Primary Lithium Cells
LiMnO$_2$
CONTENT

1. GENERAL INFORMATION 3–8
 1.1 Constructions of Lithium Cells 4–5
 1.2 Characteristics and Applications 6
 1.3 Applications for Primary Lithium Cells 7
 1.4 Selection Guide 8

2. CR PRIMARY LITHIUM BUTTON CELLS 9–18
 2.1 Types – Technical Data 10
 2.2 Assemblies 11–13
 2.3 Performance Data 14–18

3. CR HIGH CAPACITY PRIMARY LITHIUM CYLINDRICAL CELLS 19–24
 3.1 Types – Technical Data 20
 3.2 Assemblies 21
 3.3 Performance Data 22–24

4. CR HIGH POWER PRIMARY LITHIUM CYLINDRICAL CELLS 25–30
 4.1 Types – Technical Data 26
 4.2 Assemblies 26
 4.3 Performance Data 27–30

5. GENERAL DESIGN CHARACTERISTICS 31–37
 5.1 Safety Tests 33
 5.2 Safety Guidelines 34–35

Subject to change without further notice. No responsibility for the correctness of this information. For latest technical data please refer to our data sheets which you will find on our website www.varta-microbattery.com.

© by VARTA Microbattery GmbH
The VARTA Microbattery lithium manganese dioxide cell chemistry was one of the first solid cathode cells commercially developed and is still the most widely used system today. These cells offer an excellent shelf life, good high-rate and low-rate capability, a wide operating temperature range and availability in button and cylindrical cell designs. Potential design-in applications for these products are electronic, telecommunication, metering, instrumentation, office and other portable equipment use. Based on the outstanding cell performance and reliability of these products, they have been able to meet and exceed the requirements of our customer base worldwide.

Advantages for VARTA Microbattery LiMnO₂ Cells

- High open circuit and load voltage (above 3.0 volts per cell)
- High energy density (400 Wh/kg and 600 Wh/l)
- High capacity and high rate cell construction
- Operation over a wide temperature range
- Flat discharge profile under low to medium rate applications
- Low self discharge (less than 1% per year at RT)
- Superior shelf life and operational life (Up to 10 years and more)
- UL Recognition
- Ability to provide a variety of laser welded termination tabs for all cell types

Energy Density for Primary Systems

FIG. 1
Comparison of different primary battery systems

A = Lithium
B = Silver-oxide
C = Alkaline
D = Zinc-chloride
VARTA Microbattery offers a complete range of primary lithium manganese dioxide cylindrical and button cells for memory backup and portable applications worldwide. The cylindrical cell configurations offer the high-capacity bobbin construction and high-power spirally wound product. The bobbin construction is targeted at low to moderate power requirements, dedicated for applications requiring up to a 10 years operational life at 20°C. Our spirally wound electrode product offers high-rate discharge capability, with an operational life in excess of 5 years. For compact and light weight equipment use we have a complete range of high performance primary lithium button cells.

1.1 CONSTRUCTIONS OF LITHIUM CELLS

Lithium Cylindrical Batteries

FIG. 2 – BOBBIN CONSTRUCTION
Schematic construction of a Li/MnO₂ cylindrical cell (CR 1/2 AA).

FIG. 3 – SPIRAL CONSTRUCTION
Schematic construction of a Li/MnO₂ cylindrical cell (CR 2/3 AH).
Lithium Button Cells

FIG. 4
Schematic construction of a Li/MnO₂ Button Cell

Sealing Technologies

FIG. 5 – CRIMP-SEALING
CR High Power Cylindrical Cells

FIG. 6 – LASER-SEALING
CR High Capacity Cylindrical Cells
1.2 CHARACTERISTICS AND APPLICATIONS

Main Applications

Both mechanical and electrical properties, together with reliability, ensure that VARTA Microbattery lithium batteries meet the requirements of modern electronics. They are therefore ideally suited as power sources for the long term supply of microelectronic circuitry.

Main Characteristics

- Long life expectancy and long operational life
- Low self discharge rate
- High energy density
- High cell voltage (3V)
- Wide temperature range
- High operating safety
- High reliability
- Resistance to corrosion with stainless steel case
- No leakage problems with an organic non-corrosive electrolyte

Temperature characteristics

![Temperature characteristics of CR 1/2 AA and CR AA cylindrical cells](image)

System properties of VARTA Microbattery Lithium Cells

<table>
<thead>
<tr>
<th>Series</th>
<th>CR Series Cylindrical Cells</th>
<th>CR Series Button Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Li/MnO₂</td>
<td>Li/MnO₂</td>
</tr>
<tr>
<td>Gravimetric energy density</td>
<td>250–300 Wh/kg</td>
<td>250–300 Wh/kg</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>3.0 V</td>
<td>3.0 V</td>
</tr>
<tr>
<td>Open circuit voltage</td>
<td>3.2 V</td>
<td>3.2 V</td>
</tr>
<tr>
<td>Available capacity range</td>
<td>950–2000 mAh</td>
<td>25–560 mAh</td>
</tr>
<tr>
<td>Storage life</td>
<td>>10 years</td>
<td>>10 years</td>
</tr>
<tr>
<td>Self discharge d=20°C</td>
<td><1% p.a.</td>
<td><1% p.a.</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-30 ... +75°C</td>
<td>-20 ... +65°C</td>
</tr>
<tr>
<td>Maximum temperature range (short term)</td>
<td>-40 ... +80°C</td>
<td>-40 ... +80°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-55 ... +70°C</td>
<td>-55 ... +70°C</td>
</tr>
</tbody>
</table>

TAB. 1
1) CR 2/3 AH, CR 2, (>5 years)
2) CR 2/3 AH (-20 ... +65°C)
3) max. two weeks
4) μA-range
5) Recommended room temperature
1.3 APPLICATIONS FOR PRIMARY LITHIUM CELLS

<table>
<thead>
<tr>
<th>Applications</th>
<th>Button Cells</th>
<th>Cylindrical Cells (Spirally wound)</th>
<th>Cylindrical Cells (Bobbin construction)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main power source</td>
<td>Memory backup</td>
<td>Main power source</td>
</tr>
<tr>
<td>Telecommunications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Telephone</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordless Telephone</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular Telephone</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile Radio</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PABX</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility Meters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Distribution Meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Automation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy Machine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printer</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vending Machine</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Typewriter</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Control Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Meter</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transponder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligent Tagging</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Parking Meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Logger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dive Computer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Games</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watch / Clock</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculator</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Radio</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Recorder</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automotive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car lock system</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dashboard</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAB. 2
Application list
1.4 SELECTION GUIDE

To enable battery selection the following is required:

- discharge current and maximum discharge time
- capacity
- operating temperature range
- self discharge
- surplus capacity requirement
- cell size

FIG. 8
CAPACITY RETENTION
Capacity retention characteristics of VARTA Microbattery Lithium Cells
Cylindrical Cells CR…AA and CR…A

FIG. 9
STORAGE BEHAVIOR
Typical storage behaviour at room temperature 21°C of CR 1/2 AA

FIG. 10
BATTERY SELECTION DIAGRAM
Discharge current/ Operating time
2.1 TYPES – TECHNICAL DATA

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>Nominal voltage (V)</th>
<th>Typical capacity (mAh)</th>
<th>Standard load (kΩ)</th>
<th>Max. discharge current (continuous) (mA)</th>
<th>Max. discharge current (pulse) (mA)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1/3 N</td>
<td>6131 101 501</td>
<td>3</td>
<td>170</td>
<td>5.6</td>
<td>20</td>
<td>80</td>
<td>3.0</td>
</tr>
<tr>
<td>2 CR 1/3 N (p 28 pxl)</td>
<td>6231 210 501</td>
<td>6</td>
<td>170</td>
<td>13</td>
<td>20</td>
<td>80</td>
<td>8.8</td>
</tr>
<tr>
<td>CR 1216</td>
<td>6218 101 501</td>
<td>3</td>
<td>27</td>
<td>39</td>
<td>2</td>
<td>5</td>
<td>0.7</td>
</tr>
<tr>
<td>CR 1220</td>
<td>6220 101 501</td>
<td>3</td>
<td>35</td>
<td>39</td>
<td>2</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>CR 1616</td>
<td>6616 101 501</td>
<td>3</td>
<td>55</td>
<td>39</td>
<td>3</td>
<td>8</td>
<td>1.2</td>
</tr>
<tr>
<td>CR 1620</td>
<td>6620 101 501</td>
<td>3</td>
<td>70</td>
<td>20</td>
<td>3</td>
<td>8</td>
<td>1.2</td>
</tr>
<tr>
<td>CR 2016</td>
<td>6016 101 501</td>
<td>3</td>
<td>90</td>
<td>15</td>
<td>3</td>
<td>10</td>
<td>1.8</td>
</tr>
<tr>
<td>CR 2025</td>
<td>6025 101 501</td>
<td>3</td>
<td>165</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>CR 2032</td>
<td>6032 101 501</td>
<td>3</td>
<td>230</td>
<td>5.6</td>
<td>3</td>
<td>10</td>
<td>3.0</td>
</tr>
<tr>
<td>CR 2430</td>
<td>6430 101 501</td>
<td>3</td>
<td>280</td>
<td>5.6</td>
<td>3</td>
<td>20</td>
<td>4.0</td>
</tr>
<tr>
<td>CR 2450</td>
<td>6450 101 501</td>
<td>3</td>
<td>560</td>
<td>5.6</td>
<td>2</td>
<td>20</td>
<td>6.2</td>
</tr>
</tbody>
</table>

TAB. 3

Technical data, CR Primary Lithium Button Cells

1) Nominal capacity is determined to an end voltage of 2.0 V (type 2 CR 1/3 N: 4.0 V) when the battery is allowed to discharge at standard load level at 20°C.
2.2 ASSEMBLIES

CR 1/3 N

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Fig. No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1/3 N</td>
<td>6131 101 501</td>
<td>11.6</td>
<td>10.8</td>
<td>0.4</td>
<td>–</td>
<td>7.8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CR 1/3 N SLF</td>
<td>6131 201 501</td>
<td>13.0</td>
<td>1.0</td>
<td>10.0</td>
<td>1.0 ±0.3</td>
<td>11.5 ±0.5</td>
<td>12.0 ±0.15</td>
<td>1.0 ±0.3</td>
</tr>
<tr>
<td>CR 1/3 N LF</td>
<td>6131 301 501</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11.5</td>
<td>12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Fig. No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 CR 1/3 N (p 28 pxl)</td>
<td>6231 210 501</td>
<td>13.0</td>
<td>25.1</td>
<td>1.1</td>
<td>0.6</td>
<td>5.5</td>
<td>6.0</td>
<td>–</td>
</tr>
<tr>
<td>3 CR 1/3 N</td>
<td>6331 101 501</td>
<td>12.2</td>
<td>32.2</td>
<td>0.4</td>
<td>–</td>
<td>7.8</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

TAB. 4
Tag material: nickel plated sheet-steel. SLF: tip tinned.
Custom made assemblies are available on request for large volume.

![Fig. 11](image1.png)
![Fig. 12](image2.png)
![Fig. 13 LF](image3.png)
![Fig. 14 SLF](image4.png)
Primary Lithium Cells

CR 1216
- Order No.: 6216 101 501
- A: 12.5
- B: 1.6
- C: 0.2
- D: –
- E: 10.0
- F: –
- G: –
- H: –
- K: –
- L: –
- Fig. No.: 15

CR 1220
- Order No.: 6220 101 501
- A: 12.5
- B: 2.0
- C: 0.3
- D: –
- E: 10.0
- F: –
- G: –
- H: –
- K: –
- L: –
- Fig. No.: 15

CR 1616
- Order No.: 6616 101 501
- A: 16.0
- B: 1.6
- C: 0.2
- D: –
- E: 12.0
- F: –
- G: –
- H: –
- K: –
- L: –
- Fig. No.: 15

CR 1620
- Order No.: 6620 101 501
- A: 16.0
- B: 2.0
- C: 0.02
- D: –
- E: 12.9
- F: –
- G: –
- H: –
- K: –
- L: –
- Fig. No.: 15

CR 2016
- Order No.: 6016 101 501
- A: 20.0
- B: 1.6
- C: 0.1
- D: –
- E: –
- F: –
- G: –
- H: –
- K: –
- L: –
- Fig. No.: 15

CR 2025
- Order No.: 6025 101 501
- A: 20.0
- B: 2.5
- C: 0.2
- D: –
- E: –
- F: –
- G: –
- H: –
- K: –
- L: –
- Fig. No.: 15

Tab. 5.1

Tag material: nickel plated sheet-steel. SLF: tip tinned.

Custom made assemblies are available on request for large volume.

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>L</th>
<th>Fig. No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1216</td>
<td>6216 101 501</td>
<td>12.5</td>
<td>1.6</td>
<td>0.2</td>
<td>–</td>
<td>10.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 1220</td>
<td>6220 101 501</td>
<td>12.5</td>
<td>2.0</td>
<td>0.3</td>
<td>–</td>
<td>10.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 1616</td>
<td>6616 101 501</td>
<td>16.0</td>
<td>1.6</td>
<td>0.2</td>
<td>–</td>
<td>12.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 1620</td>
<td>6620 101 501</td>
<td>16.0</td>
<td>2.0</td>
<td>0.02</td>
<td>–</td>
<td>12.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 2016</td>
<td>6016 101 501</td>
<td>20.0</td>
<td>1.6</td>
<td>0.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 2025</td>
<td>6025 101 501</td>
<td>20.0</td>
<td>2.5</td>
<td>0.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 2016</td>
<td>6016 201 501</td>
<td>21.3</td>
<td>1.0</td>
<td>10.0 ±0.15</td>
<td>1.0 ±0.3</td>
<td>2.1 ±0.5</td>
<td>20.3 ±0.15</td>
<td>–</td>
<td>1.0 ±0.3</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>16</td>
</tr>
<tr>
<td>CR 2016</td>
<td>6016 301 501</td>
<td>20.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.9</td>
<td>20.0</td>
<td>–</td>
<td>–</td>
<td>10.0</td>
<td>4.0</td>
<td>17</td>
<td>tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2016</td>
<td>6016 401 501</td>
<td>20.0</td>
<td>1.0</td>
<td>10.0</td>
<td>9.1</td>
<td>1.6</td>
<td>17.8</td>
<td>7.3</td>
<td>10.0</td>
<td>4.5</td>
<td>11.4</td>
<td>–</td>
<td>18</td>
</tr>
<tr>
<td>CR 2016</td>
<td>6016 301 012</td>
<td>20.5</td>
<td>3.5</td>
<td>1.8</td>
<td>3.0</td>
<td>2.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CR 2025</td>
<td>6025 101 501</td>
<td>20.0</td>
<td>2.5</td>
<td>0.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 2025</td>
<td>6025 201 501</td>
<td>21.3</td>
<td>1.0</td>
<td>10.0 ±0.2</td>
<td>1.0 ±0.3</td>
<td>3.0 ±0.5</td>
<td>20.3 ±0.15</td>
<td>–</td>
<td>1.0 ±0.3</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>16</td>
</tr>
<tr>
<td>CR 2025</td>
<td>6025 301 501</td>
<td>20.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.8</td>
<td>20.3</td>
<td>–</td>
<td>–</td>
<td>10.0</td>
<td>4.0</td>
<td>17</td>
<td>tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2025</td>
<td>6025 401 501</td>
<td>20.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.0</td>
<td>5.0</td>
<td>17.8</td>
<td>7.3</td>
<td>10.0</td>
<td>4.5</td>
<td>11.4</td>
<td>–</td>
<td>18</td>
</tr>
</tbody>
</table>

Fig. 15
![Fig. 15](image1)

Fig. 16 SLF
![Fig. 16 SLF](image2)

Fig. 17 LF
![Fig. 17 LF](image3)

Fig. 18 PCB 3
![Fig. 18 PCB 3](image4)
<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>L</th>
<th>Fig. No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2032</td>
<td>6032 101 501</td>
<td>20.0</td>
<td>3.2</td>
<td>0.02</td>
<td>–</td>
<td>16.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>CR 2032</td>
<td>6032 201 501</td>
<td>21.5</td>
<td>1.0</td>
<td>10.0</td>
<td>1.0</td>
<td>4.2</td>
<td>20.3</td>
<td>–</td>
<td>1.0</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>16 tag 0.25 mm</td>
</tr>
<tr>
<td>CR 2032 LF</td>
<td>6032 301 501</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3.2</td>
<td>20.3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>4.0</td>
<td>17 tag 0.15 mm</td>
</tr>
<tr>
<td>CR 2032 PCB 3</td>
<td>6032 401 501</td>
<td>20.0</td>
<td>1.0</td>
<td>10.0</td>
<td>11.0</td>
<td>3.2</td>
<td>17.8</td>
<td>7.5</td>
<td>10.0</td>
<td>4.5</td>
<td>11.4</td>
<td>–</td>
<td>18 tag 0.25 mm</td>
</tr>
<tr>
<td>CR 2032 PCB 2</td>
<td>6032 701 501</td>
<td>20.0</td>
<td>1.0</td>
<td>–</td>
<td>11.0</td>
<td>3.2</td>
<td>17.8</td>
<td>7.3</td>
<td>10.0</td>
<td>4.5</td>
<td>10.0</td>
<td>–</td>
<td>19 tag 0.20 mm</td>
</tr>
<tr>
<td>CR 2032 WC 1)</td>
<td>6032 101 013</td>
<td>20.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5.5</td>
<td>30.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>96.0</td>
<td>2.0</td>
<td>20 tag 0.20 mm 2)</td>
</tr>
<tr>
<td>CR 2032 SMT</td>
<td>6032 301 012</td>
<td>20.0</td>
<td>7.0</td>
<td>2.8</td>
<td>5.0</td>
<td>3.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>21</td>
</tr>
</tbody>
</table>

TAB. 5.2

Tag material: nickel plated sheet-steel. SLF: tip tinned.

1) using Molex 51021-03 connector (Other wire connectors and wire length are available on request.)

2) in shrink sleeve with wire and connector

Custom made assemblies are available on request for large volume.

FIG. 19 PCB 2

FIG. 20 WC

FIG. 21 SMT
2.3 PERFORMANCE DATA

FIG. 22 – CR 1216
Discharge characteristics
at room temperature (21°C)

FIG. 23 – CR 1216
Temperature characteristics
Constant load 39 kΩ

FIG. 24 – CR 1216
Operating voltage vs. current drain
Voltage at 50% discharge

FIG. 25 – CR 1216
Cell capacity vs. discharge current
FIG. 26 – CR 2016
Discharge characteristics at room temperature (21°C)

FIG. 27 – CR 2016
Temperature characteristics
Constant load 15 kΩ

FIG. 28 – CR 2016
Operating voltage vs. current drain
Voltage at 50% discharge

FIG. 29 – CR 2016
Cell capacity vs. discharge current
FIG. 30 – CR 2025
Discharge characteristics
at room temperature (21°C)

FIG. 31 – CR 2025
Temperature characteristics
Constant load 10 kΩ

FIG. 32 – CR 2025
Operating voltage vs. current drain
Voltage at 50% discharge

FIG. 33 – CR 2025
Cell capacity vs. discharge current
FIG. 34 – CR 2032
Discharge characteristics at room temperature (21°C)

FIG. 35 – CR 2032
Temperature characteristics
Constant load 5.6 kΩ

FIG. 36 – CR 2032
Operating voltage vs. current drain
Voltage at 50% discharge

FIG. 37 – CR 2032
Cell capacity vs. discharge current
FIG. 40 – CR 2430
Load: cont. R = 15 kΩ
Mean discharge current at temperature:
- d = 0°C ~175 μA
- d = -10°C ~170 μA
- d = -20°C ~155 μA

FIG. 41 – CR 2450
Load: cont. 5.6 kΩ: U_b
Pulse: 2 s/2 h 100 Ω: U_t
Internal Resistance R_i calculated from U_b and U_t at R_t = 100 Ω and T_t = 2s
Temperature: d = 20°C
3. CR HIGH CAPACITY PRIMARY LITHIUM CYLINDRICAL CELLS
3.1 TYPES – TECHNICAL DATA

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>Nominal voltage (V)</th>
<th>Nominal capacity at 20°C, down to 2.0 V, load (mAh)</th>
<th>Max. continuous discharge current (mA)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1/2 AA</td>
<td>6127 101 301</td>
<td>3</td>
<td>950 mAh – 5.6 kΩ</td>
<td>10</td>
<td>11.5</td>
</tr>
<tr>
<td>CR 2/3 AA</td>
<td>6237 101 301</td>
<td>3</td>
<td>1350 mAh – 1.0 kΩ</td>
<td>15</td>
<td>15.0</td>
</tr>
<tr>
<td>CR AA</td>
<td>6117 101 301</td>
<td>3</td>
<td>2000 mAh – 1.0 kΩ</td>
<td>20</td>
<td>21.5</td>
</tr>
<tr>
<td>CR 2/3 A</td>
<td>6238 101 301</td>
<td>3</td>
<td>1350 mAh – 1.0 kΩ</td>
<td>15</td>
<td>17.0</td>
</tr>
</tbody>
</table>

TAB. 6
Technical data, CR High Capacity Primary Lithium Cylindrical Cells
3.2 ASSEMBLIES

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A (Max.)</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>Fig. No.</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 1/2 AA</td>
<td>6127 101 301</td>
<td>14.75</td>
<td>25.2</td>
<td>–</td>
<td>7.0 0.6 42</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA SLF</td>
<td>6127 201 301</td>
<td>14.75</td>
<td>25.2</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>25.4</td>
<td>–</td>
<td>3.0</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA LF</td>
<td>6127 301 301</td>
<td>14.75</td>
<td>25.2</td>
<td>10.0</td>
<td>–</td>
<td>–</td>
<td>3.5</td>
<td>2.1</td>
<td>25.4</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA CD</td>
<td>6127 501 301</td>
<td>14.75</td>
<td>25.4</td>
<td>45.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA CD</td>
<td>6127 601 301</td>
<td>14.75</td>
<td>25.4</td>
<td>–</td>
<td>7.5</td>
<td>–</td>
<td>33.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>48 (90°)</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA SLF</td>
<td>6127 701 301</td>
<td>14.75</td>
<td>25.2</td>
<td>–</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>25.4</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>45 single pin</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA LF</td>
<td>6127 801 301</td>
<td>14.75</td>
<td>25.2</td>
<td>14.5</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>25.4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>47 (180°)</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA SLF</td>
<td>6127 901 301</td>
<td>14.75</td>
<td>25.2</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
<td>25.4</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>46 short pin</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA TP</td>
<td>6127 601 381</td>
<td>14.75</td>
<td>25.2</td>
<td>16.5</td>
<td>–</td>
<td>0.64</td>
<td>–</td>
<td>25.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>50 terminal pin</td>
<td></td>
</tr>
<tr>
<td>CR 1/2 AA WC</td>
<td>6127 201 390</td>
<td>17.5</td>
<td>27.0</td>
<td>50.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>51 wire & connector</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A (Max.)</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>Fig. No.</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2/3 AA</td>
<td>6237 101 301</td>
<td>14.75</td>
<td>33.5</td>
<td>–</td>
<td>7.0 0.6 42</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA SLF</td>
<td>6237 201 301</td>
<td>14.75</td>
<td>33.5</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>33.7</td>
<td>–</td>
<td>3.0</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA LF</td>
<td>6237 301 301</td>
<td>14.75</td>
<td>33.5</td>
<td>10.0</td>
<td>–</td>
<td>3.5</td>
<td>2.1</td>
<td>33.7</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA CD</td>
<td>6237 501 301</td>
<td>14.75</td>
<td>33.5</td>
<td>45.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA SLF</td>
<td>6237 701 301</td>
<td>14.75</td>
<td>33.5</td>
<td>–</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>33.7</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>45 single pin</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA SLF</td>
<td>6237 901 301</td>
<td>14.75</td>
<td>33.5</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
<td>33.7</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>46 short pin</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA TP</td>
<td>6237 601 381</td>
<td>14.75</td>
<td>32.5</td>
<td>16.5</td>
<td>–</td>
<td>0.64</td>
<td>–</td>
<td>25.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>50 terminal pin</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 AA WC</td>
<td>6237 201 390</td>
<td>18</td>
<td>51.0</td>
<td>50.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>51 wire & connector</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A (Max.)</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>Fig. No.</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR AA</td>
<td>6117 101 301</td>
<td>14.75</td>
<td>50.0</td>
<td>–</td>
<td>7.0 0.6 42</td>
<td></td>
</tr>
<tr>
<td>CR AA SLF</td>
<td>6117 201 301</td>
<td>14.75</td>
<td>50.0</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>50.2</td>
<td>–</td>
<td>3.0</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>CR AA LF</td>
<td>6117 301 301</td>
<td>14.75</td>
<td>50.0</td>
<td>10.0</td>
<td>–</td>
<td>3.5</td>
<td>2.1</td>
<td>50.2</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>CR AA CD</td>
<td>6117 501 301</td>
<td>14.75</td>
<td>50.2</td>
<td>45.0</td>
<td>–</td>
<td>3.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>CR AA SLF</td>
<td>6117 701 301</td>
<td>14.75</td>
<td>50.2</td>
<td>–</td>
<td>1.0</td>
<td>1.0</td>
<td>–</td>
<td>50.2</td>
<td>–</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>45 single pin</td>
<td></td>
</tr>
<tr>
<td>CR AA WC 1)</td>
<td>6117 201 390</td>
<td>18</td>
<td>51.0</td>
<td>50.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>51 wire & connector</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>A (Max.)</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>Fig. No.</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2/3 A</td>
<td>6238 101 301</td>
<td>17</td>
<td>33.5</td>
<td>–</td>
<td>7.0 0.6 42</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 A LF</td>
<td>6238 301 301</td>
<td>17</td>
<td>33.5</td>
<td>10.0</td>
<td>–</td>
<td>3.5</td>
<td>2.1</td>
<td>33.7</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>CR 2/3 A CD</td>
<td>6238 501 301</td>
<td>17</td>
<td>33.5</td>
<td>45.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7

Material: nickel plated sheet-steel, tag thickness: 0.15 mm till 0.25 mm. SLF: tip tinned, all types in green shrink sleeve.

1) using connector: JST type: PHR2 (Other connector types available on request.)

Custom made assemblies are available on request for large volume.

Diagrams

- **FIG. 48**: Ni Ø 0.8 mm - tinned
- **FIG. 49**: Ni Ø 0.8 mm - tinned
- **FIG. 50**: Ni Ø 0.8 mm - tinned
- **FIG. 51**: Ni Ø 0.8 mm - tinned
3.3 PERFORMANCE DATA

FIG. 52 – CR 1/2 AA
FIG. 56 – CR 2/3 AA
FIG. 60 – CR AA
Discharge characteristics at room temperature (21°C)

FIG. 53 – CR 1/2 AA
FIG. 57 – CR 2/3 AA
FIG. 61 – CR AA
Temperature characteristics at 5.6 kΩ

FIG. 54 – CR 1/2 AA
FIG. 58 – CR 2/3 A
FIG. 62 – CR AA
Operating voltage vs. current drain, Voltage at 50% discharge

FIG. 55 – CR 1/2 AA
FIG. 59 – CR 2/3 AA
FIG. 63 – CR AA
Cell capacity vs. discharge current
FIG. 64 – CR 2/3 A
Discharge characteristics at room temperature (21°C)

FIG. 65 – CR 2/3 A
Temperature characteristics
Constant load 5.6 kΩ

FIG. 66 – CR 2/3 A
Operating voltage vs. current drain
Voltage at 50% discharge

FIG. 67 – CR 2/3 A
Cell capacity vs. discharge current
4. CR HIGH POWER PRIMARY LITHIUM CYLINDRICAL CELLS
4.1 TYPES – TECHNICAL DATA

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>Nominal voltage (V)</th>
<th>Nominal capacity at 20°C, load (mAh)</th>
<th>Max. continuous discharge current (mA)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2/3 AH</td>
<td>6215 101 501</td>
<td>3</td>
<td>1500 mAh – 200 Ω</td>
<td>1500</td>
<td>16</td>
</tr>
<tr>
<td>CR 123 A</td>
<td>6205 210 501</td>
<td>3</td>
<td>1500 mAh – 200 Ω/2.0 V</td>
<td>1400</td>
<td>17</td>
</tr>
<tr>
<td>CR 2</td>
<td>6206 210 501</td>
<td>3</td>
<td>850 mAh – 200 Ω/1.8 V</td>
<td>885</td>
<td>11</td>
</tr>
</tbody>
</table>

TAB. 8
Technical data, CR High Power Primary Lithium Cylindrical Cells

1) Current value for obtaining 50% capacity
2) in blister card (1 pc)

4.2 ASSEMBLIES

TAB. 9
Material: nickel plated sheet-steel, tag thickness: 0.15 mm till 0.25 m. SLF: tip tinned.
Custom made assemblies are available on request for large volume.
4.3 PERFORMANCE DATA

FIG. 71 – CR 2/3 AH
Discharge characteristics at room temperature (21°C)

FIG. 72 – CR 2/3 AH
Temperature characteristics
Constant load 5.6 kΩ

FIG. 73 – CR 2/3 AH
Pulse discharge characteristics

1) Load: 0.9 A, 3 sec. on, 27 sec. off

2) After storage at 60°C/100 days

FIG. 74 – CR 2/3 AH
Typical discharge curve
Load: cont. 560 Ω
Pulse load: 2 sec./min 3 Ω (parallel)
Primary Lithium Cells

FIG. 75 – CR 123 A
Discharge characteristics
at room temperature (21°C)

FIG. 76 – CR 123 A
Temperature characteristics
Constant load 5.6 kΩ

FIG. 77 – CR 123 A
Pulse discharge characteristics

1) Load: 0.9 A, 3 sec. on, 27 sec. off
2) After storage at 60°C/100 days

FIG. 78 – CR 123 A
Typical discharge curve
Load: cont. 560 Ω
Pulse load: 2 sec./min 3 Ω (parallel)
FIG. 79 – CR 2
Discharge characteristics at room temperature (21°C)

FIG. 80 – CR 2
Pulse discharge characteristics

FIG. 81 – CR 2
Discharge temperature characteristics
5. GENERAL DESIGN CHARACTERISTICS

Battery Selection

In order to ensure optimum battery performance for the primary CR Button, the cylindrical CR High Power and cylindrical High Capacity cells, we suggest consideration of the following design-in requirements. They are the nominal and operating voltage, load current and profile, the duty cycle, temperature requirements and shelf life for the application. These characteristics for each battery type must be evaluated against the design requirements to select the most appropriate product that fulfills these requirements.

Design-in Considerations

VARTA Microbattery Primary Lithium Batteries offer lightweight packaged power for a variety of portable electric and electronic equipment. They are suitable as a main or standby power source for memory (RAM) and Real-Time clock (RTC) applications.

The Lithium Batteries are blocked from the power supply by means of a diode to prevent discharge of the battery into the DC supply during shut down.

The voltage drop across D1 should be taken into account as the minimum voltage of the load that has to be maintained under all circumstances.

Blocking diode D2 and D3 prevents the battery from being charged through the power supply. The amount of accumulated reverse current (IR) should be kept around 1% of the cell's typical capacity during its standby life time. A maximum of 5μA continuously must not be exceeded.

In the absence of a DC supply voltage, the lithium battery supplies the load with the necessary power.

As diodes fail at low current levels by an alloy-effect causing a severe reduction in impedance, an additional safety device must be incorporated.
UL-Recognition

All VARTA Microbattery Lithium Cells and Batteries listed in Tab. 10 are recognized by Underwriters Laboratories Inc. under UL-file number MH 13654 (N).

The cells are marked with the Recognized Component Mark.

Underwriters Laboratories requires for lithium cells/batteries a circuit, which must contain a protective component to prevent charging. In case of diode failure a current limiting resistor must be chosen according to the values listed in Tab. 10.

Please also pay attention to the Safety Guidelines on page 34.

For safety tests of the cells, “UL” requires either an additional diode, or a resistor, limiting the current to a safe level of 4 mA (for all cylindrical CR… A(A) lithium mass cells).

It should be noted that the value of the resistor has to be calculated using the higher power supply voltage – not the battery voltage.

The supply voltage to the load can be calculated by the battery voltage drop across the diode and the resistor.

Printed Circuit Board Mounting

Never solder on the body of the battery directly, use a battery equipped with PC-mount terminals. When using automatic soldering apply 250–270 °C within 5 seconds. Make sure that the battery is not suspended or dropped into the soldering bath.

Do not heat above 80 °C to avoid leakage caused by deterioration in the battery’s performance.
5.1 SAFETY TESTS

For safety aspects please consult Varta Microbattery before performing these extreme tests:

Compression Test

1120 kg

- no significant electrolyte loss
- no rupturing

In Short Circuit

Condition 24 h, 0.1 Ω

- after 24 h the bottom of the cell is curved by only 0.1 mm; diameter unchanged
- no electrolyte creepage or loss
- no rupturing

Test at 150°C for 2 Hours

- no electrolyte creepage or loss
- no rupture
- no fire
- no explosion
- open circuit voltage almost unchanged at 3.2 V
- the cell base bowed, causing cell height to increase by 1 mm, diameter unchanged

Puncture Test total Penetration of the Cell by a Nail Ø 3mm

- no splashing or pressurized electrolyte loss
- no rupturing

Short Circuit

In table 11 the temperature is listed at short circuit at an ambient temperature of 20°C, 40°C and 70°C.

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>CR 1/2 AA</th>
<th>CR 2/3 AA</th>
<th>CR AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>24°C</td>
<td>28°C</td>
<td>24°C</td>
</tr>
<tr>
<td>40°C</td>
<td>50°C</td>
<td>50°C</td>
<td>47°C</td>
</tr>
<tr>
<td>70°C</td>
<td>88°C</td>
<td>84°C</td>
<td>77°C</td>
</tr>
</tbody>
</table>

TAB. 11

Vibration Test

Frequency range

- 5 Hz = 55 Hz = 500 Hz = 55 Hz = 5 Hz

Amplitude at frequency range:

- 5 to 55 Hz: ± 0.75 mm

Acceleration at frequency range:

- 55 Hz to 500 Hz: 100 m/s²

Cycle duration: 15 min

Oscillation time of each main axis: 3 h

TAB. 12

Temperature Characteristics

FIG. 79

CR 1/2 AA, Temperature characteristics

Conditions: 20 h/20°C: 15 kΩ, 4 h/at various temp.: 270 kΩ

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Voltage U [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = -30°C</td>
<td>3.9</td>
</tr>
<tr>
<td>B = 20°C</td>
<td>3.7</td>
</tr>
<tr>
<td>C = 75°C</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Result

Without changing of the electrical values the following Li-cell can be exposed to this vibration test:

- CR 1/2 AA
- CR 2/3 AA
- CR AA

TAB. 12
5.2 SAFETY GUIDELINES

Please see www.varta-microbattery.com/top/trans-safe for latest information about Transportation, Safety and Recycling Note for Batteries.
5.4 APPLICATION CHECK LIST

<table>
<thead>
<tr>
<th>Customer:</th>
<th>Application:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Requested quantity:</th>
<th>Batteries per annum:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of battery:</th>
<th>Primary power source:</th>
<th>MBU:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U<sub>max</sub>:</th>
<th>U<sub>min</sub>:</th>
<th>U<sub>cutoff</sub>:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>I<sub>max</sub>:</th>
<th>I<sub>min</sub>:</th>
<th>I<sub>average</sub>:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Current profile:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Operating temperature:</th>
<th>max (°C):</th>
<th>min (°C):</th>
<th>average (°C):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Temperature profile:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Storage temperature</th>
<th>max (°C):</th>
<th>min (°C):</th>
<th>average (°C):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Storage time:</th>
<th>Operating time:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dimensions:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Remarks:</th>
</tr>
</thead>
</table>

Product Portfolio

<table>
<thead>
<tr>
<th>Primary Batteries</th>
<th>Rechargeable Batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver Oxide Button Cells</td>
<td>Li-Polymer</td>
</tr>
<tr>
<td>Lithium-Manganese Cells</td>
<td>NiMH Button Cells (V...H / HR / HT / HRT)</td>
</tr>
<tr>
<td>Lithium-Thionyl-Chloride Cells</td>
<td>Cylindrical & Prismatic</td>
</tr>
<tr>
<td>Zinc Air Cells</td>
<td>Li-Ion & NiMH Cells</td>
</tr>
<tr>
<td>Alkaline Batteries</td>
<td></td>
</tr>
<tr>
<td>Lithium Button Cells</td>
<td></td>
</tr>
</tbody>
</table>

Contacts

Germany and Central Europe
VARTA Microbattery GmbH
Daimlerstrasse 1
73479 Ellwangen, Germany
Tel +49 79 61 921 - 0
Fax +49 79 61 921 - 553

Americas
VARTA Microbattery, Inc.
1311 Mamaroneck Avenue, Suite 120
White Plains, NY 10605, USA
Tel +1 914 592 25 00
Fax +1 914 345 04 88

UK and Ireland
VARTA Microbattery GmbH
17 Progress Business Centre,
Whittle Parkway, Slough SL 1 6DQ, GB
Tel +44 16 28 60 79 30
Fax +44 16 28 60 79 39

France
VARTA Microbattery SARL
12 - 14, Rue Raymond RIDELO
92250 La Garenne Colombes, France
Tel +33 1 47 84 84 54
Fax +33 1 47 84 28 32

Asia Pacific
VARTA Microbattery Pte. Ltd.
300, Tampines Avenue 5, #05-01
Tampines Junction, 529653 Singapore
Tel +65 6 260 58 01
Fax +65 6 260 58 12

China
VARTA Microbattery Pte. Ltd.
Room 1702-3, 17/F., Fullerton Centre
19 Hung to Road, Kwun Tong
Kowloon, Hongkong
Tel +852 28 98 83 73
Fax +852 28 97 76 09

VARTA Microbattery (Shanghai) Co. Ltd.
Block 3, Shanghai Pudong Chuansha Industrial Park
No. 6999 Chuansha Road
Pudong New Area
201202 Shanghai, China
Tel +86 21 58 59 83 85
Fax +86 21 58 59 33 13

Japan
VARTA Microbattery Pte. Ltd.
Kyobashi Y’SUS Bldg, 3F.1-6-12, Kyobashi,
Chuo-Ku
Tokyo 104-0031, Japan
Tel +81 3 35 67 81 71
Fax +81 3 35 67 81 75

Taiwan
VARTA Microbattery Pte. Ltd.
11F-4, No.130, Section 2
Chung Hsiao East Road
Taipei 10053, Taiwan
Tel +886 2 33 93 15 57
Fax +886 2 33 93 15 56

Distributors and representations in all major countries worldwide. Please see webpage.
For e-mail contact please visit: http://contact.varta-microbattery.com.

www.varta-microbattery.com

VARTA Microbattery is a company of
Montana Tech Components AG,
Hauptstrasse 35, 5737 Menziken, Switzerland
www.montanatechcomponents.com

www.varta-microbattery.com