Guidelines for Design, Manufacture, Inspection and Testing of Electronic Enclosures Assembly

Developed by the Requirements for Structural Enclosure Task Group (7-31j) of the Product Assurance Committee (7-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 PREFACE ... 1
 1.1 Scope .. 1
 1.2 Purpose .. 1
 1.3 Applicability .. 1
 1.4 Classification .. 1
 1.5 Measurement Units and Applications 2
 1.6 Terms and Definitions ... 2
 1.6.1 Supplier .. 2
 1.7 Health and Safety ... 2

2 APPLICABLE DOCUMENTS .. 2
 2.1 Department of Defense .. 2
 2.2 U.S. Federal Standards 4
 2.3 Telcordia ... 4
 2.4 TIA .. 4
 2.5 NASA .. 4
 2.6 ISTA .. 4
 2.7 IPC .. 4
 2.8 SAE International .. 4
 2.9 IEC .. 5
 2.10 American Society of Mechanical Engineers 5
 2.11 ASTM .. 5

3 ENGINEERING DESIGN ... 5
 3.1 General .. 5
 3.1.1 Engineering Drawings 6
 3.1.2 Content of Assembly Drawings 6
 3.1.3 Bill of Materials (BOM)/Parts Lists (PL) 7
 3.1.4 General Design Considerations 7
 3.2 Selection of Parts, Materials and Tools 11
 3.2.1 Standard Parts and Materials 11
 3.2.2 Non-Standard Parts and Materials 11
 3.3 General Fastening ... 12

4 MATERIALS AND PROCESSES – METALS 12
 4.1 Alloy Selection .. 12
 4.2 Aluminum Alloys ... 12
 4.2.1 Form ... 12
 4.2.2 Alloys .. 12
 4.2.3 Temper .. 12
 4.3 Steel ... 12
 4.3.1 Carbon Steel .. 12
 4.3.2 Stainless Steel ... 13
 4.4 Other Metals .. 14

5 MATERIALS AND PROCESSES – NON-METALS 24
 5.1 Selection and Application 24
 5.1.1 Composition and Processing 24
 5.1.2 Compatibility .. 24
 5.2 Special Considerations 24
 5.2.1 Chlorinated Fluorocarbons (CFCs) 24
 5.2.2 Shelf-Life Limitations 24
 5.3 Polymer Materials ... 24
 5.3.1 Application .. 24
 5.3.2 Part Design Considerations 24
 5.3.3 Molded Plastic Enclosures 26
 5.4 Elastomers ... 26
 5.4.1 Application .. 26
 5.4.2 Cured Elastomers ... 26
 5.4.3 Non-Cured Elastomers 26
 5.4.4 Silicone Elastomers 26
 5.5 Foamed Plastics .. 26
 5.5.1 Application .. 26
 5.5.2 Outgassing and Flammability 26
 5.5.3 Special Considerations 26
 5.6 Plastics ... 26
 5.7 Insulation Materials .. 26
18.2.2 Salt Fog (MIL-STD-810, Test Method 509) ... 145
18.2.3 Acidic Atmosphere (MIL-STD-810, Test Method 518) 145
18.2.4 Humidity – Component (MIL-STD-202, Test Method 103) 145
18.2.5 Humidity – Enclosure (MIL-STD-810, Test Method 507) 145
18.2.6 Immersion – Seal Effectiveness (MIL-STD-202, Test Method 104) 146
18.2.7 Immersion – Operation (MIL-STD-810, Test Method 512) 146
18.2.8 Seal (MIL-STD-202, Test Method 112) .. 146
18.2.9 Barometric Pressure (Reduced) (MIL-STD-202, Test Method 105) 147
18.2.10 Low Pressure (Altitude) (MIL-STD-810, Test Method 500) 147
18.2.11 Moisture Resistance (MIL-STD-202, Test Method 106) 147
18.2.12 Low Temperature (MIL-STD-810, Test Method 502) 147
18.2.13 High Temperature (MIL-STD-810, Test Method 501) 147
18.2.15 Temperature Shock (MIL-STD-810, Test Method 503) 148
18.2.16 Life at Elevated Ambient Temperature (MIL-STD-202, Test Method 108) 148
18.2.17 Explosion (MIL-STD-202, Test Method 109) .. 148
18.2.18 Explosive Atmosphere (MIL-STD-810, Test Method 511) 148
18.2.19 Sand and Dust (MIL-STD-202, Test Method 110) 148
18.2.20 Sand and Dust (MIL-STD-810, Test Method 510) 149
18.2.21 Flammability .. 149
18.2.22 Fungus (MIL-STD-810, Test Method 508, RTCA DO-160 Section 13) 149
18.2.23 Contamination by Fluids (MIL-STD-810, Test Method 504) 150
18.2.24 Solar Radiation (Sunshine) (MIL-STD-810, Test Method 505) 151
18.2.25 Rain (MIL-STD-810, Test Method 506) ... 151
18.2.26 Icing/Freezing Rain (MIL-STD-810, Test Method 521) 151
18.2.27 Freeze/Thaw (MIL-STD-810, Test Method 524) 151
18.2.28 UV Aging of Polymeric Outdoor Enclosure Materials (GR-487, Section R3-25) ... 152
18.2.29 HALT Testing .. 152
18.2.30 HASS Testing ... 152
18.3 Physical Characteristics Tests .. 152
18.3.1 Vibration ... 152
18.3.2 Random Drop (MIL-STD-202, Test Method 203) 154
18.3.3 Shock ... 154
18.3.4 Life (Rotational) (MIL-STD-202, Test Method 206) 156
18.3.5 Radiographic Inspection (X-ray) (MIL-STD-202, Test Method 209) 157
18.3.6 Terminal Strength (MIL-STD-202, Test Method 211) 157
18.3.7 Acceleration .. 157
18.3.8 Temperature, Humidity, Vibration and Altitude (MIL-STD-810, Test Method 520) 157
18.3.9 Vibro-Acoustic/Temperature (MIL-STD-810, Test Method 523) 157
18.3.10 Hydrostatic, Flow and Pressure Test .. 158
18.4 Electrical Characteristics Tests ... 158
18.4.1 Continuity Test (IPC/WHMA-A-620) .. 158
18.4.2 Shorts Test (IPC/WHMA-A-620) ... 158
18.4.3 Dielectric Withstanding Voltage (MIL-STD-202, Test Method 301 and IPC/WHMA-A-620) 158
18.4.5 Voltage Standing Wave Ratio (VSWR) Test (IPC/WHMA-A-620) 159
18.4.6 Insertion Loss Test (MIL-STD-220 and IPC/WHMA-A-620) 159
18.4.7 Characteristic Impedance Test (IPC/WHMA-A-620) 159
18.4.8 Resistance Temperature Characteristic (MIL-STD-202, Test Method 304) 159
18.4.9 Contact Resistance (MIL-STD-202, Test Method 307) 159
18.4.10 Full-Load/Burn-In Test .. 160
18.4.11 Operating/Functional Testing .. 160
18.5 Electromagnetic Interference (EMI) Testing .. 160
18.5.1 Conducted Emissions, Power Leads, 30 Hz to 10 KHz (MIL-STD-461, CE101) 160
18.5.2 Conducted Emissions, Power Leads, 10 KHz to 10 MHz (MIL-STD-461, CE102) 160
18.5.3 Conducted Emissions, Antenna Terminal, 10 KHz to 40 GHz (MIL-STD-461, CE106) 160
18.5.4 Conducted Susceptibility, Power Leads, 30 Hz to 150 KHz (MIL-STD-461, CS101) .. 161
18.5.5 Conducted Susceptibility, Antenna Port, Intermodulation, 15 KHz to 10 GHz (MIL-STD-461, CS103) 161
18.5.6 Conducted Susceptibility, Antenna Port, Rejection of Undesired Signals, 30 Hz to 20 GHz (MIL-STD-461, CS104) 161
18.5.7 Conducted Susceptibility, Antenna Port, Cross Modulation, 30 Hz to 20 GHz (MIL-STD-461, CS105) 161
18.5.8 Conducted Susceptibility, Transients, Power Leads (MIL-STD-461, CS106) 161
18.5.9 Conducted Susceptibility, Structure Current, 60 Hz to 100 KHz (MIL-STD-461, CS109) ... 161
18.5.10 Conducted Susceptibility, Bulk Cable Injection, 10 KHz to 200 MHz (MIL-STD-461, CS114) 161
18.5.11 Conducted Susceptibility, Bulk Cable Injection, Excitation (MIL-STD-461, CS115) .. 162
18.5.12 Conducted Susceptibility, Damped Sinusoidal Transients, Cables and Power Leads, 10 KHz to 100 MHz (MIL-STD-461, CS116) .. 162
18.5.13 Radiated Emissions, Magnetic Field, 30 Hz to 100 KHz (MIL-STD-461, RE101) .. 162
18.5.14 Radiated Emissions, Electric Field, 10 KHz to 18GHz (MIL-STD-461, RE102) .. 162
18.5.15 Radiated Emissions, Antenna, Spurious and Harmonic Outputs, 10 KHz to 40 GHz (MIL-STD-461, RE103) 162
18.5.16 Radiated Susceptibility, Magnetic Field, 30 Hz to 100 KHz (MIL-STD-461, RS101) .. 163
18.5.17 Radiated Susceptibility, Electric Field, 2 MHz to 40 GHz (MIL-STD-461, RS103) .. 163
18.5.18 Radiated Susceptibility, Transient Electromagnetic Field (MIL-STD-461, RS105) .. 163
18.6 Noise Testing (MIL-STD-1474 and MIL-STD-810) 163
18.6.1 Noise Testing (MIL-STD-1474) 163
18.6.2 Acoustic Noise (MIL-STD-810, Test Method 515) 164
18.7 Fiber Optic Testing ... 164
18.7.1 Visual Inspection of Fiber Optic Components (MIL-STD-2042-6, Test Method 6A1) .. 165
18.7.2 Cable Attenuation Test (MIL-STD-2042-6, Test Method 6B1) 165
18.7.3 Cable Assembly Link Loss Test (MIL-STD-2042-6, Test Method 6C1) 165
18.7.4 Cable Continuity Test (MIL-STD-2042-6, Test Method 6D1) 165
18.7.5 Cable Topology End-to-End Attenuation Test (MIL-STD-2042-6, Test Method 6E1) .. 165
18.7.6 Measurement Quality Jumper Selection Test (MIL-STD-2042-6, Test Method 6F1) .. 165
18.7.7 Heavy Duty Connector Mechanical Pull Test (MIL-STD-2042-6, Test Method 6G1) .. 165
18.7.8 BOF Cable Ball Bearing Test (MIL-STD-2042-6, Test Method 6H1) 165
18.7.9 BOF Cable Pressurization Test (MIL-STD-2042-6, Test Method 6I1) 165
18.7.10 BOF Tube Seal Verification Test (MIL-STD-2042-6, Test Method 6J1) 165
18.7.11 Cable Assembly Return Loss Test (MIL-STD-2042-6, Test Method 6K1) 165
18.7.12 Cable Topology End-to-End Return Loss Test (MIL-STD-2042-6, Test Method 6L1) .. 165
18.8 Environmental Stress Screening (ESS) (MIL-HDBK-344) 166
18.9 Visual and Mechanical Inspection and Testing 166
18.9.1 Visual Inspection ... 166
18.9.2 Dimensional Inspection ... 167

Figures

- Figure 4-1 Casting Views ... 14
- Figure 4-2 Chain vs. Baseline Dimensioning 15
- Figure 4-3 False Tolerances .. 16
- Figure 4-4 Adequate Stock Allowance 16
- Figure 4-5 Effect of Accuracy Due to Different Mold Pieces 17
- Figure 4-6 The Structure of the Welding Symbol 21
- Figure 8-1 Annodized Cross-Section 39
- Figure 8-2 CIELAB Values .. 40
- Figure 11-1 Effects of Poor Bonding on the Performance of a Power Line Filter 44
- Figure 11-2 Current Flow Through Two Configurations of a Direct Bond 45
- Figure 11-3 Contact Surfaces at a Bond Interface 45
- Figure 11-4 Mechanical Load on Bond Resistance 47
- Figure 11-5 Nomograph of Torque to Bolt Size 50
- Figure 11-6 Rivet Bond Path ... 50
- Figure 11-7 Poor Rivet Joint ... 50
- Figure 11-8 Basic Corrosion ... 53
1 PREFACE

1.1 Scope This document has been written to assist the designers, manufacturers and end users of electronic enclosures of electrical and electronic equipment to understand the best practices to meet requirements, ensuring the reliability and function of the end item assembly for its intended design life.

An electronic enclosure, for the purpose of this document, is defined as a chassis, box, top level assembly, high level assembly (HLA), functional unit, drawer, cabinet, or other designation forming a top level system assembly. An enclosure typically consists of a combination of printed board assemblies (PBAs), cable and wire harness assemblies and other electronics and/or mechanical components, and is typically tested as a functional unit. The enclosure includes the necessary mechanical and structural elements to protect and integrate the assembly into a finished system. Enclosures are often modular components or sub-systems of larger systems, designed for replacement in the end-use environment.

1.2 Purpose This handbook provides guidelines for the design, manufacture, inspection and test for electronic enclosures. It is not enough to understand the properties of the various components, materials and processes; the user should understand what is to be achieved by the set of selected components, materials and processes within the end use environment and how to verify that the desired results have been realized.

This document is intended to be used as a reference only. It is the responsibility of the user to determine the suitability, via appropriate testing, of the selected electronic enclosure and application method for a particular end use application. An electronic enclosure may have several functions depending on the type of application. The most common are:

a. To protect the electronic assembly from the end use environment, such as vibration, shock and other movements detrimental to electronic assemblies
b. To incorporate into the end use environment.

1.3 Applicability This handbook covers high reliability type end item equipment, such as Aerospace, Defense, Medical, Telecom, etc. Not all specialized technologies are covered in this handbook.

This handbook is for guidance only and cannot be cited as a requirement. If it is, the supplier does not have to comply.

The use of words like, “must,” “should” and “shall” have no special meaning in this guideline. They do not indicate a binding criterion.

1.4 Classification This standard recognizes that electrical and electronic assemblies are subject to classifications by intended end-item use. Three general end-product classes have been established to reflect differences in producibility, complexity, functional performance requirements and verification (inspection/test) frequency. It should be recognized that there may be overlaps of equipment between classes.

The product class should be stated in the procurement documentation package.

CLASS 1 General Electronic Products
Includes products suitable for applications where the major requirement is function of the completed assembly.

CLASS 2 Dedicated Service Electronic Products
Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically the end-use environment would not cause failures.

CLASS 3 High Performance Electronic Products
Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment should function when required such as life support or other critical systems.