The Stem ERA® is our response to the dental professionals need for a simple, dependable and highly versatile attachment system for removable prosthetics. ERA®s are more economical and provide a superior design. The ERA® male is attached by an ERA® Bonding Resin. Particularly noted for its ease of denture treatment, tooth supported overdentures and implant cases, ERA® is an excellent choice for both experienced practitioners and those new to implant procedures.

Before the ERA® concept was developed, dental professionals and their patients were experiencing problems with some resilient attachments. They were expensive, complicated to fabricate, and too fragile or unwearable for long-term patient service.

The ERA® System eliminates these problems by using new materials and patented designs. ERA® attachments consist of a metal female component, which is invisibly fused and a reshapable, high density poly male workhorse in the denture base.

- They are low in cost. By eliminating the machining of expensive gold alloy components, ERA® attachments are affordable to many more patients.
- They are easy to use. Fabrication and maintenance procedures have been simplified.
- They are tough and reliable. In vitro studies and clinical experience show ERA® attachments to be long-lasting, and patients find them comfortable and easy to use.
- They are easy to access. Dentists in many countries have designed ERA® devices to be in their hands, ready for use.

Without doubt, dentists prescribe, and technicians fabricate, thousands of ERA® retained restorations every month. And patients put them to hard daily use. You can join their ranks.

The Stem ERA® is protected by U.S. patents 4,540,267; 5,120,222 and 5,195,891; and other foreign patents.

ERA® is our response to the dental professionals need for a simple, dependable and highly versatile attachment system for removable prosthetics. ERA®s are more economical and provide a superior design. The ERA® male is attached by an ERA® Bonding Resin. Particularly noted for its ease of denture treatment, tooth supported overdentures and implant cases, ERA® is an excellent choice for both experienced practitioners and those new to implant procedures.

Changing the ERA® Male:

As ERA® males are mechanically anchored in the denture base. They provide both vertical and horizontal forces to the abutment. Worn males are removed with a specially designed bur and new one snap into a metal jacket permanently into the denture. There is a specifically designed metal jacket for each type of ERA® male: partial dentures, ERA® Micro, ERA® overdenture, and Mini ERA® overdenture. You can also anchor the males directly in the denture acrylic without the metal jacket.

ERA® Implant Abutment

The smallest prosthetic head and the only one with true vertical resiliency.

ERA® Abutments are indistinguishable from gold plated and zirconium implants. Screw-down abutments will not come loose with the abutment. When Meiji® crown substructures are used, significant advantages are realized for ease of ordering, reference the group letter.

Send the following in writing to: Sterngold, 23 Frank Mossberg Drive, Attleboro, MA 02703-0967, USA.

Puta new male on the Seating Tool.

2. Burr removes the center post of the male.
3. Pop the remnant of the male out and put the sharp instrument.
5. Snap the new male into the metal jacket.
6. New male in place.

ERA Standard Head only

ERA Micro or Standard Head

Micro-Lok Cylinder

Connection
The female component is a plastic pattern which is incorporated as part of a crown wax-pattern and cast in a hand lay. A metal female (g) which becomes part of the stone model is available to hold the male in place for laboratory processing into the partial denture wax-pattern.

You have a choice of three male designs. The ERA®-Reduced Vertical male (ERA®-RV) has 4.5mm of vertical retainer and universal joint hinging. The Micro ERA® male has the same retainer and hinging, but needs 5.0mm less space and has a diameter of almost 1.9mm less, making it the ideal intramural and extramural male for use with any female. The standard ERA® male (g) also has a projection which contacts the abutment crown above the female wax. This makes vertical displacement of the partial denture detail extension possible. The Standard ERA® Partial Denture Attachments are made in a replacement part for color change.

Within the ERA®-RV™ there are three female choices. The original female drops 0.3mm from its connection to the crown. This line is within the extraoral area and means that there is a significant amount of space between the attachment and the tissue. Now you can place the female waxer closer to the tissue with two offset females. The bottom of the ERA®-RV™ Offset Female drop 2.5mm from connection to the crown, the center of the female drops 4.5mm. We made extensive use of state of the art computer engineering software during the design and testing phase of these attachments to ensure that these females are as strong as the original.

The ERA®-Reduced Vertical male (ERA®-RV) has 4.5mm of vertical retainer and universal joint hinging. The Micro ERA® male has the same retainer and hinging, but needs 5.0mm less space and has a diameter of almost 1.9mm less, making it the ideal intramural and extramural male for use with any female. The standard ERA® male (g) also has a projection which contacts the abutment crown above the female wax. This makes vertical displacement of the partial denture detail extension possible. The Standard ERA® Partial Denture Attachments are made in a replacement part for color change.

Within the ERA®-RV™ there are three female choices. The original female drops 0.3mm from its connection to the crown. This line is within the extraoral area and means that there is a significant amount of space between the attachment and the tissue. Now you can place the female waxer closer to the tissue with two offset females. The bottom of the ERA®-RV™ Offset Female drop 2.5mm from connection to the crown, the center of the female drops 4.5mm. We made extensive use of state of the art computer engineering software during the design and testing phase of these attachments to ensure that these females are as strong as the original.

Now available in Micro Head...

1. Sterngold Implant Abutments are made for Sterngold Implant® and many other implants.
2. Tapers angled abutment for divergent implants. The abutment base threads into the implant. The attachment female is bonded to the base. Use ERA® loupe, a Bio-GMA resin.
3. Three attachment angles: 10˚, 15˚ and 17˚.
4. Alignment handle helps you carry the female to the implant site and aid in evaluating the attachment orientation.
5. Sterngold standard and micro overdenture impression copings are used to create an accurate transfer impression relationship.
6. The same ERA® male used with root retained overdenture is used with ERA® implant abutments.
7. We manufacture ERA® Abutments for most major implant brands and in varying soft tissue. Now available in Micro Head...
ERA® Partial Denture Attachments

The female component is a plastic pattern which is incorporated as part of a crown wax-pattern and cast in a hard alloy. A metal femal e (which becomes part of your stone model) is available to hold the male in place for laboratory processing into the partial denture’s acrylic base. You have a choice of three male designs. The ERA®-Reduced Vertical male (ERA®-RV) has 4.5 mm of vertical relocation and universal joint fitting. The Micro ERA® male has the same relocation and fitting, but needs 0.5 mm less vertical space and has a diameter of 0.8 mm less, making it the best option for miniaturizing a partial denture. The female component also has a projection which contacts the abutment crown above the female wax. This makes vertical displacement of the partial denture detail extension possible. The Standard ERA® Partial Denture male is only sold as a replacement part for color schemes.

Within the ERA®-RV there are three female choices. The original female drops 0.3 mm from its connection to the crown. Bone loss in the edentulous area could mean that there is a significant amount of space between the attachment and the tissue. Now you can place the female waxer closer to the tissue with two offset females. The bottom of the ERA®-RV Offset female 2 drops 2.5 mm from connection to the tissue. The original female drops 4.5 mm. We made extensive use of state of the art product engineering software during the design and testing phases of these attachments to ensure that these females are as strong as the original.

ERA® Overdenture Attachments including the Micro ERA Overdenture

There are two female designs which are sold in small male, indicative of both male and female wear. The ERA® Overdenture Attachment female is a plastic pattern which is incorporated into the wax-pattern for the post and denture coping. It can cast a hard stop in the original size and the Micro, which is smaller. The Micro space 5.5 mm in height and almost 1.5 mm in width, with no loss of retention or longevity. The ERA Direct Placement Overdenture Attachment female is manufactured in surgical stainless steel and cemented into a post specially prepared to receive it. The stainless steel females are made in a choice of two post diameters and four post angles to accommodate most patient’s needs. The attachment functions normally when set up to about 7˚ out of parallel with the own path of insertion. All ERA Direct Saddle females are titanium nitride coated.

 - Two post diameters, 1.3 mm and 1.7 mm. The titanium nitride coating extends onto the post to identify the larger version.
 - Anophemal female is made with a 0˚ (straight), 5˚, 11˚ and 17˚.
 - Alignment handle helps you identify the female to the root and aid in evaluating the attachment’s angulation.
 - Specialized burs for root preparation:
 - Tsipe Drill for removing gutta percha.
 - Pilot Drill with depth measurement for post preparation.
 - Countersink bur for shaping the occlusal surface of the root to support the female.
 - Overdenture male is sold with both laboratory cast and prefabricated, stainless steel females.

2. Standard ERA® Overdenture Attachments
 - Micro ERA® Overdenture Attachments:
 - Now available in 20% smaller Micro Prosthetic Head.

3. ERA® Overdenture Attachments for Sterngold Implant® and many other implants.
 - Three angled abutment for divergent implants. The abutment base threads into the implant. The attachment female is bonded to the base. Use ERA® Lock™, a Bis-GMA resin.
 - Three attachment angles: 5˚, 11˚ and 17˚.
 - Alignment handle helps you identify the female to the root and aid in evaluating the attachment’s angulation.
 - Stem ERA standard and micro overdenture impression copings are used to create an accurate transfer impression relationship.
 - The same ERA™ male used with both overdenture attachments is used with ERA® implant abutments.
 - We manufacture ERA® Abutments for most major implant brands and in varying soft tissue-toggler.

4. ERA® Implant Abutments
 - This section of the ERA® combines the overdenture attachment concept with an implant abutment. It makes a ‘Periptal’ in the ERA® female form into a male, and develops the same overdenture males for patients with natural root abutments. The prosthetic head of the abutment is more miniaturized in the mini sizes. The attachment is reduced 20% from the original, making it the smallest overdenture implant abutment, with no loss of performance. To over-denture, the abutment base less and one can compare to the true vertical relaying of the potential ERA Implant Abutment. There are straight and angled abutments to achieve functional parallelism even when implants are divergent. The ERA® Reduced Vertical Male (ERA®-RV) has 4.5 mm of vertical relocation and universal joint fitting.

5. Stem ERA® Standard and micro overdenture impression copings are used to create an accurate transfer impression relationship.
 - The same ERA™ male used with both root abutment attachments is used with ERA® implant abutments.
 - We manufacture ERA® Abutments for most major implant brands and in varying soft tissue-toggler.

6. ERA® Implant Attachments:
 - The small ERa® Prosthetic Head and the only one with true Vertical Resiliency!
1. Female retention of a new original white item, indicative of the female component wear. The female component is a plastic pattern which is incorporated as part of a crown wax pattern and cast in a hard alloy. A metal female (g) which becomes part of your stone model is available to hold the male in place for laboratory processing into the final denture wearer.

You have a choice of three male designs. The ERA®-Reduced Vertical male (ERA®-RV) has 4.5mm of vertical remaining and vertical root tipping. The Micro ERA® male has the same reality and tipping, but needs 0.5mm less vertical space and has a diameter of almost 1.8mm less, making it the ideal implant abutment for edentulous patients. The male is a prefabricated, stainless steel female pattern that is incorporated into the wax-pattern for a post and root cap. This female component also has a projection which contacts the abutment crown above the female wear. This makes vertical displacement of the denture wearer easier. The Standard ERA® Partial Denture male is made as a replacement part for stone cases. Within the ERA®-RV there are three female choices. The original female drops 0.3mm from its connection to the crown. This does not make the female more prone to fracture. However, the female angle onto the crown and the occlusal pattern is slightly altered. The female pattern is designed to have a precise fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to have a precise fit into the crown and the occlusal pattern is slightly altered.

The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered. The female pattern is designed to fit into the crown and the occlusal pattern is slightly altered.
The Sterngold ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition. The ERA® system eliminates one-stage surgery for ready ordering, référence the page into.

- **Solution:**
 - ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
 - The ERA® system eliminates one-stage surgery for ready ordering.

Abutment Selection Chart.

- ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
- The ERA® system eliminates one-stage surgery for ready ordering.

Product Names:
- ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
- The ERA® system eliminates one-stage surgery for ready ordering.

Validation:
- ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
- The ERA® system eliminates one-stage surgery for ready ordering.

Confirmation:
- ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
- The ERA® system eliminates one-stage surgery for ready ordering.

Verification:
- ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
- The ERA® system eliminates one-stage surgery for ready ordering.

Validation:
- ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
- The ERA® system eliminates one-stage surgery for ready ordering.

Conclusion:
- ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
- The ERA® system eliminates one-stage surgery for ready ordering.

Footer:
- ERA® Abutments are manufactured for most popular screw and cylinder implants. Sterngold’s implant abutments outperform any with the competition.
- The ERA® system eliminates one-stage surgery for ready ordering.
The ERA® concept was developed to address problems often associated with removable or fixed dental prosthetics, including:

1. **Better retention and resiliency**
 - ERA® materials are designed to provide both vertical resiliency and horizontal hinge movement.
 - This allows for comfortable and natural chewing, which is essential for long-term wear.

2. **Simplicity and affordability**
 - ERA® materials are low in cost, making them accessible to a wider range of patients.
 - Retained with cheap, affordable means, they offer a cost-effective solution for dental prosthetics.

3. **Durability and stability**
 - ERA® retainers are robust and reliable, ensuring long-term wearability.
 - They are engineered to withstand the rigors of daily use, ensuring patient satisfaction.

4. **Versatility**
 - ERA® retainers can be used in various dental prosthetics, including dentures, bridges, and implants.
 - They offer a versatile solution that can be tailored to meet the specific needs of each patient.

These advantages make ERA® a popular choice among both practitioners and patients, as it provides a comfortable, reliable, and cost-effective solution for dental prosthetics.