British Standard

Testing concrete

Part 122. Method for determination of water absorption

Essais du béton
Partie 122. Méthode de determination de l’absorption d’eau

Prüfverfahren für Beton
Teil 122. Bestimmung der Wasseraufnahme

Foreword

This Part of this standard prepared under the direction of the Cement, Gypsum, Aggregates and Quarry Products Standards Committee, is a revision of clause 7 of BS 1881 : Part 5 : 1970, which has been deleted by Amendment No, 1 to that standard.

The water absorption test in this Part is basically unchanged from that in the 1970 edition. No estimate of repeatability or reproducibility is given in this Part of this British Standard. Reference should be made to BS 5497 : Part 1 for further information on the determination of repeatability and reproducibility.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

1. Scope

This Part of this British Standard specifies a method for the determination of water absorption of concrete specimens cored from a structure or precast component.

NOTE. The titles of the publications referred to in this standard are listed on the inside back cover.

2. Definitions

For the purposes of this Part of this standard the definitions given in BS 5328 apply.

3. Apparatus

3.1 A balance, capable of weighing the specimen up to 5 kg to an accuracy of 0.1 %.

3.2 A suitable coring machine, with a cylindrical bit having an impregnated or set diamond cutting edge for cutting a 75 ± 3 mm diameter core.

NOTE. A pillar drill or portable electric drill of about 12 mm nominal size with reduction gearing can generally be adapted for this purpose.

3.3 A well ventilated drying oven, complying with BS 2648, except that the internal space may exceed 0.085 m³, in which the temperature is controlled at 105 ± 5ºC, and such that the specimens can be placed in the oven as described in 5.1.

3.4 A tank, at least 125 mm deep, containing clean water maintained at a temperature of 20 ± 1 ºC.

3.5 A dry airtight vessel, e.g. desiccator, of sufficient size to take the set of three specimens to be tested.

4. Test specimens

4.1 Preparation. For a representative sample, obtain a set of three specimens by coring from the full thickness of the concrete when this is between 32 mm and 150 mm, or by obtaining a core 75 mm long when the thickness of the specimen is greater than 150 mm. The diameter of each core shall be 75 ± 3 mm. Cores shall be drilled, as far as possible, perpendicular to the surface and in such a manner as not to damage the core. Mark each core clearly with its identification mark immediately after cutting, and record the orientation of the core. Cores that have been broken out of larger samples shall have the broken ends trimmed approximately square with the axis.

NOTE. One end of each specimen should preferably be from one of the faces which would normally be exposed when the unit is in use.
4.2 Measurement of density. Measure the density of the specimens in accordance with BS 1881 : Part 114.

4.3 Measurement of dimensions. Measure the dimensions of the specimen in accordance with BS 1881 : Part 114.

4.4 Age of specimen at test. The test for absorption shall be made when the age of the concrete is 28 days to 32 days, which means that drying of the specimens shall begin at an age of 24 days to 28 days.

NOTE. If the absorption test is carried out on concrete less than 28 days old an appreciably higher value may be obtained. Conversely, the absorption at ages greater than 28 days might be appreciably less. These variations are dependent, amongst other factors, on the rate of hydration of the cement.

5. Procedure

5.1 Place the three specimens in the drying oven (3.3) so that each one is not less than 25 mm from any heating surface or from each other. Dry the three specimens in the oven for 72 ± 2 h.

5.2 Further specimens shall not be placed in the same oven during the drying process and there shall be free access of air to all surfaces of the specimens. On removal from the oven, cool each specimen for 24 ±0.5 h in the dry airtight vessel (3.5). Weigh each specimen and immediately completely immerse in the tank (3.4) with its longitudinal axis horizontal and at a depth such that there is 25 ± 5 mm of water over the top of the specimen.

5.3 Leave the specimens immersed in the water for 30 ± 0.5 min, unless otherwise specified. Remove each specimen, shake it to remove the bulk of the water and dry it with a cloth as rapidly as possible until all free water is removed from the surface. Weigh each specimen.

6. Calculation and expression of results

The measured absorption of each specimen shall be calculated as the increase in mass resulting from immersion expressed as a percentage of the mass of the dry specimen. A correction factor according to the length of the specimen shall be obtained from the curve shown in figure 1. The product of this correction factor and the measured absorption shall be known as the corrected absorption, this being the equivalent absorption of a core having a length of 75 mm. The results shall be expressed to the nearest 0.1 %.

The correction factor related to size is based on the formula
\[
\text{correction factor} = \frac{\text{volume (mm}^3\text{)}}{\text{surface area (mm}^2\text{)}} \times 12.5
\]

7. Test report

7.1 General. The report shall affirm that the tests were carried out in accordance with this Part of this standard. The report shall also state whether or not certificates of sampling, specimen preparation and curing are available. If available, a copy of each certificate shall be provided.

7.2 Information to be provided by the producer of the test specimens for inclusion in the test report:

7.2.1 Mandatory information. The following information shall be provided by the producer of the test specimens for inclusion in the test report:

(a) identification of the test specimen, which preferably should be marked with indelible waterproof ink;
(b) date of production;
(c) conditions of storage and curing;
(d) age of concrete;
(e) date test required;
(f) type of density to be measured.

7.2.2 Optional information. If requested the following information shall be provided by the producer of the test specimens for inclusion in the test report:

(a) building project;
(b) part or component of the building;
(c) details of concrete mix.

7.3 Information to be provided by the test laboratory for inclusion in the test report. The following information shall be provided by the test laboratory for inclusion in the test report:

(a) identification of the test specimen;
(b) condition of specimen when received (include poor compaction and honeycombing);
(c) date of receipt of the specimen;
(d) dimensions of the specimen;
(e) conditions of storage and curing until test date;
(f) date of beginning of tests (placing in oven);
(g) density of the specimen (as-received, saturated or oven-dried and method of determining volume);
(h) measured absorption;
(i) corrected absorption;
(j) details of reinforcement (if any);
(k) orientation of the specimen to the structure;
(l) certificate that the test has been carried out in accordance with this Part of this standard;
(m) other remarks.
Clause 3.1 A balance

Insert the following as paragraph 2:

'The balance shall be calibrated on initial commissioning and at least annually thereafter using weights of which the accuracy can be traced to the national standard of mass. The balance shall be checked after relocation or disturbance. A certificate stating the accuracy shall be obtained from the organization carrying out the check.'
TESTING CONCRETE

SUMMARY OF PUBLISHED BRITISH STANDARDS

Due to the present restructuring of BS 1881, Methods of testing concrete and BS 4408 Recommendations for non-destructive methods of testing concrete, the following information has been published to help keep readers up-to-date with the situation so far (February 1983).

BS 1881 : Part 1 : 1970 Method of sampling fresh concrete on site
 Method of mixing and sampling fresh concrete in the laboratory

BS 1881 : Part 2 : 1970 Slump test
 Compacting factor test
 V-B consistometer test
 Method for determination of weight per cubic metre of fresh concrete
 Method for determination of air content of fresh concrete
 Analysis of fresh concrete

BS 1881 : Part 3 : 1970 Making and curing test cubes
 Making and curing no-fines test cubes
 Making and curing test beams
 Making and curing test cylinders
 Method for accelerating the curing of test specimens:
 1) the 55°C method
 2) the 82°C method

BS 1881 : Part 5 : 1970 Method for determination of the dynamic modulus of elasticity by an electrodynamic method
 Method for determination of changes in length of concrete prisms (initial drying shrinkage, drying shrinkage and wetting expansion)
 Method for determination of initial surface absorption

BS 1881 : Part 6 : 1971 Analysis of hardened concrete

BS 1881 : Part 114 : 1983 Method for determination of density of hardened concrete

BS 1881 : Part 117 : 1983 Method for determination of tensile splitting strength

BS 1881 : Part 120 : 1983 Method for determination of the compressive strength of concrete cones

BS 1881 : Part 121 : 1983 Method for determination of static modulus of elasticity in compression

BS 1881 : Part 122 : 1983 Method for determination of water absorption

BS 4408 : Part 1 : 1969 Electromagnetic cover measuring devices

BS 4408 : Part 2 : 1969 Strain gauges for concrete investigations

BS 4408 : Part 4 : 1971 Surface hardness methods of testing concrete

Figure 1. Correction factor

Publications referred to

BS 1881 Testing concrete
Part 114. Method for determination of density of hardened concrete

BS 2848 Performance requirements for electrically-heated laboratory drying ovens

BS 5328 Methods for specifying concrete, including ready-mixed concrete

BS 5499/2 Precision of test methods
Part 1. Guide for the determination of repeatability and reproducibility for a standard test method

Referred to in the foreword only.