Hitachi Compressor World-Wide Sales Service Network (Main Office)

Canada
Hitachi Power Systems Canada Ltd.
(Calgary Office)
Suite 460, 10655 Southport Road S.W.
Calgary, Alberta T2W 4Y1
Phone: (403) 278-2780
Fax: (403) 276-5945

U.S.A
Hitachi America, Ltd.
(Houston Office)
50 Prospect Avenue Tarrytown,
NY 10591-4625
Phone: (914) 332-5800
Fax: (914) 332-5555, -5834, -5835

U.K.
Hitachi Plant Technologies, Ltd.
(London Office)
1st Floor, 235 High Holborn,
London WC1V 7DN
Phone: (44) 722-808-808
Fax: (44) 724-829-829

Hitachi Compressor World-Wide Sales Service Network

Hitachi Centrifugal Compressors

Centrifugal Compressor

Hitachi Asia Ltd.
(Jakarta Office)
Menara BCA 38th Floor Suite 3804 & 3805
Jl. M.H. Thamrin No.1, Jakarta 10210,
Indonesia
Phone: (62) 21 355-355
Fax: (62) 21 355-355

Vietnam
Hitachi Plant Technologies, Ltd.
(Hanoi Representative Office)
53aA, Ngoc Van Cu, Ha Noi,
Vietnam
Phone: (84) 43 553-9009
Fax: (84) 43 553-9009

China
Hitachi, Ltd.
(Headquarters)
7F The Korea Chamber of Commerce & Industry
5-2, Higashi-Ikebukuro 4-chome, Toshima-ku, Tokyo, 170-8466
Phone: (81) 3 5928-8238
Fax: (81) 3 5928-8723

Hitachi Plant Technologies, Ltd.

Printed in Japan(1209)
Hitachi Plant Technologies, Ltd.

Hitachi Compressor World-Wide Sales Service Network (Main Office)
Hitachi, a world leader in the manufacturing of heavy industrial equipment, electronics, and consumer product, maintains our strictly controlled quality standards to offer every customer a superior product.

Hitachi has been designing and manufacturing centrifugal compressors since 1910, and has delivered more than 1000 casings to satisfied customers all over the world.

Hitachi, through aggressive R&D, has developed many improvements and many of its own innovations in compressor design by use of technology including performance, rotor dynamics, and shaft seal system. We always improve our compressor technology and quality by using a fully computerized design automation system.

Hitachi’s advanced centrifugal compressors have excellent reputation for high performance and high reliability and are now working as key components in various plants around world. Hitachi, having carefully developed its own full design capabilities and having a long supply record can meet customer’s requirements for any worldwide project.
Vertically split casings such as barrel type are applied when the partial pressure of hydrogen exceeds 1380 kPa in accordance with API 617 and/or high-pressure service. Wall thickness is selected according to pressure. Forged or, in some case, welded construction types are available. As the vertically split casing is constructed to withstand high pressure, the head covers are bolted or secured with a shear ring.

The bottom section of the bearing support is fixed by bolts and knock pins to provide high rigidity as well as resistance to vibrations. The bearing, however, can still be inspected without the head cover, as with horizontally split casings. All internal parts can be removed axially without touching the casing, to which the main piping is connected, by simply removing the head cover. This type is identified by the letter “B”, such as BCH, 2BCH, and BCHA.
Horizontally split casings, for low and medium pressure, can be supplied in welded steel structures and/or cast steel to meet duty, service temperature and other gas requirements. Each type feature is sophisticated configuration based on calculations by the FEM analysis. These casings offer particularly easy maintenance. Nozzles are usually located on the bottom section of the casing, allowing easy removal of the upper section simply by removing the casing nuts. Removal of the upper section provides full access to all internal parts such as the rotor, diaphragms. Also, bearings can be easily disassembled and inspected by removing only the bearing covers, as it is not necessary to open the casing.

Horizontally split casings are identified by the letter “M”, such as MCH, 2MCH, and 3MCH.
This type of compressor has one or more open or closed type impellers. The open-piece cast or forged steel casing is designed for pressures up to 100 bar A and suction and delivery nozzles are located opposite each other to limit thrust loads on the casing. Depending on the driving method used, the casing is either supplied with its own pedestal or flanged to the gearbox. Oil seals are used for shaft end sealing.

We have developed standardization of pipeline compressors.

In order to optimize the compressor performance in accordance with customer’s request, pipeline compressors are standardized into 3 Frames & 7 Rotors.

The capacity can be covered from approx. 3,000 to 24,000 m³/hr.

We have developed standardization of pipeline compressors.

In order to optimize the compressor performance in accordance with customer’s request, pipeline compressors are standardized into 3 Frames & 7 Rotors.

The capacity can be covered from approx. 3,000 to 24,000 m³/hr.
Overhang compressors have single stage with axial flow suction nozzle, which give higher efficiency and wide operating range. The compressor flow is controlled by inlet-guide vane, suction/discharge throttle valve or by-passing. Maintenance of bearing can be done only by opening bearing casing without removing the impeller. The impeller can be easily removed by using special tool supplied by Hitachi.

There are mainly two types of model for the overhang compressors. One is “POB-GH” type, which is integrally geared type compressor. Another one is “POB-CH” type, for which speed increasing gear is independently installed. Both types of compressor meet API 617 requirements.

Overhang compressors are mainly used for petrochemical industries such as EO/EG plant, propylene plant and etc.
Components

Casings
Casing is main pressure containing part of compressor. There are two kinds of casing constructions. One is horizontally split type and the other is vertically split type. Based on the pressure and the gas handled, the construction is determined. In terms of material used, there are three types such as cast steel casing, fabricated casing and forged steel casing.

Diaphragms
Diaphragms are located in the casing to efficiently convert the dynamic energy of the gas at the impeller outlet to static pressure. Also, return vanes are provided which direct the gas flow to the impeller eye.
Diaphragms are of welded or casting construction, and the return vanes consist of NACA profile wings. In the case of welded construction diaphragm, the return vane wings are precision N/C-machined.
Pressure across the diaphragm differs slightly, but a particularly large differential pressure may occur across the intermediate diaphragms in back-to-back arrangement. In the computer design system, diaphragm deformation calculations are made by FEM with the emphasis places on preventing contact between the diaphragm and the rotor, and the labyrinth and the rotor.

Inlet Guide Vane (IGV)
By using IGV, lower starting torque is achieved particularly for refrigeration compressor without raising motor frame size.
IGV also brings benefit of wider turn down range for constant pressure service.

Rotors
The rotor consists of shaft, impellers, balancing drum and thrust collar. The shaft is properly heat-treated and the impellers and balancing drum are shrunk-fit to the shaft. Generally, sleeves are placed between the impellers to prevent direct exposure of the shaft to gas.
Two or three dimensional impellers are manufactured by applying a welding or diffusion bonding (welding) (DB) process, machining, or precision forging. The shape of the gas passage, hydrodynamic design points and detailed dimensions of the impellers are accurately determined by computer, based on Hitachi’s proven optimum design methods. In the case of welded construction or DB construction, the blades are usually N/C-machined from hubs, welded parts are limited to the shroud and blade. Welded parts are subject to magnetic particle, ultrasonic, radiographic and dye-penetrant inspections, and heat treatment is applied before and after welding and DB.

DB is a Hitachi patented technology (PATENT No.: US5964398) by which easy manufacturing particularly for narrow tip width impeller becomes possible and due to which precise dimensional construction (no deformation such by welding) becomes also possible.
The balancing drum, which reduces the axial thrust of each impeller, is designed to minimize the residual axial thrust in all working conditions with due consideration paid to the force of the coupling. The residual thrust is borne by tilting pad type thrust bearings.
The shaft end seal is covered with a sleeve to protect the shaft from damage, especially at points of small clearance. The vibration sensor mounting section is machined simultaneously with the journal bearing part to minimize mechanical runout.

Diffusion Welding Method

Laser Slot Welding
Components

Bearings

Journal bearings
Tilting pad type bearings are generally used for journal bearings. For every bearing, rotor dynamics calculations are performed, including those for rotor critical speed, stability, and response due to unbalanced mass distribution, with due consideration paid to bearing stiffness and damping caused by oil film.

Tilting pad type bearings are particularly effective against oil whirling and have outstanding stability. Hitachi’s pads are constructed to allow for adjustment of the oil clearance.

Thrust bearings
The thrust bearings are of the double Kingsbury tilting pad type for equal distribution of the thrust load and minimization of mechanical loss.

Damper bearings
Damper bearing is used to dampen the rotor and thus stable operation is secured. Due to the oil squeeze film outside of the cage-type spring, the Amplification Factor of critical speed is well suppressed.

Magnetic bearings
Since the active magnetic bearings provide contact-free rotor support, parts and components do not wear. In addition, there is no need for a lubricating system, which improves compressor reliability. With oil-less operation, the bearings suffer no mechanical loss. Without a lubricating system and related components, the utility power required by the compressor is significantly reduced.

Seals
These serve to eliminate or minimize the leakage of compressed gas from and the entry of air into the compressor casing. The choice of the seal type is made on the basis of the gas characteristics and operating conditions:

- **Dry gas seal**
- **Oil film seal**

Labyrinth seal
1. Aluminum seal
2. Rub tolerance seal
3. Abradable seal

Components

- **Journal bearing**
- **Atmospheric seal ring**
- **Gas side sealing ring**
- **Secondary seal**
- **Primary seal**
- **Labyrinth seal**
- **Damper bearing assembly**
- **Conventional Aluminum Labyrinth**
- **Rub Tolerance Seal**
- **Abradable Seal**
Oil Systems
The lube oil system provides forced lubrication to the journal and thrust bearings. The seal oil system supplies oil at a slightly higher pressure than the compressor’s internal gas pressure (reference gas pressure) in case of film seal and mechanical seal. Both systems are provided with main and auxiliary pumps, coolers, filters, etc. for continuous operation. Generally, these systems are designed in accordance with API standards, and all interconnecting piping and valves are compact in size and designed to allow access and operation. These systems are available as separate systems or as combined system in which the lube oil system supplies some oil to the seal oil system.

Seal Gas System
The dry gas seal requires external seal gas, which shall be filtered and shall be free of any contaminants that form residues in order to avoid damage of seal components. The seal gas system supplies the seal gas at a slightly higher pressure than the compressor’s internal gas pressure. Generally the seal gas support system is designed to control the seal gas pressure, to measure leakage gas, and to detect abnormal condition of the seal.

Magnetic Bearing Control System
In magnetic bearing systems, the compressor shaft is levitated in the air gap by controlling magnetic forces of electromagnets. To regulate the shaft position, the position signals are always feedback to the magnetic forces through the signal processors and power amplifiers. Hitachi has originally developed the controller design and will provide the panel based on this scheme.

Control System: HCCS (Hitachi Compressor Control System)
HCCS has adopted HMI as standard. That consists of redundant PLC, anti-surge/performance controller and vibration/bearing temperature monitoring system, which achieves optimized operation and high reliability. Also, the system is very flexible to meet customer’s special requirements. By applying the latest brand new technologies, human-friendly system is feasible.
The design system outputs data only when the rotor system is completely stable through the entire operating range. Calculations are made not only for torsional analysis and lateral critical speed analysis but also for response due to unbalanced mass distribution, with bearing stiffness and damping, and occasionally aerodynamic excitations, taken into consideration.

Design Automation System

Error Elimination at Every Stage, from Design to Fabrication, Minimizes Operating Problems.

For mission-critical equipment in a plant, such as centrifugal compressors, not even the slightest error in design or manufacture is permissible. Hitachi utilizes the most advanced design and manufacturing technologies available to produce compressors of the highest quality and reliability. Working from order specifications, the Design Automation System automatically designs and organizes the manufacture of centrifugal compressors, producing everything from drawings to tapes for N/C jobs. This system draws on years of experience as well as the latest data analysis processes and know-how.

Main features of this computer design system:
- Capable of producing complete, error-free designs based on the latest know-how and calculation processes;
- Short design times, ensuring quick delivery;
- Besides producing all drawings and N/C tapes, the system is connected to the overall manufacturing process control system to ensure rapid, high-quality production.

Process Dynamic Simulation

Sample of Simulation

- Compressor start-up, shut-down
- Parallel Operation of compressors (load-sharing)
- Others

Packaging with 3-D CAD

By adopting 3-dimensional CAD system, packaging of compressor, drivers (ex. motor and gear), seal gas unit, lube unit and relevant auxiliary piping/tubing/wiring are easily planned and designed securing good maintainability and easy access.

Rotor Dynamics Calculations

The design system outputs data only when the rotor system is completely stable through the entire operating range. Calculations are made not only for torsional analysis and lateral critical speed analysis but also for response due to unbalanced mass distribution, with bearing stiffness and damping, and occasionally aerodynamic excitations, taken into consideration.
Under ISO9001 certified quality management system, all through the compressor manufacturing process from material receiving and to operational tests and final inspection, there are many inspection and test activities conducted. After assembly work of compressor completed, operational tests such as performance test, mechanical running test and/or complete unit test are conducted on the shop test bench. By using a well advanced and sophisticated test facilities, long term reliability is secured. All tests can be carried out in accordance with API and ASME standards.
After-Sales Services

With branches in many countries, Hitachi is able to offer after-sales services worldwide. Our service engineers provide the full set of services needed to support compressor operation. In addition to conventional maintenance services, Hitachi prides itself on keeping in close contact with customers to ensure the prompt supply of OEM spare parts, repair parts, and retrofit services.

Retrofit Services and Upgrade Compressor
Hitachi has many experiences of retrofit service and upgrade compressor to centrifugal compressor. Application of latest technologies, high performance impellers, dry gas seal retrofit, coating system and repairing technologies, can realize reduction of maintenance cost and operating cost. Especially, replacement of compressor internals can be designed to increase the flow rate and for more large demand of process. Hitachi can offer both new high performance compressors and compressor modernizations.

Training
Personnel training is offered as a service for our customers. Conducted in the shop with the actual equipment and skilled instructors on hand, this training allows your staff to acquire/improve their basis knowledge and the skills necessary for compressor operation and maintenance.
Applications

Oil & Gas

Separation → Gas → Gathering → Treatment → NGL Recovery → Pipeline Booster Compressor

Exhaust Gas CO₂ → CO₂ Underground Storage → Injection

Oil Refinery → Gasoline → Lube Oil → Ethylene Center → Butadene

Ammonia Plant → Methanol Plant → Urea Plant → City Gas Station → Power Station

Nature Gas Treatment Compressor → Stabilizer Overhand Compressor → Feed Gas Booster Compressor

Hitachi Centrifugal Compressors
Hitachi’s centrifugal compressors are identified with a 5-block model number, thus:

1. This prefix number indicates the compression group type. No number indicates a single group arrangement with a single outlet and inlet; the number 2 indicates 2-group compression with back-to-back rotor arrangement; and the number 3 indicates a side stream arrangement.

2. The letters indicate the type of casing: MCH represents a horizontally split casing, while BCH indicates a vertically split barrel type casing.

3. The letter ‘H’ indicates High-quality, High-performance and High-reliability compressors offered by Hitachi.

4. The next set of numbers indicates the nominal diameter of the impeller, in centimeters.

5. The final number indicates the number of stages. Normally, one to nine stages can be incorporated in a single casing.

6. For BCH type compressors, high-pressure models are identified with a suffix: /A, /B, /C, etc. (See examples below).

In addition to the above, there are PCH type compressors, intended mainly for pipeline applications. MCH, BCH, and PCH compressors are described on the following pages.

Model Numbers

<table>
<thead>
<tr>
<th>Sample</th>
<th>BCH 30 6 /A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCH 301</td>
<td>Steam Compressor</td>
</tr>
<tr>
<td>BCH 302</td>
<td>Air Compressor</td>
</tr>
<tr>
<td>BCH 303</td>
<td>Gas Turbine Fuel Booster Compressor</td>
</tr>
</tbody>
</table>

Unnumbered Straight-through Arrangement

- “2” Back-to-Back Arrangement
- “3” With Side Stream

Selection Diagram

- For BCH Type only

- /A: 10MPa
- /B: 20MPa
- /C: 30MPa
- /D: 50MPa

Applications

- Others