
<th>Id</th>
<th>State</th>
<th>Size</th>
<th>Address</th>
<th>Count</th>
<th>OXID</th>
<th>OXID</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Triggered</td>
<td>200000</td>
<td>0x10010000</td>
<td>65</td>
<td>FFFF</td>
<td>FFFF</td>
<td>04/23/2008</td>
<td>23:14:14</td>
</tr>
<tr>
<td>1</td>
<td>Current</td>
<td>200000</td>
<td>0x10010100</td>
<td>0</td>
<td>FFFF</td>
<td>FFFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>unused</td>
<td>200000</td>
<td>0x10010200</td>
<td>0</td>
<td>FFFF</td>
<td>FFFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>unused</td>
<td>200000</td>
<td>0x10010300</td>
<td>0</td>
<td>FFFF</td>
<td>FFFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   **NOTE**
   If there are multiple Triggered events, capture and manage them all in the procedures to follow.

3. Save an FTRACE to the blade processor (BP).
   The following command is used to save ge1 tunnel 0 buffer ID 0 to the BP:
   ```
 switch:admin> portshow ftrace ge1 0 save 0
   ```
Buffer 0 will be saved
16000320 bytes will be saved for buffer 0.

Write Progress: 491840 of 16000320 bytes sent
Write Progress: 1311040 of 16000320 bytes sent
Write Progress: 2146624 of 16000320 bytes sent
Write Progress: 2965824 of 16000320 bytes sent
Write Progress: 3801408 of 16000320 bytes sent
Write Progress: 4030784 of 16000320 bytes sent
Write Progress: 4309312 of 16000320 bytes sent
Write Progress: 5144896 of 16000320 bytes sent
Write Progress: 5964096 of 16000320 bytes sent
Write Progress: 6799680 of 16000320 bytes sent
Write Progress: 7078208 of 16000320 bytes sent
Write Progress: 7700800 of 16000320 bytes sent
Write Progress: 8520000 of 16000320 bytes sent
Write Progress: 9355584 of 16000320 bytes sent
Write Progress: 10174784 of 16000320 bytes sent
Write Progress: 10338624 of 16000320 bytes sent
Write Progress: 10846528 of 16000320 bytes sent
Write Progress: 11665728 of 16000320 bytes sent
Write Progress: 12501312 of 16000320 bytes sent
Write Progress: 13320512 of 16000320 bytes sent
Write Progress: 13451584 of 16000320 bytes sent
Write Progress: 13975872 of 16000320 bytes sent
Write Progress: 14795072 of 16000320 bytes sent
Write Progress: 15630656 of 16000320 bytes sent
Write Progress: 16000320 of 16000320 bytes sent
Write completed.

NOTE
If the trace dump process failed, there is probably an issue with the amount of consumed disk on the Blade Processor (BP – the Linux system that is running BFOS). If this is the case, clean up file usage on the BP.

4. Check in the saved FTRACE buffer.

The FTRACE save process will automatically “check out” trace buffers that have been saved.

5. Re-enable the buffer to be used for trace capture by checking it back in to the FTRACE pool. To check in the trace buffer, issue the following command:

```
switch:admin> portshow ftrace ge1 0 ci 0
Buffer 0 is now checked in.
```
6. Transfer the FTRACE information off of the switch.

Refer to Chapter 13, “Working With Diagnostic Features” for more information on saving comprehensive diagnostic files to the server.
FTRACE concepts
FICON Fabric Issues

In this chapter

- FICON issues ................................................................. 89
- Troubleshooting FICON .................................................. 90
- Troubleshooting FICON CUP ............................................ 93
- Troubleshooting FICON NPIV ........................................... 94

FICON issues

Any information you need to verify that FICON has been set up correctly can be found in the Fabric OS Administrator’s Guide.

Symptom

The Control Unit Port cannot access the switch.

Probable cause and recommended action

A two byte CHPID (channel path identifier) link is defined using a Domain and Port ID that must remain consistent. Any change in the physical link such as domain or port ID will prevent storage Control Unit access.

Use the configure command to verify and set the Insistent Domain ID parameter.

FICON:admin> configure

Configure...

Fabric parameters (yes, y, no, n): [no] y

Domain: (1..239) [97]
R_A_TOV: (4000..120000) [10000]
E_D_TOV: (1000..5000) [2000]
WAN_TOV: (0..30000) [0]
MAX_HOPS: (7..19) [7]
Data field size: (256..2112) [2112]
Sequence Level Switching: (0..1) [0]
Disable Device Probing: (0..1) [0]
Suppress Class F Traffic: (0..1) [0]
Per-frame Route Priority: (0..1) [0]
Long Distance Fabric: (0..1) [0]
BB credit: (1..27) [16]

Insistent Domain ID Mode (yes, y, no, n): [yes] <= this should be set to ‘y’

[truncated output]
Symptom  
Packets are being dropped between two FICON units.

Probable cause and recommended action

When planning cable the following criteria must be considered.

- Distance considerations
- Fibre Optics Sub Assembly (FOSA) type (SW or LW)
- Cable specifications (SM or MM)
- Patch Panel Connections between FOSA ports (link loss .3-5 dB per)
- Maximum allowable link budget (dB) loss

From a cabling point of view, the most important factor of a Fibre Channel link is the selection of the Fibre Optical Sub Assembly (FOSA) and matching cable type, to support the required distance. Both ends of the optical link must have the matching FOSA (SFP) types.

Troubleshooting FICON

This section provides information gathering and troubleshooting techniques necessary to fix your problem.

General information to gather for all cases

The following information needs to be gathered for all FICON setups:

- The standard support commands (portLogDump, supportSave, supportShow) or the Fabric Manager Event Log.

  By default, the FICON group in the supportShow output is disabled. To enable the capture of FICON data in the supportShow output, enter the supportShowCfgEnable ficon command. After you get confirmation that the configuration has been updated, the following will be collected and appear in the output for the supportShow command:

  - ficonCupShow fmsmode
  - ficonCupShow modereg
  - ficonDbg dump rnid
  - ficonDbg log
  - ficonShow ilir
  - ficonShow lirr
  - ficonShow rlir
  - ficonShow rnid
  - ficonShow switchrnid
  - ficuCmd dump -A

- Check to make sure supportshow is configured for FICON.
- Execute “supportsave” to capture supportshow, errdumpall, and any RAS logs. Only execute this on one logical switch in each chassis as data will be collected for both logical switches. There is a known defect that will cause the supportshow data to be invalid if this is done simultaneously across both logical switches.
• Supportshow data is only valid if run within about 30 minutes of the failure in order for the data to be valid.
• Provide the IOCDS mainframe file.
  This will define how all mainframe ports are configured.
• Type of mainframe involved. Need make, model, and driver levels in use.
• Type of actual Storage array installed. Many arrays will emulate a certain type of IBM array and we need to know the exact make, model, and firmware of the array in use.
• Read Brocade Release Notes for specific version of Fabric OS being installed.

The following sources provide useful problem-solving information:

• The standard support commands (**portLogDump**, **supportSave**, **supportShow**) or the Fabric Manager Event Log.
• Other detailed information for protocol-specific problems:
  - Display port data structures using the **ptDataShow** command.
  - Display port registers using the **ptRegShow** command.

### Identifying ports

The **ficonShow rlir** command displays, among other information, a tag field for the switch port. You can use this tag to identify the port on which a FICON link incident occurred. The tag field is a concatenation of the switch domain ID and port number, in hexadecimal format. The following example shows a link incident for the switch port at domain ID 120, port 93 (785d in hex):

```bash
switch:admin> ficonshow rlir
{Fmt Type PID Port Incident Count TS Format Time Stamp
0x18 F 785d00 93 1 Time server Thu Apr 22 09:13:32 2004
Port Status: Link not operational
Link Failure Type: Loss of signal or synchronization
Registered Port WWN Registered Node WWN Flag Node Parameters
50:05:07:64:01:40:16:03 50:05:07:64:00:c1:69:ca 0x10 0x200115
Type number: 002064
Model number: 103
Manufacturer: IBM
Plant of Manufacture: 02
Sequence Number: 0000000169CA
tag: 155d
Switch Port WWN Switch Node WWN Flag Node Parameters
20:5d:00:60:69:80:45:7c 10:00:00:60:69:80:45:7c 0x00 0x200a5d
Type number: SLKWRM
Model number: 24K
Manufacturer: BRD
Plant of Manufacture: CA
Sequence Number: 000000000078
tag: 785d
}
```

The Local RLIR database has 1 entry.
Single-switch topology checklist

This checklist is something you should verify that you have done in your FICON environment to ensure proper functionality of the feature:

- Brocade switch Fabric OS v4.1.2 or later release.
- Management tool - Suggested: Brocade Fabric Manager (FM) v4.1.0 or later.
- No license is required to enable FICON support.
- There is no special mode setting for FICON.

**NOTE**
There is no requirement to have a secure fabric in a single switch topology.

Brocade Advanced features software package (Advanced Zoning, Trunking, Fabric Watch, Extended Fabric) license activation is required.

Cascade mode topology checklist

This checklist is something you should verify that you have done in your FICON environment to ensure proper functionality of the feature:

- Brocade switch Fabric OS 5.1.0 or later release.
- Management tool - Suggested: Brocade Fabric Manager (FM) v5.4.0 or later.
- No license is required to enable FICON support.
- There is no special mode setting for FICON. However, it is recommended that the dynamic load-sharing feature be disabled with in-order frame delivery (IOD) enabled (default).
- When configuring Fabric for intermix mode of operations, separate zones for FICON and FCP devices are recommended.
- The Mainframe Channel device connectivity rule of maximum one hop is applicable to both FCP and FICON devices.
- Insistent Domain ID Flag must be set to keep the Domain ID of a Fabric switch persistent.
- CHPID Link Path must be defined using the two-byte format.
- FICON Channel connectivity to storage CU port must not exceed one hop.

**NOTE**
The Switch Connection Control (SCC) security policy must be active.

Brocade Advanced features software package (Advanced Zoning, Trunking, Fabric Watch, Extended fabric) license activation is required.

Gathering additional information

In addition to the information you would collect for your support provider mentioned in Chapter 1, “Introduction to Troubleshooting”, also gather the following information which is specific to FICON:

- Is this case logged during an initial install or has this environment been working previously?
- What was changed immediately prior to issue occurring?
- Is the switch properly configured for FICON environment?
Troubleshooting FICON CUP

This section provides additional information you need to verify and data to gather for a FICON CUP environment.

- Capture all data from the General section above.
- Make sure FICON CUP license is installed.
- Check state of CUP port by running the `ficonCupShow fmsmode` command. If it is disabled, type the `ficonCupSet fmsmode enable` command to enable it.
- CUP is only supported on FOS v4.4.0 or later
- Add FICON_CUP license
- Ensure no device is plugged into port 254 on the Brocade 48000 director.
- Switchshow – make sure port shows Disabled (FMS Mode). If not, type the `portDisable 10/14` and then the `portEnable 10/14` command.

**Symptom**  
Unable to “vary online” FICON CUP port on the switch.

**Probable cause and recommended action**  
Hafailover or hareboot of switch is only known fix as there is no known firmware solution.
### Symptom

*Mainframe RMF utility fails to capture performance data*

### Probable cause and recommended action

In Fabric OS v6.0.0, Brocade SilkWorm switches do not fully implement all CUP commands needed to collect all performance data on a switch. Upgrade your switch to Fabric OS v6.1.0, where the performance data is captured.

---

### Troubleshooting FICON NPIV

You should capture all pertinent data from the "General information to gather for all cases" on page 90 and "Gathering additional information" on page 92.

NPIV licenses must be installed on v5.0.x. There is no license requirement for Fabric OS v5.1.0 and above.
## Connectivity

The following issues deal with the iSCSI FC4-16IP blade connectivity between devices.

**NOTE**

The iSCSI blade FC4-16IP is not supported in the Brocade DCX or DCX-4S enterprise-class platforms.

### Symptom

*iSCSI host reports connection failed.*

### Probable cause and recommended action

Network connectivity is having problems.

Verify the IP address using the `portShow ipif <slot>/ge<port>` command.

Verify the IP route using the `portShow iproute <slot>/ge<port>` command.

Ping the PC using the `portCmd -ping <slot>/ge<port> -s <source IP> -d <destination IP>` command.

Make corrections to the IP information using the `portCfg` command.

Below is an example to verify if packets can be sent to the destination IP address with maximum `wait_time` specified. Note that a backslash ( \ ) is used to skip the return character so you can continue the command on the next line without the return character being interpreted by the shell.

```
on 12/ge0 with 64 bytes of data
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=1ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
Ping Statistics for 2007:7:30:32:227:77:0:60:
Packets: Sent = 4, Received = 4, Loss = 0 (0 percent loss)
Min RTT = 0ms, Max RTT = 1ms Average = 0ms
```
Symptom: *Multiple sessions are established with the same target.*

Probable cause and recommended action:

All available ports are reported by SendTargets processing, and sessions are established for each port to the same target and LUNs.

This can be controlled by configuring the iSCSI host initiator and the GbE port on the FC4-16IP blade to allow only one connection per session by using the following command:

```
switch:admin> iscsiportcfg --modify <slot/ge<port> -c 1
```

Also, if connection redirection is configured, it must be disabled by using the following command:

```
switch:admin> iscsiswcfg --disableconn -s <all>
```

Symptom: *iSCSI host can log in to targets, but cannot mount any disks.*

Probable cause and recommended action:

The target is a RAID device, but iSCSI virtual initiators have not been added to the LUN mapping.

Add all iSCSI virtual initiators to the target and allow all iSCSI virtual initiators to access all of the target LUNs. To display the WWNs of the iSCSI virtual initiators, use `nsShow`. Use the following commands to fix this issue:

```
switch:admin> iscsiportcfg --modify <slot/ge<port> -c 1
switch:admin> iscsiswcfg --disableconn -s <all>
```

Symptom: *Easy create cannot find any LUNs on the target.*

Probable cause and recommended action:

The target is a RAID device, but the `fcLunQuery` WWN has not been added to the LUN mapping.

Add the `fcLunQuery` WWN to the target's LUN mapping. Display the WWNs using the `fcLunQuery -s` command.

Or the target is not compatible with `fcLunQuery`. Create a virtual target and add LUNs manually using the `iscsiCfg` command.

Symptom: *Cannot get GE ports to go to Online state.*

Probable cause and recommended action:

The GE ports are not connected to gigabit Ethernet interfaces.

Make sure the GbE ports are plugged into gigabit Ethernet interfaces. The GE ports cannot be connected to Ethernet or fast Ethernet interfaces.
Zoning

The following issues address zoning problems that can occur in iSCSI.

**Symptom**  No DDSet or zoning configuration enabled and iSCSI host cannot discover any targets.

**Probable cause and recommended action**

Default zoning is set to no access.

Check default zoning using the `defZone --show` command.

Either create a zoning configuration or set default zoning to All Access using the `defZone` command.

**Symptom**  No DDSet or zoning configuration enabled and iSCSI host cannot discover any targets.

**Probable cause and recommended action**

Virtual targets have not been created, virtual targets are not online, or changes have not been committed.

Check virtual targets using the `iscsiCfg -s show tgt` command.

Make sure all virtual targets are reported as online and committed.

If the virtual target is offline, either no LUNs have been mapped to that virtual target or the physical LUN is offline. If the virtual target is not committed, then use the `iscsiCfg -commit all -f` command. The `-f` operand is use to force the commit operation, in which case uncommitted changes on other switches are erased.

**Symptom**  No DDSet or zoning configuration enabled and iSCSI host cannot discover any targets.

**Probable cause and recommended action**

No LUNs have been assigned to the virtual targets.

Check LUN mapping using the `iscsiCfg -s show lun` command.

Make sure LUNs have been assigned to the virtual targets. Assign LUNs using the `iscsiCfg -a add lun` command.

**Symptom**  No DDSet or zoning configuration enabled and iSCSI host cannot discover any targets.

**Probable cause and recommended action**

There is an inconsistency in the iSCSI database.

Check using the `iscsiCfg -s show fabric` command.

Make sure the aggregated state is in sync. If it is not in sync, fix the inconsistency and perform a commit using the `iscsiCfg -s commit all` command.

**Symptom**  Changes made to the iSCSI database do not appear on iSCSI hosts.

**Probable cause and recommended action**

The DDSet has not been enabled or the database has not been committed.

Check the currently enabled DD Set using `iscsiCfg -s show ddset` command.

Make sure it is reported as enabled and committed.
Authentication

Symptom  Cannot set up mutual CHAP.

Probable cause and recommended action
A CHAP name that matches the IQN of an iSCSI initiator is treated differently in the CHAP database.
When a CHAP name is set to the IQN of an iSCSI initiator, it will be used for initiator CHAP during mutual CHAP login.

Symptom  After an iSCSI host logs out of a target, it cannot log in to that target again.

Probable cause and recommended action
There is an inconsistency in the iSCSI database.
Check using the iscsiCfg -show fabric command.
Make sure the aggregated state is in sync.
If it is not in sync, fix the inconsistency and perform a commit using the iscsiCfg -commit all command.

Symptom  iSCSI host can discover targets, but cannot log in to them.

Probable cause and recommended action
Zoning is enabled, but iSCSI virtual initiators are not in the same zone as the targets.
Check zoning using the cfgShow command.
Make sure iSCSI virtual initiators are in the same zone as the targets. Display the port WWN of the iSCSI virtual initiators using the nsShow command.
In this chapter

- About Fabric OS diagnostics ........................................ 99
- Diagnostic information ............................................. 99
- Power-on self test ..................................................... 100
- Switch status .......................................................... 102
- Chassis-level diagnostics ......................................... 104
- Port information ....................................................... 105
- Equipment status ...................................................... 108
- System message log ................................................... 110
- Port log ................................................................. 111
- Syslogd configuration ............................................... 112
- Automatic trace dump transfers ................................. 114
- Diagnostic tests not supported by M-EOS 9.6.2 and FOS 6.0 .... 116

About Fabric OS diagnostics

The purpose of the diagnostic subsystem is to evaluate the integrity of the system hardware. Diagnostics are invoked in one of the following ways:

- Automatically during the power-on self test (POST).
- Automatically on an individual blade whenever it is installed into a director chassis.
- Manually using Fabric OS CLI commands.

The error messages generated during these test activities are sent to the serial console and system message logs, whose output formats may differ slightly.

Use the `diagHelp` command to receive a list of all available diagnostic commands.

See the Fabric OS Command Reference for a complete description of each command.

Diagnostic information

On the switch you can enter the `supportShow` command to dump important diagnostic and status information to the session screen, where you can review it or capture its data. If you are using a Telnet client, you may have to set up the client to capture the data prior to opening the session.
Most information can be captured using the supportShow or supportSave commands and FTP’d off the switch, but when you are collecting information from commands, this information has to be captured using a Telnet client.

To save a set of files that customer support technicians can use to further diagnose the switch condition, enter the supportSave command. The command prompts for an FTP server, packages the following files, and sends them to the specified server:

- The output of the supportShow command.
- The contents of any trace dump files on the switch.
- System message (RAS) logs.

See also to “Automatic trace dump transfers” on page 114.

**Power-on self test**

By default, when you power on the system, the boot loader automatically performs power-on self tests and loads a Fabric OS kernel image.

The POST tests provide a quick indication of hardware readiness when hardware is powered up. These tests do not require user input to function. They typically operate within several minutes, and support minimal validation because of the restriction on test duration. Their purpose is to give a basic health check before a new switch joins a fabric.

These tests are divided into two groups: POST1 and POST2. POST1 validates the hardware interconnect of the device, and POST2 validates the ability of the device to pass data frames between the ports. The specific set of diagnostic and test commands run during POST depends on the switch model.

You can use the diagDisablePost command to disable both POST1 and POST2, and you can reenable it using the diagEnablePost command. See the Fabric OS Command Reference for additional information about these commands.

The following example shows a typical boot sequence, including POST messages:

The system is coming up, please wait...

Read board ID of 0x80 from addr 0x23
Read extended model ID of 0x16 from addr 0x22
Matched board/model ID to platform index 4
PCI Bus scan at bus 0
: : :
: : :
Checking system RAM - press any key to stop test

Checking memory address: 00100000
System RAM test using Default POST RAM Test succeeded.

Press escape within 4 seconds to enter boot interface.
Booting "Fabric Operating System" image.

Linux/PPC load:
BootROM command line: quiet
Uncompressing Linux...done.
Now booting the kernel
Attempting to find a root file system on hda2...
modprobe: modprobe: Can't open dependencies file /lib/modules/2.4.19/modules.dep
(No such file or directory)
INIT: version 2.78 booting
INIT: Entering runlevel: 3
eth0: Link status change: Link Up. 100 Mbps Full duplex Auto (autonegotiation complete).

INITCP: CPLD Vers: 0x95 Image ID: 0x19
uptime: 2008; sysc_qid: 0
Fabric OS (Paulsa45)
Paulsa45 console login: 2005/03/31-20:12:42, [TRCE-5000], 0,, INFO, ?, trace:,
trace_buffer.c, line: 1170

2005/03/31-20:12:42, [LOG-5000], 0,, INFO, SW4100_P45, Previous message repeat 1
time(s), trace_ulib.c, line: 540
2005/03/31-20:12:43, [HAM-1004], 219,, INFO, SW4100_P45, Processor rebooted -
Unknown
SNMP Research SNMP Agent Resident Module Version 15.3.1.4
2001 SNMP Research, Inc.
sysctrld: all services Standby
FSSK 2: chassis0(0): state not synchronized
FSSK 2: Services starting a COLD recovery
2005/03/31-20:12:48, [FSS-5002], 0,, INFO, SW4100_P45, chassis0(0): state not
synchronized, svc.c, line: 318
2005/03/31-20:12:48, [FSS-5002], 0,, INFO, SW4100_P45, Services starting a COLD
recovery, mdev.c, line: 638
2005/03/31-20:12:49, [MFIC-1002], 220,, INFO, Paulsa45, Chassis FRU header not
programmed for switch NID, using defaults (applies only to FICON environments).
sysctrld: all services Active
2005/03/31-20:12:50, [DGD-5001], 0,, INFO, SW4100_P45, Slot 0 has started POST.,
main.c, line: 1189
POST1: Started running Thu Mar 31 20:12:51 GMT 2005
POST1: Test #1 - Running turboramtest
POST1: Script PASSED with exit status of 0 Thu Mar 31 20:12:54 GMT 2005 took
(0:0:3)
POST2: Started running Thu Mar 31 20:12:55 GMT 2005
POST2: Test #1 - Running portloopbacktest (SERDES)
POST2: Test #2 - Running minicycle (SERDES)
POST2: Running diagshow
POST2: Script PASSED with exit status of 0 Thu Mar 31 20:13:12 GMT 2005 took
(0:0:17)
2005/03/31-20:13:13, [BL-1000], 221,, INFO, Paulsa45, Initializing Ports...Enabling switch...
2005/03/31-20:13:13, [BL-1001], 222,, INFO, Paulsa45, Port Initialization
Completed
2005/03/31-20:13:13, [EM-5012], 0,, INFO, SW4100_P45, EM: sent dumpready to ME.,
em.c, line: 2152
2005/03/31-20:13:13, [DGD-5002], 0,, INFO, SW4100_P45, Slot 0 has passed the POST
tests., main.c, line: 936

If you choose to bypass POST or after POST completes, various system services are started and the
boot process displays additional console status and progress messages.
Disabling POST

A reboot is not required for this command to take effect.

1. Connect to the switch and log in with a user account that has admin privileges with the chassis-role permission.
2. Enter the `diagDisablePost` command.
   
   This disables POST1 and POST2.

Enabling POST

A reboot is not required for this command to take effect.

1. Connect to the switch and log in with a user account that has admin privileges with the chassis-role permission.
2. Enter the `diagEnablePost` command to enable POST with rebooting the switch.

```
switch:admin> diagenablepost
Config update Succeeded
Diagnostic POST is now enabled.
```

Switch status

Use the `switchStatusShow` command to display the overall status of the switch, including its power supplies, fans, and temperature. If the status of any one of these components is either marginal or down, the overall status of the switch is also displayed as marginal or down. If all components have a healthy status, the switch displays a healthy status.

To modify the rules used to classify the health of each component use the `switchStatusPolicySet` command. To view the rules, use the `switchStatusPolicyShow` command.

Viewing the overall status of the switch

1. Connect to the switch and log in as admin.
2. Enter the `switchStatusShow` command:

```
brcdDCXbb:admin> switchstatsshow
Switch Health Report Report time: 02/20/2008 06:02:51 PM
Switch Name: brcdDCXbb
IP address:192.32.234.63
SwitchState:DOWN
Duration:00:37

 Power supplies monitor DOWN
 Temperatures monitor HEALTHY
 Fans monitor DOWN
 WWN servers monitor HEALTHY
 Standby CP monitor HEALTHY
 Blades monitor HEALTHY
 Core Blades monitor HEALTHY
 Flash monitor HEALTHY
 Marginal ports monitor HEALTHY
```
Faulty ports monitor HEALTHY
Missing SFPs monitor HEALTHY
All ports are healthy

For more information on how the overall switch status is determined, see the `switchStatusPolicySet` command in the *Fabric OS Command Reference*.

**Displaying switch information**

1. Connect to the switch and log in as admin.
2. Enter the `switchShow` command, which displays the following information for a switch:

   Switch summary information includes the following:

   - **switchName**: Switch name
   - **switchType**: Switch model and revision numbers
   - **switchState**: Switch state: Online, Offline, Testing, or Faulty
   - **switchMode**: Switch operation mode: Native, Interop, or Access Gateway
   - **switchRole**: Principal, Subordinate, or Disabled
   - **switchDomain**: ID: 0-31 or 1-23
   - **switchId**: Switch embedded port D_ID
   - **switchWwn**: Switch World Wide Name (WWN)
   - **switchBeacon**: Switch beaconing state: On or Off
   - **zoning**: When Access Gateway mode disabled, the name of the active zone displays in parenthesis.
   - **FC Router**: FC Router’s state: On or Off
   - **FC Router BB Fabric ID**: The backbone fabric ID for FC routing

The following additional properties are displayed in the switch summary for Virtual Fabrics-enabled switches.

- **Allow XISL Use**: Allows the switch to use extended interswitch links (XISL) in the base fabric to carry traffic to this logical switch. Values are ON or OFF.
- **LS Attributes**: Displays logical switch attributes, including the fabric ID (FID) associated with the logical switch and the switch role (default switch or base switch).
The **switchShow** command also displays the following information for ports on the specified switch:

- **Area**: Part of the 24-bit port ID, which consists of domain, port area number, and optional AL_PA. Area column is only displayed on non-modular platforms.
- **Index**: Index follows Area up to 255. Then it continues to the maximum port of the platform. Index identifies the port number relative to the switch. Index column is only displayed on enterprise-class platforms.
- **Slot**: Slot number; 1-4 and 7-10.
- **Port**: Port number; 0-15, 0-31 or 0-47.
- **Address**: The 24-bit Address Identifier. Address column is only displayed on enterprise-class platforms.
- **Media**: SFP types used.
- **Speed**: The speed of the Port (1G, 2G, 4G, 8G, 10G, N1, N2, N4, N8, AN, UN). The speed can be fixed, negotiated, or auto-negotiated.
- **State**: The port status.
- **Proto**: Protocol support by GbE port.
- **Comment**: Information about the port. This section may be blank or display the WWN for an F_Port or an E_Port, the trunking state, or upstream or downstream status.

The details displayed for each switch differ on different switch models. For more information see the **switchShow** command in the *Fabric OS Command Reference*.

### Displaying the uptime for a switch

1. Connect to the switch and log in as admin.
2. Enter the **uptime** command:

   ```
 supp_dcx_184:admin> uptime
 10:50:19 up 11 days, 6:28, 1 user, load average: 0.49, 0.53, 0.54
   ```

   The **uptime** command displays the length of time the system has been in operation, the total cumulative amount of uptime since the system was first powered-on, the date and time of the last reboot (applies only to Fabric OS v3.x systems), the reason for the last reboot (applies only to Fabric OS v3.x systems), and the load average over the past one minute (1.29 in the preceding example), five minutes (1.31 in the example), and 15 minutes (1.27 in the example). The reason for the last switch reboot is also recorded in the system message log.

### Chassis-level diagnostics

In the non-Virtual Fabric platforms, there are no changes to the existing support of diagnostics. However, in Virtual Fabric supported platforms, you must use the commands **chassisDisable** and **chassisEnable** to disable all the ports in the chassis before executing offline diagnostics. For example, with chassis-level diagnostics such as **systemVerification**, the **chassisDisable** command must be entered before running the test. For blade-level diagnostics such as **portLoopbackTest**, the **bladeDisable** command must be entered before running the test. The following lists commands to use when diagnosing chassis problems:

- **chassisDisable** — disables all the ports in the chassis
Port information

- chassisEnable — enables all the ports in the chassis
- bladeDisable — disables all the ports in the blade
- bladeEnable — enables all the ports in the blade

Spinfab and porttest

If Virtual Fabrics-mode is enabled, the commands spinFab and portTest are online diagnostics that are available only on the default switch. These tests are not supported in the logical switch context. If Virtual Fabrics-mode is not enabled, then these commands are available to the switch.

Port information

Use the following instructions to view information about ports and to help diagnose if your switch is experiencing port problems.

Viewing the status of a port

1. Connect to the switch and log in as admin.
2. Enter the portShow [slot/] port command, specifying the number that corresponds to the port you are troubleshooting. In this example, the status of port 10 is shown:

   brcd300:admin> portshow 10
   portName: 
   portHealth: HEALTHY
   Authentication: None
   portDisableReason: None
   portCFlags: 0x1
   portFlags: 0x20b03 PRESENT ACTIVE F_PORT G_PORT U_PORT LOGICAL_ONLINE LOGIN
   NOELP ACCEPT FLOGI
   portType: 18.0
   POD Port: Port is licensed
   portState: 1Online
   portPhys: 6In_Sync
   portScn: 32F_Port
   port generation number: 14
   portId: 020a00
   portIfId: 4302000b
   portWwn: 20:0a:00:05:1e:41:4a:a5
   portWwn of device(s) connected:
   21:00:00:e0:8b:05:e0:b1
   Distance: normal
   portSpeed: N2Gbps
   LE domain: 0
   FC Fastwrite: OFF
   Interrupts: 0 Link_failure: 0 Frlt: 0
   Unknown: 0 Loss_of_sync: 3 Fbsy: 0
   Lli: 18 Loss_of_sig: 6
   Proc_rqrd: 161 Protocol_err: 0
   Timed_out: 0 Invalid_word: 563851
   Rx_flushed: 0 Invalid_crc: 0
   Tx_unavail: 0 Delim_err: 0
Port information

Free_buffer: 0  Address_err: 0
Overrun: 0  Lr_in: 3
Suspended: 0  Lr_out: 0
Parity_err: 0  Ols_in: 0
2_parity_err: 0  Ols_out: 3
CMI_bus_err: 0

Port part of other ADs: No

See the Fabric OS Command Reference for additional portShow command information, such as the syntax for slot or port numbering, displaying IP interfaces on a GbE port, or displaying FCIP tunnel connection or configuration information.

Displaying the port statistics

1. Connect to the switch and log in as admin.
2. At the command line, enter the portStatsShow command.

Port statistics include information such as the number of frames received, number of frames sent, number of encoding errors received, and number of class 2 and class 3 frames received.

See the Fabric OS Command Reference for additional portStatsShow command information, such as the syntax for slot or port numbering.

```
brcd5300:admin> portstatsshow 68
stat_wtx 113535 4-byte words transmitted
stat_wrx 22813 4-byte words received
stat_ftx 9259 Frames transmitted
stat_frx 821 Frames received
stat_c2_frx 0 Class 2 frames received
stat_c3_frx 821 Class 3 frames received
stat_lc_rx 0 Link control frames received
stat_mc_rx 0 Multicast frames received
stat_mc_to 0 Multicast timeouts
stat_mc_tx 0 Multicast frames transmitted
tim_rdyPri 0 Time R_RDY high priority
tim_txcrd_z 0 Time TX Credit Zero (2.5Us ticks)
time_txcrd_z_vc 0- 3: 0 0 0 0
time_txcrd_z_vc 4- 7: 0 0 0 0
time_txcrd_z_vc 8-11: 0 0 0 0
time_txcrd_z_vc 12-15: 0 0 0 0
er_enc_in 0 Encoding errors inside of frames
er_crc 0 Frames with CRC errors
er_trunc 0 Frames shorter than minimum
er_tooLong 0 Frames longer than maximum
er_bad_eof 0 Frames with bad end-of-frame
er_enc_out 0 Encoding error outside of frames
er_bad_os 0 Invalid ordered set
er_c3_timeout 0 Class 3 frames discarded due to timeout
er_c3_dest_unreach 0 Class 3 frames discarded due to destination unreachable
er_otherDiscard 0 Other discards
er_type1Miss 0 frames with FTB type 1 miss
er_type2Miss 0 frames with FTB type 2 miss
er_type6Miss 0 frames with FTB type 6 miss
er_zoneMiss 0 frames with hard zoning miss
er_lun_zoneMiss 0 frames with LUN zoning miss
er_crcGoodEOF 0 Crc error with good eof
```
Displaying a summary of port errors for a switch

1. Connect to the switch and log in as admin.
2. Enter the portErrShow command. See the Fabric OS Command Reference for additional portErrShow command information.

switch:admin> porterrshow

<table>
<thead>
<tr>
<th>frames</th>
<th>enc</th>
<th>crc</th>
<th>crc</th>
<th>too</th>
<th>too</th>
<th>bad</th>
<th>enc</th>
<th>disc</th>
<th>link</th>
<th>loss</th>
<th>loss</th>
<th>frjt</th>
<th>fbsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>tx</td>
<td>rx</td>
<td>in</td>
<td>err</td>
<td>g_eof</td>
<td>shrt</td>
<td>long</td>
<td>eof</td>
<td>out</td>
<td>c3 fail</td>
<td>sync</td>
<td>sig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0: 665k 7.0k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1: 0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8: 78</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>9: 12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16: 665k 7.4k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>17: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20: 6.3k 6.6k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>21: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>23: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>24: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>25: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>27: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>28: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>29: 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30: 664k 6.7k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>31: 12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

(output truncated)
Equipment status

You can display status for fans, power supply, and temperature.

**NOTE**
The number of fans, power supplies, and temperature sensors depends on the switch type. For detailed specifications on these components, refer to the switch hardware reference manual. The specific output from the status commands varies depending on the switch type.

**Displaying the status of the fans**

1. Connect to the switch and log in as admin.
2. Enter the `fanShow` command:

   ```
 brcd5300:admin> fanshow
 Fan 1 is Absent
 Fan 2 is Ok, speed is 6553 RPM
 Fan 3 is Ok, speed is 6367 RPM
   ```

   The possible status values are:
   - OK—Fan is functioning correctly.
   - Absent—Fan is not present.
   - Below minimum—Fan is present but rotating too slowly or stopped.

---

The **portErrShow** command output provides one output line per port. See **Table 15** for a description of the error types.

**TABLE 15**  Error summary description

<table>
<thead>
<tr>
<th>Error type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frames tx</td>
<td>Frames transmitted</td>
</tr>
<tr>
<td>frames rx</td>
<td>Frames received</td>
</tr>
<tr>
<td>enc in</td>
<td>Encoding errors inside frames</td>
</tr>
<tr>
<td>crc err</td>
<td>Frames with CRC errors</td>
</tr>
<tr>
<td>crc g_eof</td>
<td>CRC errors that occur on frames with good end-of-frame delimiters.</td>
</tr>
<tr>
<td>too shrt</td>
<td>Frames shorter than minimum</td>
</tr>
<tr>
<td>too long</td>
<td>Frames longer than maximum</td>
</tr>
<tr>
<td>bad eof</td>
<td>Frames with bad end-of-frame delimiters</td>
</tr>
<tr>
<td>enc out</td>
<td>Encoding error outside of frames</td>
</tr>
<tr>
<td>disc c3</td>
<td>Class 3 frames discarded</td>
</tr>
<tr>
<td>link fail</td>
<td>Link failures (LF1 or LF2 states)</td>
</tr>
<tr>
<td>loss sync</td>
<td>Loss of synchronization</td>
</tr>
<tr>
<td>loss sig</td>
<td>Loss of signal</td>
</tr>
<tr>
<td>frjt</td>
<td>Frames rejected with F_RJT</td>
</tr>
<tr>
<td>fbsy</td>
<td>Frames busied with F_BSY</td>
</tr>
</tbody>
</table>
• Above minimum—Fan is rotating too quickly.
• Unknown—Unknown fan unit installed.
• FAULTY—Fan has exceeded hardware tolerance.

Displaying the status of a power supply

1. Connect to the switch and log in as admin.
2. Enter the `psShow` command:

   ```
 brcd5300:admin> psshow

 Power Supply #1 is OK
 V10645,TQ2Z6452916 ,60-0300031-02, B, QCS,DCJ3001-02P , A,TQ2Z64529
 Power Supply #2 is faulty
 V10704, TQ2J7040124 ,60-0300031-02, B,CHRKE,SP640-Y01A ,C,TQ2J7040

 The possible status values are:
 • OK—Power supply functioning correctly.
 • Absent—Power supply not present.
 • Unknown—Unknown power supply unit installed.
 • Predicting failure—Power supply is present but predicting failure.
 • FAULTY—Power supply is present but faulty (no power cable, power switch turned off, fuse blown, or other internal error).

 Displaying temperature status

1. Connect to the switch and log in as admin.
2. Enter the `tempShow` command:

   ```
   switch:admin> tempshow
   Sensor  State           Centigrade     Fahrenheit
   ID  
   1     Ok                  28             82
   2     Ok                  16             60
   3     Ok                  18             64
   
   Information displays for each temperature sensor in the switch.
   
   The possible temperature status values are:
   • OK—Temperature is within acceptable range.
   • FAIL—Temperature is outside of acceptable range. Damage might occur.
System message log

The system message, or RAS, log feature enables messages to be saved across power cycles and reboots.

The Brocade 48000 director and the Brocade DCX and DCX-4S enterprise-class platforms maintain the same RASlog for each of the two CP blades. Since all RASlog messages will be routed to the Active CP, the message CPU ID is added as part of the RASlog message attribute. RASlog message attribute SLOT is defined to identify the CPU that generated the message.

For example, in the following message the identifier SLOT 6 means the message was generated from the slot 6 blade main CPU:

```
2001/01/07-04:03:00, [SEC-1203], 2, SLOT 6 | FFDC | CHASSIS, INFO, C08_1, Login information: Login successful via TELNET/SSH/RSH. IP Addr: 192.168.38.2050
```

and the identifier SLOT 6/1 means the message was generated from slot 6 blade Co-CPU.

```
2001/01/07-04:03:00, [SEC-1203], 2, SLOT 6/1 , | FFDC | CHASSIS, INFO, C08_1, Login information: Login successful via TELNET/SSH/RSH. IP Addr: 192.168.38.2050
```

Since RASlog supports Virtual Fabrics and logical switches, the FID (Fabric ID) displays on every RASlog message to identify the source of the logical switch that generates the message.

The FID can be a number from 0 to 128, and the identifier CHASSIS depends on the instance that generates the message and that it was generated by a chassis instance. The identifier FID 128 means the message was generated by the default switch instance.

```
2008/08/01-00:19:44, [LOG-1003], 1, SLOT 6 | CHASSIS, INFO, Silkworm12000, The log has been cleared.
2008/09/08-06:52:50, [FW-1424], 187, SLOT 6 | FID 128, WARNING, Switch10, Switch status changed from HEALTHY to DOWN.
```

For details on error messages, see the Fabric OS Message Reference.

Displaying the system message log, with no page breaks
1. Connect to the switch and log in as admin.
2. Enter the `errDump` command.

Displaying the system message log one message at a time
1. Connect to the switch and log in as admin.
2. Enter the `errShow` command.

Clearing the system message log
1. Connect to the switch and log in as admin.
2. Enter the `errClear` command.

All switch and chassis events are removed.
Port log

The Fabric OS maintains an internal log of all port activity. The port log stores entries for each port as a circular buffer. The range of lines is 32768 to 65536 for the Brocade 48000 and the Brocade 7500 switch. For all other switches, the number of lines range from 8192 to 16384. These ranges are for all ports on the switch, not just for one port. When the log is full, the newest log entries overwrite the oldest log entries. The port log is not persistent and is lost over power-cycles and reboots. If the port log is disabled, an error message displays.

NOTE
Port log functionality is completely separate from the system message log. The port log is typically used to troubleshoot device connections.

Viewing the port log

1. Connect to the switch and log in as admin.
2. Enter the portLogShow command:

   brcd5300:admin> portlogshow
   Fri Feb 22 16:48:45 2008
   16:48:45.208 SPEE       sn       67   NM  00000009,00000000,00000000
   16:48:46.783 PORT       Rx       64   40  02fffffd,00fffffd,02e2ffff,14000000
   16:48:46.783 PORT       Tx       64    0  c0fffffd,00fffffd,02e201bf,00000001
   16:48:46.783 FCPH       read     64   40  02fffffd,00fffffd,be000000,00000000,02e201bf
   16:48:46.783 FCPH       seq      64   28  22380000,02e201bf,00000c1e,0000001c,00000000
   16:48:48.828 SPEE       sn       67   NM  00000009,00000000,00000000
   16:48:46.853 PORT       Rx       76   40  02fffffd,00fffffd,02e3ffff,14000000
   16:48:46.853 PORT       Tx       76    0  c0fffffd,00fffffd,02e301c1,00000001
   16:48:46.853 FCPH       read     76   40  02fffffd,00fffffd,bf000000,00000000,02e301c1
   16:48:46.853 FCPH       seq      76   28  22380000,02e301c1,00000c1e,0000001c,00000000
   16:48:47.263 PORT       Rx       79   40  02fffffd,00fffffd,02e4ffff,14000000
   16:48:47.263 PORT       Tx       79    0  c0fffffd,00fffffd,02e401c2,00000001
   16:48:47.263 FCPH       read     79   40  02fffffd,00fffffd,c0000000,00000000,02e401c2
   16:48:47.263 FCPH       seq      79   28  22380000,02e401c2,00000c1e,0000001c,00000000
   <output truncated>

Use the commands summarized in Table 16 to view and manage port logs. See the Fabric OS Command Reference for additional information about these commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>portLogClear</td>
<td>Clear port logs for all or particular ports.</td>
</tr>
<tr>
<td>portLogDisable</td>
<td>Disable port logs for all or particular ports.</td>
</tr>
<tr>
<td>portLogDump</td>
<td>Display port logs for all or particular ports, without page breaks.</td>
</tr>
<tr>
<td>portLogEnable</td>
<td>Enable port logs for all or particular ports.</td>
</tr>
<tr>
<td>portLogShow</td>
<td>Display port logs for all or particular ports, with page breaks.</td>
</tr>
</tbody>
</table>
Syslogd configuration

The **portLogDump** command output (trace) is a powerful tool that is used to troubleshoot fabric issues. The **portLogDump** output provides detailed information about the actions and communications within a fabric. By understanding the processes that are taking place in the fabric, issues can be identified and located.

The **portLogDump** command displays the port log, showing a portion of the Fibre Channel payload and header (FC-PH). The header contains control and addressing information associated with the frame. The payload contains the information being transported by the frame and is determined by the higher-level service or FC_4 upper level protocol. There are many different payload formats based on the protocol.

Because a **portLogDump** output is long, a truncated example is presented:

```
brcd300:admin> portlogdump
Fri Feb 22 20:29:12 2008
20:29:12.638 FCPH write 3 40 00fffffd,00fffffd,00000000,00000000,00000000
20:29:12.638 FCPH seq 3 28 00300000,00000000,000005f4,00020182,00000000
20:29:12.638 PORT Tx 3 40 02fffffd,00fffffd,09a5ffff,14000000
20:29:12.638 FCPH write 9 40 00fffffd,00fffffd,00000000,00000000,00000000
20:29:12.638 FCPH seq 9 28 00300000,00000000,000005f4,00020182,00000000
20:29:12.639 PORT Tx 9 40 02fffffd,00fffffd,09a6ffff,14000000
20:29:12.639 PORT Rx 3 0 c0fffffd,00fffffd,09a50304,00000001
20:29:12.640 PORT Rx 9 0 c0fffffd,00fffffd,09a60305,00000001
20:29:20.804 PORT Rx 9 40 c0fffffd,00fffffd,00000000,0306ffff,14000000
20:29:20.805 PORT Tx 9 0 c0fffffd,00fffffd,030609a7,00000001
20:29:20.805 FCPH read 9 40 02fffffd,00fffffd,01000000,00000000,030609a7
20:29:20.805 FCPH seq 9 28 22380000,030609a7,00000008,00000000,00000000
20:29:20.805 PORT Rx 3 40 02fffffd,00fffffd,02e0ffff,14000000
20:29:20.806 PORT Tx 3 0 c0fffffd,00fffffd,02ee09a8,00000001
20:29:20.806 FCPH read 3 40 02fffffd,00fffffd,02000000,00000000,00000001
20:29:20.806 FCPH seq 3 28 22380000,02ee09a8,00000008,00000000,00000000
20:29:32.638 FCPH write 3 40 00fffffd,00fffffd,00000000,00000000,00000000
20:29:32.638 FCPH seq 3 28 00300000,00000000,000005f4,00020182,00000000
20:29:32.639 FCPH seq 9 28 00300000,00000000,000005f4,00020182,00000000
20:29:32.639 PORT Tx 9 40 02fffffd,00fffffd,09afffff,14000000
20:29:32.639 FCPH seq 9 28 00300000,00000000,000005f4,00020182,00000000
```

Syslogd configuration

The system logging daemon (syslogd) is an IP-based service for logging system messages made available by default on Unix and Linux operating systems. It is available as a third-party application for Windows operating systems.

Fabric OS can be configured to use a UNIX-style syslogd process to forward system events and error messages to log files on a remote host system. The host system can be running UNIX, Linux, or any other operating system that supports the standard syslogd functionality.

Fabric OS supports UNIX local7 facilities (the default facility level is 7). Configuring for syslogd involves configuring the host, enabling syslogd on the switch, and, optionally, setting the facility level.
Configuring the host

Fabric OS supports a subset of UNIX-style message severities that default to the UNIX local7 facility. To configure the host, edit the /etc/syslog.conf file to map Fabric OS message severities to UNIX severities, as shown in Table 17.

<table>
<thead>
<tr>
<th>Fabric OS message severity</th>
<th>UNIX message severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical (1)</td>
<td>Emergency (0)</td>
</tr>
<tr>
<td>Error (2)</td>
<td>Error (3)</td>
</tr>
<tr>
<td>Warning (3)</td>
<td>Warning (4)</td>
</tr>
<tr>
<td>Info (4)</td>
<td>Info (6)</td>
</tr>
</tbody>
</table>

Table 17  Fabric OS to UNIX message severities

In this example, Fabric OS messages map to local7 facility level 7 in the /etc/syslog.conf file:

```
local7.emerg /var/adm/swcritical
local7.alert /var/adm/alert7
local7.crit /var/adm/crit7
local7.err /var/adm/swerror
local7.warning /var/adm/swarning
local7.notice /var/adm/notice7
local7.info /var/adm/swinfo
local7.debug /var/adm/debug7
```

If you prefer to map Fabric OS severities to a different UNIX local7 facility level, see “Setting the facility level” on page 114.

Configuring the switch

Configuring the switch involves specifying syslogd hosts and, optionally, setting the facility level. You can also remove a host from the list of syslogd hosts.

Specifying syslogd hosts

1. Connect to the switch and log in as admin.
2. Enter the syslogdipAdd command and specify an IP address.
3. Verify that the IP address was entered correctly, using the syslogdipShow command.

The syslogdipAdd command accepts IPv4 and IPv6 addresses. You can specify up to six host IP addresses for storing syslog messages, as shown in this example:

```
switch:admin> syslogdipadd 1080::8:800:200C:417A
switch:admin> syslogdipadd 1081::8:800:200C:417A
switch:admin> syslogdipadd 1082::8:800:200C:417A
switch:admin> syslogdipadd 10.1.2.4
switch:admin> syslogdipadd 10.1.2.5
switch:admin> syslogdipadd 10.1.2.6
```
Automatic trace dump transfers

```
switch:admin> syslogdipshow
syslog.IP.address.1080::8:800:200C:417A
syslog.IP.address.1081::8:800:200C:417A
syslog.IP.address.1082::8:800:200C:417A
syslog.IP.address.4 10.1.2.4
syslog.IP.address.5 10.1.2.5
syslog.IP.address.6 10.1.2.6
```

**Setting the facility level**

1. Connect to the switch and log in as admin.
2. Enter the following command:
   ```
switch:admin> syslogdfacility -l n

 n is a number from 0 through 7, indicating a UNIX local7 facility. The default is 7.
   ```
   It is necessary to set the facility level only if you specified a facility other than local7 in the host `/etc/syslog.conf` file.

**Removing a syslogd host from the list**

1. Connect to the switch and log in as admin.
2. Enter the `syslogdipRemove` command:
   ```
 switch:admin> syslogdipremove 10.1.2.1
   ```
3. Verify the IP address was deleted using the `syslogdipShow` command.

**Automatic trace dump transfers**

You can set up a switch so that diagnostic information is transferred automatically to a remote server. If a problem occurs, you can then provide your customer support representative with the most detailed information possible. To ensure the best service, you should set up for automatic transfer as part of standard switch configuration, before a problem occurs.

Setting up for automatic transfer of diagnostic files involves the following tasks:

- Specifying a remote server to store the files.
- Enabling the automatic transfer of trace dumps to the server. (Trace dumps overwrite each other by default; sending them to a server preserves information that would otherwise be lost.)
- Setting up a periodic checking of the remote server so that you are alerted if the server becomes unavailable and you can correct the problem.

After the setup is complete, you can run the `supportSave -c` command to save RASLog, TRACE, supportShow, core file, FFDC data and other diagnostic support information to the server without specifying server details.

The following procedures describe the tasks for setting up automatic transfer. For details on the commands, see the *Fabric OS Command Reference*. 
Specifying a remote server
1. Verify that the FTP service is running on the remote server.
2. Connect to the switch and log in as admin.
3. Enter the following command:
   ```
 switch:admin> supportftp -s
   ```
   The command is interactive.
4. Respond to the prompts as follows:
   - **Host Name**: Enter the name or IPv4 or IPv6 address of the server where the file is to be stored; for example, `1080::8:800::200C:417A` for a server configured for IPv6.
   - **User name**: Enter the user name of your account on the server; for example, “JohnDoe”.
   - **Password**: Enter your account password for the server.
   - **Remote directory**: Specify a path name for the remote directory. Absolute path names can be specified by starting the path name with a forward slash (/). Specifying a relative path name will create the directory in the user’s home directory on UNIX servers, and in the directory where the FTP server is running on Windows servers.

Enabling the automatic transfer of trace dumps
1. Connect to the switch and log in as admin.
2. Enter the following command:
   ```
 switch:admin> supportftp -e
 Support auto file transfer enabled.
   ```

Setting up periodic checking of the remote server
1. Connect to the switch and log in as admin.
2. Enter the following command:
   ```
 switch:admin> supportftp -t interval
   ```
   Specify the interval in hours, for example:
   ```
 switch:admin> supportftp -t 4
 supportftp: ftp check period changed
   ```
   The minimum interval is 1 hour. Specify 0 hours to disable the checking feature.

Saving comprehensive diagnostic files to the server
1. Connect to the switch and log in as admin.
2. Enter the following command:
   ```
 switch:admin> supportsave -c
   ```
The command only prompts you to continue.

```
switch:admin> supportsave -c
This command will collect RASLOG, TRACE, supportShow, core file, FFDC data and other support information and then transfer them to a FTP/SCP server or a USB device. This operation can take several minutes.
NOTE: supportsSave will transfer existing trace dump file first, then automatically generate and transfer latest one. There will be two trace dump files transferred after this command.
OK to proceed? (yes, y, no, n): [no] y
```

Diagnostic tests not supported by M-EOS 9.6.2 and FOS 6.0

The diagnostic tests `portTest` and `spinFab` are designed to work between two Brocade-attached switches. These diagnostics will fail if the B-series switch is linked to an M-series switch.
The `switchType` is a displayed field listed when you run the `switchShow` command. When you are gathering information to give to your switch support provider, you may be asked the switch model. If you do not know the model, you can use this chart to convert the `switchType` to a B-Series model number.

```
Switch:admin> switchshow
switchName:FinanceSwitch
switchType:34.0 <=== convert this number using Table 18.
switchState:Online
switchMode:Native
switchRole:Principal
switchDomain:97
switchId:fffc61
switchWWn:10:00:00:05:1e:01:23:e0
zoning:OFF
switchBeacon:OFF
```

### Table 18: Switch type to B-Series model converter

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>B-Series switch model</th>
<th>ASIC</th>
<th>Base switch speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3900</td>
<td>BLOOM</td>
<td>2 Gbit 32-port switch</td>
</tr>
<tr>
<td>16</td>
<td>3200</td>
<td>BLOOM</td>
<td>2 Gbit 8-port value line switch</td>
</tr>
<tr>
<td>21</td>
<td>24000</td>
<td>BLOOMII</td>
<td>2 Gbit 128-port core fabric switch</td>
</tr>
<tr>
<td>26</td>
<td>3850</td>
<td>BLOOMII</td>
<td>2 Gbit 16-port switch with switch limit</td>
</tr>
<tr>
<td>27</td>
<td>3250</td>
<td>BLOOMII</td>
<td>2 Gbit 8-port switch with switch limit</td>
</tr>
<tr>
<td>29</td>
<td>4012</td>
<td>GoldenEye</td>
<td>2 Gbit 12-port embedded switch</td>
</tr>
<tr>
<td>32</td>
<td>4100</td>
<td>Condor</td>
<td>4 Gbit 32-port switch</td>
</tr>
<tr>
<td>34</td>
<td>200E</td>
<td>GoldenEye</td>
<td>2 Gbit 16-port switch with switch limit</td>
</tr>
<tr>
<td>37</td>
<td>4020</td>
<td>GoldenEye</td>
<td>2 Gbit 20-port embedded switch</td>
</tr>
<tr>
<td>42</td>
<td>48000</td>
<td>Condor</td>
<td>4 Gbit 256-port core fabric switch</td>
</tr>
<tr>
<td>43</td>
<td>4024</td>
<td>GoldenEye</td>
<td>2 Gbit 24-port embedded switch</td>
</tr>
<tr>
<td>44</td>
<td>4900</td>
<td>Condor</td>
<td>4 Gbit 64-port</td>
</tr>
<tr>
<td>45</td>
<td>4016</td>
<td>GoldenEye</td>
<td>2 Gbit 16-port embedded switch</td>
</tr>
<tr>
<td>46</td>
<td>7500</td>
<td>Condor</td>
<td>4 Gbit 32-port switch and FC Router</td>
</tr>
<tr>
<td>51</td>
<td>4018</td>
<td>GoldenEye</td>
<td>2 Gbit 16/18-port embedded switch</td>
</tr>
<tr>
<td>55</td>
<td>7600</td>
<td>Condor</td>
<td>4 Gbit 32-port switch</td>
</tr>
<tr>
<td>58</td>
<td>5000</td>
<td>Condor</td>
<td>4 Gbit 32-port switch</td>
</tr>
<tr>
<td>61</td>
<td>4424</td>
<td>GoldenEye</td>
<td>2 Gbit 24-port embedded switch</td>
</tr>
<tr>
<td>62</td>
<td>Brocade DCX</td>
<td>Condor2</td>
<td>8 Gbit 798-port core fabric backbone</td>
</tr>
</tbody>
</table>
### TABLE 18  Switch type to B-Series model converter

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>B-Series switch model</th>
<th>ASIC</th>
<th>Base switch speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>5300</td>
<td>GoldenEye2</td>
<td>8 Gbit 64-port switch</td>
</tr>
<tr>
<td>66</td>
<td>5100</td>
<td>Condor2</td>
<td>8 Gbit 32-port switch</td>
</tr>
<tr>
<td>67</td>
<td>Brocade Encryption Switch</td>
<td>Condor2</td>
<td>8 Gbit 16-port encryption switch</td>
</tr>
<tr>
<td>68</td>
<td>Brocade Encryption Blade</td>
<td>Condor2</td>
<td>8 Gbit 16-port encryption blade</td>
</tr>
<tr>
<td>69</td>
<td>5410</td>
<td>GoldenEye2</td>
<td>8 Gbit 12-port embedded switch</td>
</tr>
<tr>
<td>71</td>
<td>300</td>
<td>GoldenEye2</td>
<td>8 Gbit 16-port switch</td>
</tr>
<tr>
<td>72</td>
<td>5480</td>
<td>GoldenEye2</td>
<td>8 Gbit 24-port embedded switch</td>
</tr>
<tr>
<td>75</td>
<td>M5424</td>
<td>GoldenEye2</td>
<td>8 Gbit 24-port embedded switch</td>
</tr>
<tr>
<td>77</td>
<td>Brocade DCX-4S</td>
<td>Condor2</td>
<td>8 Gbit 192-port core fabric backbone</td>
</tr>
</tbody>
</table>
Hexadecimal, or simply hex, is a numeral system with a base of 16, usually written using unique symbols 0–9 and A–F, or a–f. Its primary purpose is to represent the binary code that computers interpret and represent in a format easier for humans to read. It acts as a form of shorthand, in which one hexadecimal digit stands in place of four binary bits. For example, the decimal numeral 79, whose binary representation is 01001111, is 4F (or 4f) in hexadecimal (4 = 0100, F = 1111). Hexadecimal numbers can have either an 0x prefix or an h suffix.

0xFFFFFA

is the same address as,

FFFFFAh

This type of address is called a hex triplet. Fibre Channel uses hexadecimal notation in hex triplets to specify well-known addresses and port IDs.

**Example of conversion from hexadecimal triplet to decimal triplet. hexadecimal triplet: 0x610600**

Notice the PID in the nsshow output is in hexadecimal.

```plaintext
Switch:admin> nsshow
{
 Type Pid COS PortName NodeName TTL(sec)
 N 610600; 2,3;10:00:00:00:c9:29:b3:84;20:00:00:00:c9:29:b3:84; na
 FC4s: FCP
 NodeSymb: [36] "Emulex LP9002 FV3.90A7 DV5-5.10A10 "
 Fabric Port Name: 20:08:00:05:1e:01:23:e0
 Permanent Port Name: 10:00:00:00:c9:29:b3:84
 Port Index: 6
 Share Area: No
 Device Shared in Other AD: No
 Redirect: No
 The Local Name Server has 1 entry }
```

1. Separate the triplets: 61 06 00
2. Convert each hexadecimal value to a decimal representation:
   - 61 = Domain ID = 97
   - 06 = Area (port number) = 06
   - 00 = Port (ALPA) = 0 (not used in this instance, but is used in loop, NPIV, and Access Gateway devices)

Result: hexadecimal triplet 610600 = decimal triplet 97,06,00

**TABLE 19**  Decimal to Hex conversion table

<table>
<thead>
<tr>
<th>Decimal</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0a</td>
</tr>
</tbody>
</table>
### TABLE 19  Decimal to Hex conversion table

<table>
<thead>
<tr>
<th>Decimal</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>0b</td>
<td>0c</td>
<td>0d</td>
<td>0e</td>
<td>0f</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
<td>1e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>1f</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>29</td>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
<td>2e</td>
<td>2f</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>3a</td>
<td>3b</td>
<td>3c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>3d</td>
<td>3e</td>
<td>3f</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
<td>4e</td>
<td>4f</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>5a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
<td>5e</td>
<td>5f</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>101</th>
<th>102</th>
<th>103</th>
<th>104</th>
<th>105</th>
<th>106</th>
<th>107</th>
<th>108</th>
<th>109</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
<td>6e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>111</th>
<th>112</th>
<th>113</th>
<th>114</th>
<th>115</th>
<th>116</th>
<th>117</th>
<th>118</th>
<th>119</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>6f</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>121</th>
<th>122</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>126</th>
<th>127</th>
<th>128</th>
<th>129</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>79</td>
<td>7a</td>
<td>7b</td>
<td>7c</td>
<td>7d</td>
<td>7e</td>
<td>7f</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>131</th>
<th>132</th>
<th>133</th>
<th>134</th>
<th>135</th>
<th>136</th>
<th>137</th>
<th>138</th>
<th>139</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>8a</td>
<td>8b</td>
<td>8c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>141</th>
<th>142</th>
<th>143</th>
<th>144</th>
<th>145</th>
<th>146</th>
<th>147</th>
<th>148</th>
<th>149</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>8d</td>
<td>8e</td>
<td>8f</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>151</th>
<th>152</th>
<th>153</th>
<th>154</th>
<th>155</th>
<th>156</th>
<th>157</th>
<th>158</th>
<th>159</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>9a</td>
<td>9b</td>
<td>9c</td>
<td>9d</td>
<td>9e</td>
<td>9f</td>
<td>a0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>161</th>
<th>162</th>
<th>163</th>
<th>164</th>
<th>165</th>
<th>166</th>
<th>167</th>
<th>168</th>
<th>169</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>a1</td>
<td>a2</td>
<td>a3</td>
<td>a4</td>
<td>a5</td>
<td>a6</td>
<td>a7</td>
<td>a8</td>
<td>a9</td>
<td>aa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>171</th>
<th>172</th>
<th>173</th>
<th>174</th>
<th>175</th>
<th>176</th>
<th>177</th>
<th>178</th>
<th>179</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>ab</td>
<td>ac</td>
<td>ad</td>
<td>ae</td>
<td>af</td>
<td>b0</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>181</th>
<th>182</th>
<th>183</th>
<th>184</th>
<th>185</th>
<th>186</th>
<th>187</th>
<th>188</th>
<th>189</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>b5</td>
<td>b6</td>
<td>b7</td>
<td>b8</td>
<td>b9</td>
<td>ba</td>
<td>bb</td>
<td>bc</td>
<td>bd</td>
<td>be</td>
</tr>
</tbody>
</table>

| Decimal | 191  | 192  | 193  | 194  | 195  | 196  | 197  | 198  | 199  | 200  |
### TABLE 19  Decimal to Hex conversion table

<table>
<thead>
<tr>
<th>Hex</th>
<th>bf</th>
<th>c0</th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
<th>c5</th>
<th>c6</th>
<th>c7</th>
<th>c8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
<td>207</td>
<td>208</td>
<td>209</td>
<td>210</td>
</tr>
<tr>
<td>Hex</td>
<td>c9</td>
<td>ca</td>
<td>cb</td>
<td>cc</td>
<td>cd</td>
<td>ce</td>
<td>cf</td>
<td>d0</td>
<td>d1</td>
<td>d2</td>
</tr>
<tr>
<td>Decimal</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
<td>220</td>
</tr>
<tr>
<td>Hex</td>
<td>d3</td>
<td>d4</td>
<td>d5</td>
<td>d6</td>
<td>d7</td>
<td>d8</td>
<td>d9</td>
<td>da</td>
<td>db</td>
<td>dc</td>
</tr>
<tr>
<td>Decimal</td>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
<td>227</td>
<td>228</td>
<td>229</td>
<td>230</td>
</tr>
<tr>
<td>Hex</td>
<td>dd</td>
<td>de</td>
<td>df</td>
<td>e0</td>
<td>e1</td>
<td>e2</td>
<td>e3</td>
<td>e4</td>
<td>e5</td>
<td>e6</td>
</tr>
<tr>
<td>Decimal</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
<td>236</td>
<td>237</td>
<td>238</td>
<td>239</td>
<td>240</td>
</tr>
<tr>
<td>Hex</td>
<td>e7</td>
<td>e8</td>
<td>e9</td>
<td>ea</td>
<td>eb</td>
<td>ec</td>
<td>ed</td>
<td>ef</td>
<td>ee</td>
<td>f0</td>
</tr>
<tr>
<td>Decimal</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>248</td>
<td>249</td>
<td>250</td>
</tr>
<tr>
<td>Hex</td>
<td>f1</td>
<td>f2</td>
<td>f3</td>
<td>f4</td>
<td>f5</td>
<td>f6</td>
<td>f7</td>
<td>f8</td>
<td>f9</td>
<td>fa</td>
</tr>
<tr>
<td>Decimal</td>
<td>251</td>
<td>252</td>
<td>253</td>
<td>254</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hex</td>
<td>fb</td>
<td>fc</td>
<td>fd</td>
<td>fe</td>
<td>ff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B  Hexadecimal
Index

A
account management
  lost password recovery options, 54
  recovering forgotten passwords, 53
  unable to modify switch settings, 54
  user forgot password, 4
  user unable to change switch settings, 4

B
blade errors
  AP blade type 24 is inserted, 63
  faulty, 3, 44
  stuck in the 'LOADING' state, 3, 44
  browser troubleshooting certificates, 55

C
certificates
  corrupt, 55
  invalid, 55
  not installed, 55
  troubleshooting, 55
  cfgShow, 98
  command
    cfgShow, 98
    defZone, 97
    fcLunQuery, 96
    iscsiCfg, 97
    nsShow, 96, 98
    portCfg, 95
    portCmd, 95
    portShow, 95
  command output, 7
  common
    problem areas, 2
    symptoms, 2
  configDownload fails, 3
  configUpload fails, 3
  configuration
    download fails, 41
    save to a host, 39
    switch reboots during the download, 41
    upload fails, 39
  connectivity
    no connectivity between host and storage, 4
    no connectivity between switches, 4
  contacting your switch support provider, 5
  core file warning messages, 13
  correcting
    device login issues, 29
    link failures, 25
    marginal links, 28
    crc_err counter, 31
    crc_g_eof counter, 31

D
defZone, 97
  devices
    login issues, 29
    missing, 2
    RAID, 96
  diagnostics, 99
    configuring syslogd, 112
    configuring the host, 113
    equipment status, 108
    fan status, 108
    port information, 105
    port log, 111
    POST, 100
    power supply status, 109
    supportSave, 100
    switch status, 102
    system message log, RASLog, 110
    temperature status, 109
    trace dump auto-transfer, 114
  disc_c3 errors, 32
E

E_Port, 21, 27
failed to come online, 3
failed to form, 3
eenc_out errors, 32
equipment status, viewing, 108
EX_Ports, 3, 21

F

F_Port, 21, 27
fabric
issues, 2
merge fails, 3
parameters, 35
parameters, reconcile, 36
segments, 3
fabric merge problem, 67
fabric segmentation
configuration mismatch, 69
content mismatch, 69
default zone access, 71
fcPing, 72
Fibre Channel connectivity, 72
incompatible zone database, 69
type mismatch, 69
zone configuration members, 71
zone conflict, 69
zoning problems, 73
fan components, 13
fans, status of, 108
FCIP

gathering additional information, 78
tunnel bounces, 3, 77
tunnel does not come online, 3, 75
tunnel does not form, 3
tunnel is sluggish, 3
fcLunQuery, 96
feature is not working, 3, 11
FFDC warning messages, 13
Fibre Channel protocol auto discovery process, 22

FICON

cascade mode topology checklist, 92
DLS, 93
gathering additional information, 90, 92
identifying ports from the tag field, 91
IOD, 93
packets being dropped, 90
single-switch topology checklist, 92
switch does not talk to hosts, 3
troubleshooting, 91
troubleshooting NPIV, 94

FICON CUP

Control Unit Port cannot access the switch, 89
mainframe RMF utility, 94
port mirroring, 80
troubleshooting steps, 93
unable to 'vary online', 93

FIPS

switch boots continuously, 56
firmwareDownload errors, 46
Access Gateway is enabled, 51
active security DB size is greater than 256 KB, 50
AP blade type 24 is inserted, 63
blade application firmware failed, 49
blade application firmware failed, 49
blade errors, 48
blade is faulty, 44
blade is stuck in the ‘LOADING’ state, 44
broadcast zone(s), 52
cannot download the requested firmware, 45
cannot download with interop mode turned on, 45
cannot upgrade directly to v6.0, 48, 49
cannot upgrade to firmware v6.0.0, 50
command fails, 3
firmware path is invalid, 44
firmwareDownload is already in progress, 45
gathering additional information, 46
IPv6 addresses, 49
long-distance ports in LS mode, 51
LSAN count is set to 3000, 52
LSAN zone binding is enabled, 52
non-disruptive firmwareDownload, 49
platform options 1 and 5, 50
port mirroring, 81
server is inaccessible, 44
SNMP trap port is set to non-default, 51
USB error handling, 46
Virtual Fabrics is enabled, 51

FL_Port, 21
FLOGI, 22
frames tx and rx, 31
FTRACE
  configuring, 83
  displaying for a tunnel, 85
  FICON issues, 83
  functional tests, 34

G
G_Port, 21, 28
  gathering
    basic switch information, 7
    detailed information, 8
    FCIP information, 78
    FICON information, 90
    information for technical support, 5

H
host
  connection failure, 95
  iSCSI log out, 98
host application times out, 19
hosts, 2
HTTPS, 55

I
I2C bus errors, 13
  identifying media-related issues, 34
  inaccurate information in the system message log, 12, 20
  intermittent connectivity, 3
  iSCSI
    CHAP mutual, 98
    database, 97
    Easy create cannot find any LUNs on the target, 96
    GE_Ports cannot go to Online state, 96
    host cannot discover any targets, 97
    host cannot mount any disks, 96
    host connection failure, 95
    iscsiCfg, 97
    iscsiCfg commit, 97
    iscsiCfg show dd, 97
    multiple sessions are established with the same target, 96
    RAID device, 96
    zoning, 98

iscsiCfg
  commit, 97
  show, 97
ISL trunk failed, 65

L
L_Port, 28
LEDs
  flashing, 3
  no light, 4
  steady, 3
  licensing issues, 11
link
  intermittent connectivity, 3
  marginal, 3
  no port LED light, 23
  port LEDs flashing, 23
  port LEDs steady, 23
logical connection, 23
loop initialization failure, 26

M
M_Port, 21
  marginal links, 2, 3
  media-related issues
    functional tests, 34
    structural tests, 34
message logs, 1
missing devices, 2

N
Name Server, (See also NS), 24
  network time protocol, (See also NTP), 1
  no connectivity between host and storage, 4
  no connectivity between switches, 4
  no light on LEDs, 4
NS, 24
nsShow, 96, 98
NTP, 1
output from a console, 6

passwords, recovering forgotten, 53
pathInfo, 17
performance problems, 4
PLOGI, 22
point-to-point initialization failure, 27
port
  bypassed, 27
  disabled, 27
  in wrong mode, 27
  initialization, 21
  loopback, 27
port information, viewing, 105
port mirroring, 21
  adding port connections, 81
  considerations, 80
  deleting port connections, 82
FiCOn, 80
iod is enabled, 80
  multiple locations, 80
  supported hardware, 79
port type
  E_Port, 21, 27
  EX_Port, 21
  F_Port, 21, 27
  FL_Port, 21
  G_Port, 21, 28
  L_Port, 28
  M_Port, 21
  U_Port, 21
  VE_Port, 21
  VEX_Port, 22
portCfg, 95
portCmd ping, 95
portErrShow, 31
  crc_err counter errors, 31
  crc_g_eof counter errors, 31
  disc_c3 errors, 32
  enc_out errors, 32
  frames tx and rx errors, 31
portFlagsShow, 33
portLogDumpPort, 33
portloopbacktest, 35
portShow
  ipif, 95
  iproute, 95
POST, 100
power supply, 14
PRLI, 22

RAS logs, 12
recovering forgotten passwords, 53
replication application breaks, 20
resolving zone conflicts, 69

SCSI
  retry errors, 4
  timeout errors, 4
security, gathering additional information, 55
segmentation, 3
segmented fabrics, 35, 68
setting up automatic trace dump transfers, 114
slow-down in FCR performance, 19
SNMP
  gathering additional information, 56
  management server unable to receive traps, 56
  trap port set errors, 51
SSL, 55
storage
  devices, 2
  management applications, 2
structural tests, 34
supportFtp, 5
supportSave, 5, 6
supportShow, 5, 6
switch
  configuration, 2
  constantly reboots, 4
  panic, 4
  reboots during configUp/download, 4
  system status, 102
  unable to join fabric, 4
switch boot issues, 14
switch message logs, 12
switch panic, 56
switch reboots during the configuration download, 41
switch status, viewing, 102
switch temperature, 13
switchType, 117
symptoms, 2
synchronize switches, 1
syslog messages, 4

tag field, interpreting, 91
targets, 2
temperature, fan, and power supply, 14
temperature, status of, 109
test
  a port, 34
  a switch, 34
TI zone problem, 67
time is not in-sync, 11
troubleshooting
certificates, 55
corrupt certificate, 55
invalid certificate, 55
trunk
  bounces, 4
  failed to form, 4
trunk goes offline and online (bounces), 66
tunnel goes on- and offline, 77

U
U_Port, 21
user forgot password, 4
user is unable to change switch settings, 4
using fcPing, 15

V
VE_Port, 21
VEX_Port, 22
viewing
  and saving diagnostic information, 114
equipment status, 108
fan status, 108
port information, 105
port log, 111
port status, 105
power supply status, 109
power-on self test, 100
switch status, 102
temperature status, 109
the system message log, 110
Virtual Fabrics
  E_Ports directly connecting two logical switches does not form, 60
  firmware download errors, 51
  general troubleshooting, 59
Virutal Fabrics
  FID is currently in use, 60
  invalid FID, 60
  logical port, 60
  slot displays FAULTY(91), 63

Z
zone
  configuration, 2
  configuration mismatch, 4
  content mismatch, 4
  resolving conflicts, 69
  troubleshooting, 69
  type mismatch, 4
zone errors
  broadcast zone(s), 52
  LSAN count, 52
  LSAN zone enabled, 52