Contents

Foreword xvii
Preface to the Second Edition xix
Preface to the Third Edition xxiii
Obituary xxv

PART I INTRODUCTION AND THE LINEAR REGRESSION MODEL 1

1 What is Econometrics? 3
What is in this Chapter? 3
1.1 What is Econometrics? 3
1.2 Economic and Econometric Models 4
1.3 The Aims and Methodology of Econometrics 6
1.4 What Constitutes a Test of an Economic Theory? 9
Summary and an Outline of the Book 9

2 Statistical Background and Matrix Algebra 11
What is in this Chapter? 11
2.1 Introduction 12
2.2 Probability 12
 Addition Rules of Probability 13
 Conditional Probability and the Multiplication Rule 14
 Bayes’ Theorem 15
 Summation and Product Operations 15
2.3 Random Variables and Probability Distributions 17
 Joint, Marginal, and Conditional Distributions 18
 Illustrative Example 18
2.4 The Normal Probability Distribution and Related Distributions 19
 The Normal Distribution 19
 Related Distributions 20
2.5 Classical Statistical Inference 21
 Point Estimation 22
2.6 Properties of Estimators 23
 Unbiasedness 23
 Efficiency 24
 Consistency 24
 Other Asymptotic Properties 25
2.7 Sampling Distributions for Samples from a Normal Population 26
2.8 Interval Estimation 27
2.9 Testing of Hypotheses 28
2.10 Relationship Between Confidence Interval Procedures and Tests of Hypotheses 32
2.11 Combining Independent Tests 33
Summary 33
Exercises 34
Appendix to Chapter 2 41
Matrix Algebra 41
Exercises on Matrix Algebra 56

3 Simple Regression 59
What is in this Chapter? 59
3.1 Introduction 59
3.2 Specification of the Relationships 61
3.3 The Method of Moments 65
 Illustrative Example 66
3.4 The Method of Least Squares 68
 Reverse Regression 71
 Illustrative Example 72
3.5 Statistical Inference in the Linear Regression Model 75
 Illustrative Example 77
 Confidence Intervals for α, β, and σ^2 78
 Testing of Hypotheses 79
 Example of Comparing Test Scores from the GRE and GMAT Tests 81
 Regression with No Constant Term 82
3.6 Analysis of Variance for the Simple Regression Model 83
3.7 Prediction with the Simple Regression Model 84
 Prediction of Expected Values 86
 Illustrative Example 87
3.8 Outliers 88
 Some Illustrative Examples 89
3.9 Alternative Functional Forms for Regression Equations 94
 Illustrative Example 97
*3.10 Inverse Prediction in the Least Squares Regression Model 99
*3.11 Stochastic Regressors 101
4 Multiple Regression

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is in this Chapter?</td>
<td>127</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>127</td>
</tr>
<tr>
<td>4.2 A Model with Two Explanatory Variables</td>
<td>129</td>
</tr>
<tr>
<td>The Least Squares Method</td>
<td>130</td>
</tr>
<tr>
<td>Illustrative Example</td>
<td>132</td>
</tr>
<tr>
<td>4.3 Statistical Inference in the Multiple Regression Model</td>
<td>134</td>
</tr>
<tr>
<td>Illustrative Example</td>
<td>135</td>
</tr>
<tr>
<td>Formulas for the General Case of (k) Explanatory Variables</td>
<td>139</td>
</tr>
<tr>
<td>Some Illustrative Examples</td>
<td>140</td>
</tr>
<tr>
<td>4.4 Interpretation of the Regression Coefficients</td>
<td>143</td>
</tr>
<tr>
<td>Illustrative Example</td>
<td>145</td>
</tr>
<tr>
<td>4.5 Partial Correlations and Multiple Correlation</td>
<td>146</td>
</tr>
<tr>
<td>4.6 Relationships Among Simple, Partial, and Multiple Correlation</td>
<td>147</td>
</tr>
<tr>
<td>Coefficients</td>
<td>148</td>
</tr>
<tr>
<td>Two Illustrative Examples</td>
<td>148</td>
</tr>
<tr>
<td>4.7 Prediction in the Multiple Regression Model</td>
<td>153</td>
</tr>
<tr>
<td>Illustrative Example</td>
<td>153</td>
</tr>
<tr>
<td>4.8 Analysis of Variance and Tests of Hypotheses</td>
<td>154</td>
</tr>
<tr>
<td>Nested and Nonnested Hypotheses</td>
<td>156</td>
</tr>
<tr>
<td>Tests for Linear Functions of Parameters</td>
<td>157</td>
</tr>
<tr>
<td>Illustrative Example</td>
<td>158</td>
</tr>
<tr>
<td>4.9 Omission of Relevant Variables and Inclusion of Irrelevant Variables</td>
<td>159</td>
</tr>
<tr>
<td>Omission of Relevant Variables</td>
<td>160</td>
</tr>
<tr>
<td>Example 1: Demand for Food in the United States</td>
<td>161</td>
</tr>
<tr>
<td>Example 2: Production Functions and Management Bias</td>
<td>162</td>
</tr>
<tr>
<td>Inclusion of Irrelevant Variables</td>
<td>163</td>
</tr>
<tr>
<td>4.10 Degrees of Freedom and (\bar{R}^2)</td>
<td>164</td>
</tr>
<tr>
<td>4.11 Tests for Stability</td>
<td>168</td>
</tr>
<tr>
<td>The Analysis of Variance Test</td>
<td>168</td>
</tr>
<tr>
<td>Example 1: Stability of the Demand for Food Function</td>
<td>169</td>
</tr>
<tr>
<td>Example 2: Stability of Production Functions</td>
<td>170</td>
</tr>
<tr>
<td>Predictive Tests for Stability</td>
<td>173</td>
</tr>
<tr>
<td>Illustrative Example</td>
<td>173</td>
</tr>
<tr>
<td>4.12 The LR, W, and LM Tests</td>
<td>176</td>
</tr>
<tr>
<td>Illustrative Example</td>
<td>176</td>
</tr>
</tbody>
</table>
CONTENTS

Summary 177
Exercises 179
Appendix to Chapter 4
 The Multiple Regression Model in Matrix Notation 185
Data Sets 192

PART II VIOLATION OF THE ASSUMPTIONS OF THE BASIC MODEL 197

5 Heteroskedasticity 199

What is in this Chapter? 199
5.1 Introduction 199
 Illustrative Example 200
5.2 Detection of Heteroskedasticity 202
 Illustrative Example 202
 Some Other Tests 203
 Illustrative Example 205
 An Intuitive Justification for the Breusch–Pagan Test 206
5.3 Consequences of Heteroskedasticity 207
 Estimation of the Variance of the OLS Estimator Under Heteroskedasticity 209
5.4 Solutions to the Heteroskedasticity Problem 209
 Illustrative Example 211
5.5 Heteroskedasticity and the Use of Deflators 212
 Illustrative Example: The Density Gradient Model 215
*5.6 Testing the Linear Versus Log-Linear Functional Form 217
 The Box–Cox Test 217
 The BM Test 219
 The PE Test 219

Summary 220
Exercises 221
Appendix to Chapter 5 224
 Generalized Least Squares 224

6 Autocorrelation 227

What is in this Chapter? 227
6.1 Introduction 227
6.2 Durbin–Watson Test 228
 Illustrative Example 229
6.3 Estimation in Levels Versus First Differences 230
 Some Illustrative Examples 232

6.4 Estimation Procedures with Autocorrelated Errors 234
 Iterative Procedures 236
 Grid-Search Procedures 237
 Illustrative Example 238

6.5 Effect of AR(1) Errors on OLS Estimates 238
CONTENTS

6.6 Some Further Comments on the DW Test 242
 The von Neumann Ratio 243
 The Berenblut–Webb Test 243
6.7 Tests for Serial Correlation in Models with Lagged Dependent Variables 245
 Durbin’s t-Test 246
 Durbin’s Alternative Test 246
 Illustrative Example 247
6.8 A General Test for Higher-Order Serial Correlation: The LM Test 248
6.9 Strategies When the DW Test Statistic is Significant 249
 Errors Not AR(1) 249
 Autocorrelation Caused by Omitted Variables 250
 Serial Correlation Due to Misspecified Dynamics 252
 The Wald Test 253
 Illustrative Example 254
*6.10 Trends and Random Walks 255
 Spurious Trends 257
 Differencing and Long-Run Effects: The Concept of Cointegration 258
*6.11 ARCH Models and Serial Correlation 260
6.12 Some Comments on the DW Test and Durbin’s h-Test and t-Test 262
 Summary 262
 Exercises 264

7 Multicollinearity 267
 What is in this Chapter? 267
 7.1 Introduction 268
 7.2 Some Illustrative Examples 268
 7.3 Some Measures of Multicollinearity 272
 7.4 Problems with Measuring Multicollinearity 274
 7.5 Solutions to the Multicollinearity Problem: Ridge Regression 278
 7.6 Principal Component Regression 281
 7.7 Dropping Variables 286
 7.8 Miscellaneous Other Solutions 289
 Using Ratios or First Differences 289
 Using Extraneous Estimates 289
 Getting More Data 291
 Summary 291
 Exercises 291
 Appendix to Chapter 7 293
 Linearly Dependent Explanatory Variables 293

8 Dummy Variables and Truncated Variables 301
 What is in this Chapter? 301
 8.1 Introduction 301
8.2 Dummy Variables for Changes in the Intercept Term 302
Illustrative Example 305
Two More Illustrative Examples 306
8.3 Dummy Variables for Changes in Slope Coefficients 307
8.4 Dummy Variables for Cross-Equation Constraints 310
8.5 Dummy Variables for Testing Stability of Regression Coefficients 313
8.6 Dummy Variables Under Heteroskedasticity and Autocorrelation 316
8.7 Dummy Dependent Variables 317
8.8 The Linear Probability Model and the Linear Discriminant Function 318
The Linear Probability Model 318
The Linear Discriminant Function 320
8.9 The Probit and Logit Models 322
Illustrative Example 324
The Problem of Disproportionate Sampling 325
Prediction of Effects of Changes in the Explanatory Variables 327
Measuring Goodness of Fit 327
8.10 Illustrative Example 329
8.11 Truncated Variables: The Tobit Model 333
Some Examples 333
Method of Estimation 334
Limitations of the Tobit Model 335
The Truncated Regression Model 336
Summary 338
Exercises 339

9 Simultaneous Equations Models 343
What is in this Chapter? 343
9.1 Introduction 343
9.2 Endogenous and Exogenous Variables 345
9.3 The Identification Problem: Identification through Reduced Form 346
Illustrative Example 348
9.4 Necessary and Sufficient Conditions for Identification 351
Illustrative Example 353
9.5 Methods of Estimation: The Instrumental Variable Method 354
Measuring R^2 356
Illustrative Example 357
9.6 Methods of Estimation: The Two-Stage Least Squares Method 360
Computing Standard Errors 361
Illustrative Example 363
9.7 The Question of Normalization 366
9.8 The Limited-Information Maximum Likelihood Method 367
Illustrative Example 368
CONTENTS

9.9 On the Use of OLS in the Estimation of Simultaneous Equations Models 369
 Working's Concept of Identification 371
 Recursive Systems 373
 Estimation of Cobb-Douglas Production Functions 373

*9.10 Exogeneity and Causality 375
 Weak Exogeneity 378
 Superexogeneity 378
 Strong Exogeneity 378
 Granger Causality 379
 Granger Causality and Exogeneity 380
 Tests for Exogeneity 380

9.11 Some Problems with Instrumental Variable Methods 381
Summary 382
Exercises 383
Appendix to Chapter 9 386

10 Nonlinear Regressions, Models of Expectations, and Nonnormality 391
What is in this Chapter? 391
10.1 Introduction 392
10.2 The Newton-Raphson Method 392
10.3 Nonlinear Least Squares 393
 The Gauss-Newton Method 393
10.4 Models of Expectations 394
10.5 Naive Models of Expectations 395
10.6 The Adaptive Expectations Model 397
10.7 Estimation with the Adaptive Expectations Model 399
 Estimation in the Autoregressive Form 399
 Estimation in the Distributed Lag Form 400
10.8 Two Illustrative Examples 401
10.9 Expectational Variables and Adjustment Lags 405
10.10 Partial Adjustment with Adaptive Expectations 409
10.11 Alternative Distributed Lag Models: Polynomial Lags 411
 Finite Lags: The Polynomial Lag 412
 Illustrative Example 415
 Choosing the Degree of the Polynomial 416
10.12 Rational Lags 417
10.13 Rational Expectations 419
10.14 Tests for Rationality 422
10.15 Estimation of a Demand and Supply Model Under Rational Expectations 424
 Case 1 424
 Case 2 425
 Illustrative Example 428
10.16 The Serial Correlation Problem in Rational Expectations Models 431
10.17 Nonnormality of Errors 431
 Tests for Normality 432
10.18 Data Transformations 433
Summary 433
Exercises 435

11 Errors in Variables 437
What is in this Chapter? 437
11.1 Introduction 437
11.2 The Classical Solution for a Single-Equation Model with One Explanatory Variable 438
11.3 The Single-Equation Model with Two Explanatory Variables 441
 Two Explanatory Variables: One Measured with Error 441
 Illustrative Example 444
 Two Explanatory Variables: Both Measured with Error 446
11.4 Reverse Regression 449
11.5 Instrumental Variable Methods 451
11.6 Proxy Variables 454
 Coefficient of the Proxy Variable 456
11.7 Some Other Problems 457
 The Case of Multiple Equations 458
 Correlated Errors 459
Summary 459
Exercises 461

PART III SPECIAL TOPICS 463

12 Diagnostic Checking, Model Selection, and Specification Testing 465
What is in this Chapter? 465
12.1 Introduction 465
12.2 Diagnostic Tests Based on Least Squares Residuals 466
 Tests for Omitted Variables 467
 Tests for ARCH Effects 468
12.3 Problems with Least Squares Residuals 469
12.4 Some Other Types of Residuals 470
 Predicted Residuals and Studentized Residuals 470
 Dummy Variable Method for Studentized Residuals 471
 BLUS Residuals 472
 Recursive Residuals 472
 Illustrative Example 474
12.5 DFFITS and Bounded Influence Estimation 476
 Illustrative Example 478
12.6 Model Selection 479
 Hypothesis-Testing Search 480
 Interpretive Search 481
CONTENTS

Simplification Search 481
Proxy Variable Search 481
Data Selection Search 482
Post-Data Model Construction 482
Hendry’s Approach to Model Selection 483

12.7 Selection of Regressors 484
 Theil’s R^2 Criterion 486
 Criteria Based on Minimizing the Mean-Squared Error of Prediction 486
 Akaike’s Information Criterion 488

12.8 Implied F-Ratios for the Various Criteria 488
 Bayes’ Theorem and Posterior Odds for Model Selection 491

12.9 Cross-Validation 492

12.10 Hausman’s Specification Error Test 494
 An Application: Testing for Errors in Variables or Exogeneity 496
 Some Illustrative Examples 497
 An Omitted Variable Interpretation of the Hausman Test 498

12.11 The Plosser–Schwert–White Differencing Test 501

12.12 Tests for Nonnested Hypotheses 502
 The Davidson and MacKinnon Test 502
 The Encompassing Test 505
 A Basic Problem in Testing Nonnested Hypotheses 506
 Hypothesis Testing Versus Model Selection as a Research Strategy 506

Summary 506
Exercises 508
Appendix to Chapter 12 510

13 Introduction to Time-Series Analysis 513
What is in this Chapter? 513
13.1 Introduction 513
13.2 Two Methods of Time-Series Analysis: Frequency Domain and Time Domain 514
13.3 Stationary and Nonstationary Time Series 514
 Strict Stationarity 515
 Weak Stationarity 516
 Properties of Autocorrelation Function 517
 Nonstationarity 517
13.4 Some Useful Models for Time Series 517
 Purely Random Process 517
 Random Walk 518
 Moving Average Process 519
 Autoregressive Process 520
 Autoregressive Moving Average Process 522
 Autoregressive Integrated Moving Average Process 524
CONTENTS

13.5 Estimation of AR, MA, and ARMA Models
 Estimation of MA Models 524
 Estimation of ARMA Models 525
 Residuals from the ARMA Models 526
 Testing Goodness of Fit 527
13.6 The Box–Jenkins Approach
 Forecasting from Box–Jenkins Models 529
 Illustrative Example 531
 Trend Elimination: The Traditional Method 532
 A Summary Assessment 535
 Seasonality in the Box–Jenkins Modeling 535
13.7 R^2 Measures in Time-Series Models 536
 Summary 540
 Exercises 540
 Data Sets 541

14 Vector Autoregressions, Unit Roots, and Cointegration 543
 What is in this Chapter? 543
 14.1 Introduction 543
 14.2 Vector Autoregressions 544
 14.3 Problems with VAR Models in Practice 546
 14.4 Unit Roots 547
 14.5 Unit Root Tests 548
 Dickey–Fuller Test 548
 The Serial Correlation Problem 549
 The Low Power of Unit Root Tests 550
 The DF-GLS Test 550
 What are the Null and Alternative Hypotheses in Unit Root Tests? 550
 Tests with Stationarity as Null 552
 Confirmatory Analysis 553
 Panel Data Unit Root Tests 554
 Structural Change and Unit Roots 555
 14.6 Cointegration 556
 14.7 The Cointegrating Regression 557
 14.8 Vector Autoregressions and Cointegration 560
 14.9 Cointegration and Error Correction Models 564
 14.10 Tests for Cointegration 565
 14.11 Cointegration and Testing of the REH and MEH 566
 14.12 A Summary Assessment of Cointegration 568
 Summary 569
 Exercises 570
15 **Panel Data Analysis**

What is in this Chapter?

15.1 Introduction 573
15.2 The LSDV or Fixed Effects Model 574
15.3 The Random Effects Model 575
15.4 Fixed Effects Versus Random Effects
 Hausman Test 578
 Breusch and Pagan Test 579
15.5 The SUR Model 579
15.6 Dynamic Panel Data Models 580
15.7 The Random Coefficient Model 581
Summary 583

16 **Large-Sample Theory** 585

What is in this Chapter?

16.1 The Maximum Likelihood Method 585
16.2 Methods of Solving the Likelihood Equations 586
16.3 The Cramer–Rao Lower Bound 588
16.4 Large-Sample Tests Based on ML 588
16.5 GIVE and GMM 589
Summary 591

17 **Small-Sample Inference: Resampling Methods** 593

What is in this Chapter?

17.1 Introduction 593
17.2 Monte Carlo Methods
 More Efficient Monte Carlo Methods 595
 Response Surfaces 595
17.3 Resampling Methods: Jackknife and Bootstrap
 Some Illustrative Examples 597
 Other Issues Relating to Bootstrap 598
17.4 Bootstrap Confidence Intervals 599
17.5 Hypothesis Testing with the Bootstrap 599
17.6 Bootstrapping Residuals Versus Bootstrapping the Data 600
17.7 NonIID Errors and Nonstationary Models
 Heteroskedasticity and Autocorrelation 601
 Unit Root Tests Based on the Bootstrap 601
 Cointegration Tests 601
17.8 Miscellaneous Other Applications 602
CONTENTS

Summary 602

Appendices 605
 Appendix A: Data Sets 605
 Appendix B: Data Sets on the Web 613
 Appendix C: Computer Programs 615

Index 617