New England Municipal Outreach
Trenchless Technologies and Their Practical Applications
Tuesday October 16, 2012

Sponsored By:
Northeast Trenchless Association
U.S. Environmental Protection Agency
Louisiana Tech University
Trenchless Technology Center

Trenchless Piping
Materials and Design Considerations

Brian Dorwart, PE – Brierley Associates
Bill Haines, PE – VARI-TECH LLC
Dennis Doherty, PE – Haley & Aldrich
Topics – Product Material

- Pipe Material Selection
 Brian Dorwart PE, PG
- HDPE
 Bill Haines PE
- Jacking and Tunneling
 Dennis Doherty, PE
Common Trenchless Methods

- HDD
- Ramming
- Static Splitting
- Sliplining
- Bursting
- Lining
- Tunneling
Material Selection

- Each material offers its’ own construction and operation advantages and disadvantages.
- Most common pipe materials.
 - PVC
 - Ductile Iron
 - HDPE
 - Steel
- Others: Fiberglass, Clay, Polycrrete, RCP, CMP, Resins
CONSTRUCTABILITY
MATERIAL SELECTION
You Need to Get it in the Ground!

- Trenchless Alternatives
 MUST CONSIDER
 Construction Loads
 AND
 Handling Requirements
 AND
 Be a Structural Material
Trenchless Installation Methods

- **Horizontal Directional Drilling – New**
- **Pipe Bursting Replacement and Enlargement**
- **Slip lining/Lining Rehabilitation**

Pipe installations including: water, waste water force mains, gravity sewer, gas, petroleum, electrical.

Pipe installations including: gravity sewer, water, waste water force mains, gas, et al

Pipe installations including: gravity sewer, water, waste water force mains, gas, et al
Trenchless Installation Methods

- Pipe Ramming New and Rehabilitation
- Pipe Jacking New
- Micro-Tunneling New
- Tunneling New

Pipe installations including:
- casing, storm water
- storm water, gravity sewer, et al
- storm water, gravity sewer, water, waste, et al
- multiple usages.

Courtesy RSMS University of New Hampshire 1998
Pipe Material Selection

TRENCHLESS DESIGN APPROACH:

- Pipe MUST be installable by trenchless methods
- Pipe material MUST be structural to permit design
- Determine Construction/Installed Options
- Defined lifespan of the installation
- Dominant loadings generally during construction
- ALL failure methods must be evaluated and assessed
- Determine realistic O&M of system
OPTIONS
CONSTRUCTION/INSTALLED

- Primary pipe – no casing
 - Pull in ground
 - Push in ground
- Secondary pipe – casing
 - Pull in casing
 - Construct in casing
 - Push in casing
Pipe Loading

HDD Construction Loads are controlled by design depth/geometry/geology/material properties

Loading Stresses
- Bend radius
- Pipe Stress
- ST/LT soil/water

Other
- Corrosion
- Location-trace
Different Materials Have Different Short and Long Term Characteristics

- Steel
- RCP
- HDPE
- Fiberglass
- Clay
- Ductile Iron
- PVC
Pipe Materials Commonly Used In Trenchless Installations

PVC
- 1955 water
- Sizes up to 42”
- Lengths >5,000’

HDPE
- 1960’s gas
- 1978 water
- Sizes up to 48”
- Lengths up to 5,500’

DIP
- 1955 water
- Sizes up to 36”
- Lengths up to 2,300’

Steel
- 1858 water
- Sizes up to 48”
- Lengths >8,000’

Courtesy: Oildom Publishing “Underground Construction” June 2007 9th Annual Survey
Factors in pipe material choices

<table>
<thead>
<tr>
<th>Strength</th>
<th>3.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion resistance</td>
<td>2.6</td>
</tr>
<tr>
<td>Installation costs</td>
<td>2.5</td>
</tr>
<tr>
<td>Cost of pipe</td>
<td>2.0</td>
</tr>
<tr>
<td>Seismic considerations</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Average on a scale of 5 to 1, with 5 = most important, 1 = least important

Source: Pilot survey of 21 US utilities with a range of piping from 1,736 mi (2,794 km) to 36,456 mi (58,669 km), conducted by the AWWA Water Supply and Distribution Design and Construction Committee
Different Construction/Operation Methods REQUIRE Different Pipe Properties!

- Modulus of Elasticity
- Strength
- Thermal
- Thermal & Electrical Conductance
- Fusibility
Mechanical Properties

1.1 Stress-Strain Curves

1.2 Definition and Classes
- Plastic (thermoplastic)
 - Any material which undergoes a permanent change of shape (plastic deformation) when strained beyond a certain point (yield point)
- Plastics can be identified and characterized by the shape of their stress-strain curves
 - Hard-tough
 - Hard-strong
 - Soft-tough
 - Hard-brittle
 - Soft-weak

1.3 Definition and Classes
- Hard = high modulus (steep slope)
- Tough = high elongation before break, large area under stress-strain curve

1.4 Hard and Tough
- High density polyethylene, HDPE
 - Fairly high crystallinity ($T_m = 135 \degree C$, $T_g = -90 \degree C$)
- Polypropylene, PP
 - $T_m = 175 \degree C$, $T_g = -18 \degree C$
 - Slightly harder, higher tensile modulus than HDPE. Why?
- Poly(ethylene terephthalate), PET
 - $T_m = 265 \degree C$, $T_g = 70 \degree C$
 - Stiffer, higher tensile modulus than HDPE. Why?
- Typical applications

Modulus & Strength

Courtesy of University of Wisconsin
Mechanical Properties

Modulus & Strength

1.5 Definition and Classes
- **Hard**: high modulus (steep slope)
- **Strong**: moderate elongation and high modulus

1.6 Hard and Strong
- Poly(vinyl chloride), PVC
 - $T_m = 212 \, ^\circ C$, $T_g = 85 \, ^\circ C$
 - Would you expect this polymer to be brittle or pliable at 0 °C?
 - How can you change the flexibility of PVC?
 - Typical applications

1.7 Definition and Classes
- **Soft**: low modulus (shallow slope)
- **Tough**: high elongation

1.8 Soft and Tough
- Low-Density Polyethylene, LDPE
 - $T_m = 115 \, ^\circ C$, highly branched, lower crystallinity
 - Linear Low-Density Polyethylene, LLDPE
 - Moderate degree of branching
 - More crystalline than LDPE?
 - Higher tensile strength (stronger) than LDPE
 - Typical applications

Courtesy of University of Wisconsin
Mechanical Properties

METALS

<table>
<thead>
<tr>
<th>Material</th>
<th>Properties</th>
<th>Bend Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEL</td>
<td>Hard and Tough</td>
<td>$100 \times \text{OD(in)}$</td>
</tr>
<tr>
<td>DIP</td>
<td>Hard and Strong</td>
<td>$100 \times \text{OD(in)}$</td>
</tr>
</tbody>
</table>

NON-METALS

<table>
<thead>
<tr>
<th>Material</th>
<th>Properties</th>
<th>Bend Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>Hard and Tough</td>
<td>$50 \times \text{OD(ft)}$</td>
</tr>
<tr>
<td>PVC</td>
<td>Hard and Strong</td>
<td>$20 \times \text{OD(in)}$</td>
</tr>
</tbody>
</table>
Approximate Pipe Bend Radius

- Steel R (ft) = $100 \times$ Pipe Diameter in inches
- HDPE R (ft) = $50 \times$ Pipe Diameter in feet
- PVC R (ft) = $20 \times$ Pipe diameter in inches
- DIP R (ft) = deflection angle allowed by joints usually between 2.5 degrees to 6 degrees.
Degradation of Properties

METALS

STEEL AND DIP
- Oxidation of Iron
- Pin-hole corrosion
- Loss of material
- Thermally stable

HDPE AND PVC
- UV light molecular degradation
 - Becomes Brittle
 - Strength Loss
 - Time dependence
 - Thermal dependence

NON-METALS

- Oxidation of Iron
- Pin-hole corrosion
- Loss of material
- Thermally stable
Understand Failure Modes

<table>
<thead>
<tr>
<th>METALS</th>
<th>NON-METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEL</td>
<td>HDPE</td>
</tr>
<tr>
<td>• Corrosion</td>
<td>• Slow Crack Growth</td>
</tr>
<tr>
<td>• Ductile deformation</td>
<td>• Burst</td>
</tr>
<tr>
<td>DIP</td>
<td>• Unconstrained Buckling</td>
</tr>
<tr>
<td>• Pin-hole corrosion</td>
<td>• Unconstrained Buckling</td>
</tr>
<tr>
<td>• Brittle Fracture</td>
<td>• Brittle Fracture/Burst</td>
</tr>
<tr>
<td>• Brittle Fracture</td>
<td>• Rapid Crack Propagation</td>
</tr>
<tr>
<td>PVC</td>
<td>• Unconstrained Buckling</td>
</tr>
</tbody>
</table>
Trenchless Design Elements

- Safety by engineering for failure
- Bending Radius
- Thermal Variance on Structural Capacity
- Design Sensitivity to Constructability
- Unconstrained Buckling
- Burst Strength
- Tensile Strength (Pipe/Couplings)
- Connections (Valves/Pipes/Manholes)
- Corrosion/Degradation
- Cost/Local Experience
Resources

- Ductile Iron: DIPRA
- Steel: Steel Manual
- PVC: Uni Bell
- HDPE: Plastic Pipe Association
- Corrosion: NACE International
- Water: AWWA
- Gas: AGA
- Oil: API
New England Municipal Outreach
Trenchless Technologies and Their Practical Applications
Tuesday October 16, 2012

HIGH DENSITY POLYETHYLENE PIPE
The Reliable Choice For Trenchless Applications

Bill Haines, P.E.
US Director of Engineering
VARI-TECH LLC
PROPERTIES OF HDPE PIPE
CORROSION RESISTANT
CORROSION RESISTANT
NON-BRITTLE MATERIAL
ABILITY FOR WATER HAMMER/SURGE

- 50% Allowance for Normal Recurring Surge Events (1.5xWPR)
- 100% Allowance for Occasional Dynamic Surge (2xWPR)
- Elasticity Allows Pipe to Expand & “Deaden” Surge Wave
- Superior with Cyclical Loadings (irrigation, pump stations)
LEAKFREE/FULLY RESTRAINED

- Butt Fusion = Zero Leakage
- Thrust Blocks Typically Not Needed
 - Pay attention to connections to unrestrained pipe (i.e. gasketed joints)
- Handle Ground Movement (frost, settlement, earthquake) without incident
 - Cornell Earthquake Studies
Technologies for New and Existing Infrastructure

- Existing Infrastructure
 - Bursting Slip Lining

- New Infrastructure
 - HDD
DESIGN CONSIDERATIONS FOR HDPE APPLICATIONS

- Safe Pull Strength
- Bend Radius
- Earth & Live Loads
- Site Access/Staging
- Operating Pressure
- Flow ByPassing Req’d?
- Alignment: bends, pits
- Traffic Control
- Environmental Issues

- Existing Pipe Materials
- Flow Evaluation(+-)
- Location of Utilities
- Geology/Soil Properties
- Historic Information
- Surface Topography
- Slope of Line
EVERY TRENCHLESS PROJECT IS UNIQUE!!!!
THERE IS NO SUBSTITUTE FOR GOOD FIELD INFORMATION!!
PROOFING THE LINES
FUSE ON PULL HEAD & SWIVEL
CREATIVE PIPE PLACEMENT
VAC TRUCK
TIE IN BETWEEN TWO DRILLS
New England Municipal Outreach

Trenchless Technologies and Their Practical Applications
Tuesday October 16, 2012

JACKING PIPE
The Reliable Choice For Trenchless Applications

Dennis J. Doherty, PE, F.ASCE
National Practice Leader - Trenchless Technologies
HALEY & ALDRICH
3 Bedford Farms Drive
Bedford, NH 03110
Hobas Pipe

centrifugally cast fiberglass reinforced polymer mortar pipe (CCFRPM)

- Not used in Auger Bore
- Good for protection from Hydrogen Sulfide Attack
- Proprietary Pipe
Concrete Jacking Pipe

- Most common jacking pipe
- Not good in corrosive Atmosphere unless extra Protection added.
- Polymers can replace Portland Cement
Steel Jacking Pipe

- Continuous welded Pipe (time needed to weld each segment)
- Permalok Pipe (Snap together steel pipe eliminates time required for welding)
- Proprietary Pipe
Clay Jacking Pipe

- Not used in Auger Bore
- Good for Corrosive Conditions
- Size Limitations
Pipe Load Calculation

Face Pressure + Friction = Pipe Load
Earth Load Separate (except impact on friction)
Cumulative Jacking Load

Minimizing the Effect of Excessive Microtunneling Steering; No-Dig 2004 – Mark Bruce President Cam Clay
Minimizing the Effect of Excessive Microtunneling Steering; No-Dig 2004 – Mark Bruce President Cam Clay
Load Concentration due to Deflection

Use this slide when your text does not require a bullet.

- Load Stress Distribution
- Deflection from Actual Max. Stress Applied at This Joint (EXAGGERATED RELATIVE ANGLE FOR ILLUSTRATION PURPOSES)
- Packing Ring Compression Due to Loading at This Joint (Shaded Area)
- Original Thickness of Packing Ring (EXAGGERATED THICKNESS FOR ILLUSTRATION PURPOSES)

$D_2 = \text{Internal Diameter at Seal}$
Load Concentration due to Deflection

Chart 3, Jacking Force vs. Position of Pipes

Interstate Highway Fill

Jacking Shaft

Microtunneling Machine

Poor Launch Control - Offset 1 degree but steer back

Pipe

Face Pressure + Pipe Friction with Soil = 40 ton + 5 ton X 1 pipe

Face Pressure = 40 tons

Chart 3, Jacking Force vs. Position of Pipes
Load Concentration due to Deflection

INTERSTATE HIGHWAY FILL

JACK SHAFT

PIPE

MICROTUNNELING MACHINE

Position of 1 degree deviation in steering from pipe to pipe

CHART 4, Jacking Force vs. Position of Pipes

Face Pressure + Pipe Friction with Soil = 40 ton + 5 ton X 7 pipe

Face Pressure = 40 tons

Minimizing the Effect of Excessive Microtunneling Steering; No-Dig 2004 – Mark Bruce President Cam Clay
Load Concentration due to Deflection
Other considerations

- Pipe Type and Materials
 - Section lengths
 - Joints
 - Joint packers
 - Injection ports
 - Coatings / Linings
 - Special Pipe
 - Intermediate Jacking Stations (IJS)
Intermediate Jacking Stations (IJS)

- Used to assist in advancing pipe long distance while minimizing total load on pipe and shaft
- Used inline with pipe (Does not require separate excavation)
- Man-entry size pipe
- Location in pipe chain
How IJS Works

Typical Jacking Arrangement

Detail - Intermediate Jacking Station
Lubrication

- Friction reduction
- Overcut
- Borehole stabilization – reduces settlement
Ground Movement

- Very small movements generally associated with pressure balanced MTBM – Face Stability consideration
- Analysis considers the loss of ground into over-cut
 - Settlement trough calculations
 - Typical settlement
- Minimizing overcut versus higher jacking loads
Design your pipe and your trenchless installation method together and for compatibility.

QUESTIONS?