Pediatric Trauma

Karen Lidsky M.D

Pediatric EMS Medical Director for Rainbow Babies and Children’s Hospital
Medical Director Pediatric Transport
Co-Director Pediatric Trauma
Department of Pediatric Pharmacology and Critical Care
Rainbow Babies and Children’s Hospital
Objectives

- Discuss the epidemiology of pediatric trauma
- Discuss unique anatomic and physiologic characteristics of children
- Review early management and transport
- Review of individual organ systems with regards to trauma management
Pediatric Trauma

- Trauma: forceful disruption of bodily homeostasis
- A serious injury or shock to the body
- Injury to living tissues caused by an extrinsic force
- Bodily injury posing a treat to human life without immediate medical intervention
Epidemiology

- Leading cause of death in children and young adults (49%)
- Boys > girls: ratio 2:1
- CNS injury causes most of morbidity
- Increased morbidity with multisystem injury
- Blunt trauma more common than penetrating
 - Later more lethal
 - Most blunt trauma accidental
 - MVA responsible for 75% childhood deaths
<table>
<thead>
<tr>
<th>Rank</th>
<th><1</th>
<th>1-4</th>
<th>5-9</th>
<th>10-14</th>
<th>15-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55-64</th>
<th>65+</th>
<th>All ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Short Gestation</td>
<td>Homicide</td>
<td>Malignant Neoplasms</td>
<td>Congenital Anomalies</td>
<td>Unintent. Injury</td>
<td>Suicide</td>
<td>Malignant Neoplasms</td>
<td>Heart Disease</td>
<td>Heart Disease</td>
<td>Malignant Neoplasms</td>
<td>Malignant Neoplasms</td>
</tr>
<tr>
<td>3</td>
<td>SIDS</td>
<td>Congenital Anomalies</td>
<td>Homicide</td>
<td>Homicide</td>
<td>Homicide</td>
<td>Homicide</td>
<td>Heart Disease</td>
<td>Unintent. Injury</td>
<td>Low. Respiratory Disease</td>
<td>Low. Respiratory Disease</td>
<td>Low. Respiratory Disease</td>
</tr>
<tr>
<td>4</td>
<td>Maternal Pregnancy Comp.</td>
<td>Malignant Neoplasms</td>
<td>Congenital Anomalies</td>
<td>Congenital Anomalies</td>
<td>Malignant Neoplasms</td>
<td>Malignant Neoplasms</td>
<td>Suicide</td>
<td>Unintent. Injury</td>
<td>Diabetes Mellitus</td>
<td>Cerebrovascular</td>
<td>Cerebrovascular</td>
</tr>
<tr>
<td>5</td>
<td>Placenta Cord Membrane</td>
<td>Influenza & Pneumonia</td>
<td>Septicemia</td>
<td>Suicide</td>
<td>Heart Disease</td>
<td>Heart Disease</td>
<td>Homicide</td>
<td>Liver Disease</td>
<td>Unintent. Injury</td>
<td>Alzheimer's Disease</td>
<td>Unintent. Injury</td>
</tr>
<tr>
<td>6</td>
<td>Unintent. Injury</td>
<td>Cerebrovascular</td>
<td>Cerebrovascular</td>
<td>Benign Neoplasms</td>
<td>Congenital Anomalies</td>
<td>Diabetes Mellitus</td>
<td>HIV</td>
<td>Diabetes Mellitus</td>
<td>Cerebrovascular</td>
<td>Diabetes Mellitus</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>7</td>
<td>Respiratory Distress</td>
<td>Heart Disease</td>
<td>Chronic Low. Respiratory Disease</td>
<td>Cerebrovascular</td>
<td>Cerebrovascular</td>
<td>Congenital Anomalies</td>
<td>Diabetes Mellitus</td>
<td>Cerebrovascular</td>
<td>Liver Disease</td>
<td>Influenza & Pneumonia</td>
<td>Alzheimer's Disease</td>
</tr>
<tr>
<td>8</td>
<td>Circulatory System Disease</td>
<td>Perinatal Period</td>
<td>Four Tied</td>
<td>Seven Tied</td>
<td>Diabetes Mellitus</td>
<td>HIV</td>
<td>Liver Disease</td>
<td>Chronic Low. Respiratory Disease</td>
<td>Suicide</td>
<td>Unintent. Injury</td>
<td>Influenza & Pneumonia</td>
</tr>
<tr>
<td>9</td>
<td>Bacterial Sepsis</td>
<td>Three Tied</td>
<td>Four Tied</td>
<td>Seven Tied</td>
<td>Septicemia</td>
<td>Cerebrovascular</td>
<td>Cerebrovascular</td>
<td>Nephritis</td>
<td>Nephritis</td>
<td>Nephritis</td>
<td>Nephritis</td>
</tr>
<tr>
<td>10</td>
<td>Necrot Enterocoli</td>
<td>Three Tied</td>
<td>Four Tied</td>
<td>Seven Tied</td>
<td>Septicemia</td>
<td>Chronic Low Respiratory Disease</td>
<td>Two Tied</td>
<td>Septicemia</td>
<td>Two Tied</td>
<td>Septicemia</td>
<td>Suicide</td>
</tr>
</tbody>
</table>

*WISQARS™ Produced By: Office of Statistics and Programming, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention
Data Source: National Center for Health Statistics (NCHS), National Vital Statistics System*
Incidence and mortality of pediatric trauma

<table>
<thead>
<tr>
<th>Injury mechanism</th>
<th>Incidence (%)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blunt</td>
<td>92</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>Motor vehicle injury—occupant</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Motor vehicle injury—pedestrian</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Bicycle</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Penetrating</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Gunshot wound</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Stabbing</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Crush</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Epidemiology

- Cost: estimated to be > 12 billion/yr
 - Immediate and long term care
 - Lost income

- Mortality
 - 50% at the scene: airway compromise, hypovolemic shock, CNS injury
 - 30% within first few hours of injury: golden hour
 - 20% within days/weeks: resulting complications, brain death
Early Management

- **Pre-hospital trauma care**
 - Emergency medical dispatcher instruction to lay rescuers
 - First responders/ emergency medical technicians
 - “platinum half hour”--- “golden hour”
 - “scoop and run” or “stay and play”

- **Where to take the child?**
 - Closest facility vs. Pediatric Trauma Center
 - Resuscitation focuses on airway management, ventilatory support, restoration of intravascular volume
Trauma Center

- Neurosurgeon
- Trauma Surgeon

Resuscitation Team

Surgical Specialties

Medical Specialties

- Nursing
- ICU

Orthopedic Surgeon

Anesthesia

OR

ALWAYS OPEN

TRAUMA CENTER
Rainbow Babies and Children’s Hospital

- Level I Trauma Center
- Designated by the American College of Surgeons Committee on Trauma (ACS-COT)
- Meets criteria for multi-disciplinary care
<table>
<thead>
<tr>
<th>Pediatric Surgical and Trauma Services - Rehabilitation - Injury Prevention</th>
<th>Pediatric Emergency Medicine and dedicated Pediatric Emergency Room</th>
<th>Dedicated Pediatric Operating Room and PACU</th>
<th>Pediatric Neurological Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric Intensive Care Unit</td>
<td>Pediatric Dental Services & Oral Surgery</td>
<td>Pediatric Anesthesiology</td>
<td>Pediatric Orthopedics</td>
</tr>
<tr>
<td>Pediatric Ground and Air Transport Services</td>
<td>Child Life Department</td>
<td>Pediatric Social Work Department</td>
<td>Pediatric Asthma Center</td>
</tr>
<tr>
<td>Pediatric Autism Center</td>
<td>Pediatric Allergy and Immunology</td>
<td>Pediatric Children’s Cancer Center</td>
<td>Pediatric Cystic Fibrosis Center</td>
</tr>
<tr>
<td>Pediatric Diabetes Center</td>
<td>Pediatric Epidemiology</td>
<td>Pediatric GI Services</td>
<td>Pediatric Dermatology</td>
</tr>
<tr>
<td>Pediatric Cardiology</td>
<td>Pediatric Cardiothoracic Surgery</td>
<td>Pediatric Behavioral Psychology</td>
<td>Pediatric Endocrinology</td>
</tr>
</tbody>
</table>
Rainbow Babies and Children’s Hospital

- Founded over 120 years ago
- 244-beds
- >1,300 pediatric specialists
- 500,000 outpatient visits
- ~180 hospitalized children daily
- ~10,000 newborns, infants, children, and adolescents are hospitalized yearly
- >26,000 emergency room patients yearly
- 5,700 children trauma patients yearly
Rainbow Babies and Children’s Hospital

- The Pediatric Intensive Care Unit (PICU)
 - Cares for the most complex patients
 - Has among the best survival rates in the country
 - Leads the country in drug therapy & research
 - 23-bed unit
 - More than 1,800 critically ill children every year.
Ohio Pediatric Trauma

- Patients under 16 years of age, with at least one of the following:
 - Physiologic conditions
 - Depressed or deteriorating neurologic status
 - Respiratory distress or failure
 - Endotracheal intubation and/or vent support
 - Shock
 - Injuries requiring blood product transfusions
 - Requiring invasive monitoring, ICP monitoring, vasoactive medications
Patients under 16 years of age, with at least one of the following:

- **Anatomic conditions**
 - Fractures and deep penetrating wounds to extremities-neurovascular or compartment injury
 - Fractures of 2 or more long bones
 - Fracture of axial skeleton
 - Spinal cord or column injuries
 - Traumatic amputation with potential for re-implantation
 - Head Injury- CSF leak, open skull/ depressed skull fracture, LOC
 - Significant penetrating wounds to head, neck, trunk
 - Significant blunt injury to chest or abdomen
ACS Transfer Recommendations

- Carotid or vertebral artery injury
- Torn thoracic aorta or great vessels
- Cardiac rupture
- Bilateral pulmonary contusions
- Major abdominal vascular injury
- Grade IV or V liver injuries
- Unstable pelvic fractures
ACS Transfer Recommendations

- Fracture or dislocation with loss of distal pulses
- Penetrating injury or open fracture of skull
- GCS < 14 or lateralizing neurologic signs
- Spinal fracture or spinal cord deficits
- Significant torso injury with advance co-morbid disease
- Open long bone fractures
- >2 unilateral rib fractures or bilateral rib fractures with pulmonary contusion
Children Not Small Adults

- **Anatomical Difference**
 - Shape and Size
 - Variable weight and length: one size does not fit all
 - Broselow tape
 - Smaller body mass
 - Affect kinetic energy transfer - multiorgan trauma
 - Head proportionately larger
 - Skeletal growth
 - Incomplete calcifications, active growth centers, elasticity
 - Higher frequency of incomplete fractures/disturbances to growth
 - Surface area
 - Ratio body surface to volume diminished: thermal loss
 - Temperature regulation matures by age 10 yrs
Determination of size/ weight

- **BROSELOW PEDIATRIC RESUSCITATION MEASURING TAPES** provide approximate weight, vital signs and drug doses based on a child’s height.

![Image of BROSELOW Tapes]

<table>
<thead>
<tr>
<th>RED</th>
<th>PURPLE</th>
<th>YELLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUSCITATION</td>
<td>RESUSCITATION</td>
<td>RESUSCITATION</td>
</tr>
<tr>
<td>Epinephrine (1:1000)</td>
<td>Epinephrine High (1:1000)</td>
<td>Epinephrine (1:100)</td>
</tr>
<tr>
<td>0.1 mg</td>
<td>0.1 mg</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>0.25 mg</td>
<td>0.25 mg</td>
<td>0.25 mg</td>
</tr>
<tr>
<td>1 mg</td>
<td>1 mg</td>
<td>1 mg</td>
</tr>
<tr>
<td>2 mg</td>
<td>2 mg</td>
<td>2 mg</td>
</tr>
<tr>
<td>10 mg</td>
<td>10 mg</td>
<td>10 mg</td>
</tr>
<tr>
<td>20 mg</td>
<td>20 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>50 mg</td>
<td>50 mg</td>
<td>50 mg</td>
</tr>
<tr>
<td>100 mg</td>
<td>100 mg</td>
<td>100 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESERVATIONS</th>
<th>PRESERVATIONS</th>
<th>PRESERVATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose</td>
<td>Lactose</td>
<td>Lactose</td>
</tr>
<tr>
<td>0.1 mg</td>
<td>0.1 mg</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>0.2 mg</td>
<td>0.2 mg</td>
<td>0.2 mg</td>
</tr>
<tr>
<td>0.5 mg</td>
<td>0.5 mg</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>1 mg</td>
<td>1 mg</td>
<td>1 mg</td>
</tr>
<tr>
<td>2 mg</td>
<td>2 mg</td>
<td>2 mg</td>
</tr>
<tr>
<td>5 mg</td>
<td>5 mg</td>
<td>5 mg</td>
</tr>
<tr>
<td>10 mg</td>
<td>10 mg</td>
<td>10 mg</td>
</tr>
<tr>
<td>20 mg</td>
<td>20 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>50 mg</td>
<td>50 mg</td>
<td>50 mg</td>
</tr>
<tr>
<td>100 mg</td>
<td>100 mg</td>
<td>100 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAINTENANCE</th>
<th>MAINTENANCE</th>
<th>MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylephrine</td>
<td>Phenylephrine</td>
<td>Phenylephrine</td>
</tr>
<tr>
<td>0.5 mg</td>
<td>0.5 mg</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>1 mg</td>
<td>1 mg</td>
<td>1 mg</td>
</tr>
<tr>
<td>2 mg</td>
<td>2 mg</td>
<td>2 mg</td>
</tr>
<tr>
<td>5 mg</td>
<td>5 mg</td>
<td>5 mg</td>
</tr>
<tr>
<td>10 mg</td>
<td>10 mg</td>
<td>10 mg</td>
</tr>
<tr>
<td>20 mg</td>
<td>20 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>50 mg</td>
<td>50 mg</td>
<td>50 mg</td>
</tr>
<tr>
<td>100 mg</td>
<td>100 mg</td>
<td>100 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KG</th>
<th>9 KG</th>
<th>10 KG</th>
<th>11 KG</th>
<th>12 KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose</td>
<td>Lactose</td>
<td>Lactose</td>
<td>Lactose</td>
<td>Lactose</td>
</tr>
<tr>
<td>0.1 mg</td>
<td>0.1 mg</td>
<td>0.1 mg</td>
<td>0.1 mg</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>0.2 mg</td>
<td>0.2 mg</td>
<td>0.2 mg</td>
<td>0.2 mg</td>
<td>0.2 mg</td>
</tr>
<tr>
<td>0.5 mg</td>
<td>0.5 mg</td>
<td>0.5 mg</td>
<td>0.5 mg</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>1 mg</td>
<td>1 mg</td>
<td>1 mg</td>
<td>1 mg</td>
<td>1 mg</td>
</tr>
<tr>
<td>2 mg</td>
<td>2 mg</td>
<td>2 mg</td>
<td>2 mg</td>
<td>2 mg</td>
</tr>
<tr>
<td>5 mg</td>
<td>5 mg</td>
<td>5 mg</td>
<td>5 mg</td>
<td>5 mg</td>
</tr>
<tr>
<td>10 mg</td>
<td>10 mg</td>
<td>10 mg</td>
<td>10 mg</td>
<td>10 mg</td>
</tr>
<tr>
<td>20 mg</td>
<td>20 mg</td>
<td>20 mg</td>
<td>20 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>50 mg</td>
<td>50 mg</td>
<td>50 mg</td>
<td>50 mg</td>
<td>50 mg</td>
</tr>
<tr>
<td>100 mg</td>
<td>100 mg</td>
<td>100 mg</td>
<td>100 mg</td>
<td>100 mg</td>
</tr>
</tbody>
</table>
Weight Estimates

- If weight unknown and Broselow tape not available- can estimate from age
 - Age \leq 8 \text{ years}: (\text{Age} \times 2) + 8 = \text{weight (kg)}
 - Age > 8 \text{ years}: \text{Age} \times 3 = \text{weight (kg)}
Children Not Small Adults

- **Airway**
 - More anterior placed
 - Smaller overall diameter with larger tongues
 - Shorter trachea - risk mainstem intubation / dislodged tube
 - Smaller, narrower funneled shaped
 - Epiglottis changes from U shaped to thinner adult structure; drops from level of C1 to C3
Children Not Small Adults

- **Breathing:** Poor compensation for associated respiratory derangements
 - Larger oxygen consumption
 - Smaller functional residual capacity
 - Less pulmonary compliance/ greater chest wall compliance
 - Horizontally aligned ribs - diaphragm breathers

- **Abdominal organs larger**
 - More anterior and less subcutaneous fat - higher risk injury
 - Attain adult structure and function by time wt 35kg

- **Physiologic differences**
 - Variable heart rate, RR, BP
 - Infants dependent on HR for compensation/ cardiac output
 - Compensatory vasoconstriction: normal BP with early shock
 - Shock: late identification
 - Differences organ system function more pronounced < 2yrs age

- **Key to remember:**
 - Kids die from hypoxia and respiratory arrest
VITAL SIGNS BY AGE

<table>
<thead>
<tr>
<th>AGE</th>
<th>WT kg</th>
<th>HR</th>
<th>BP</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 m</td>
<td>3-6</td>
<td>130-180</td>
<td>60-80/40</td>
<td>40-60</td>
</tr>
<tr>
<td>1-2 y</td>
<td>10-12</td>
<td>120-160</td>
<td>80/40</td>
<td>40</td>
</tr>
<tr>
<td>2-5 y</td>
<td>12-18</td>
<td>100-120</td>
<td>90-100/60</td>
<td>30</td>
</tr>
<tr>
<td>5-10 y</td>
<td>18-30</td>
<td>80-100</td>
<td>100-120/80</td>
<td>20</td>
</tr>
</tbody>
</table>
Management

- ATLS approach but need to incorporate principles of pediatric assessment

- Keep in mind neuroventilatory derangements 5x more common than hemodynamic derangements but later twice as lethal

- Primary survey
 - ABC’s
 - Continuous cycle of assessment, intervention, reassessment
Management- Airway /Cervical Spine Stabilization

- All else futile if airway control ineffective
 - Goal relieve anatomical obstruction, prevent aspiration, promote adequate gas exchange

- Proper immobilization essential
 - Avoid passive flexion
 - Keep plane of face parallel / sniffing position
 - Maintain neutral alignment: padding
 - Inline traction/stability
Management - Airway / Cervical Spine Stabilization

- Supplemental O2 – FIO$_2$ of 1 (100%)
- Clear airway
- Artificial airway
 - Oral airway
 - Only unconscious patient: elicit gag
 - May assist bag/mask ventilation
 - Endotracheal intubation
 - Oral not nasal
 - Aspiration risk: full stomach
 - Hemodynamic compromise
 - Less tolerant hypoxia: preoxygenation/denitrogenation
 - LMA
 - Surgical airway
Pediatric Airway Guidelines

- Endotracheal Tube Size: $16 + AGE_{4}$

- Diameter of the child’s 5th digit

- Size of child’s nares
Rapid Sequence

- **Preoxygenation**: Atropine sulfate 0.1-0.5 mg
- **Sedation**
 - **Hypovolemic**: Midazolam HCL 0.1 mg/Kg; 5 mg maximum
 - **Normovolemic**: Thiopental sodium 4-5 mg/Kg
- **Cricoid Pressure**
- **Paralysis***
 - **Short Paralysis**: Succinylcholine chloride <10 Kg: 2 mg/Kg; >10 Kg: 1 mg/Kg
 - **Longer Paralysis**: Vecuronium bro. 0.2 mg/Kg
- **Intubate, Check Tube Position, Release Cricoid Pressure**
Management – Breathing

- **Inadequate ventilation**
 - Abnormal respiratory pattern
 - Cyanosis
 - Clinical evidence hypercapnia ie increased sympathetic tone

- **Avoid hypercarbia/hypoxia**

- **Persistent desaturations**
 - Re-evaluate for asymmetry: pneumothorax
 - Tube position if indicated

- **Consider open chest wounds**
Management - Circulation

- **Shock major concern: often missed in early stages**
 - Mobile mediastinum: compensate for obstructive lesion
 - Vasculature better able to constrict
 - Maintain SVR, thus afterload and systemic BP longer
 - Frank hypotension late sign

- **Normal blood volume: 70-80ml/kg**
 - May not see hypotension until loss of 30% blood volume
 - 10-15%: mild tachycardia
 - 30%: tachycardia, diminished peripheral pulses
 - 30-45%: decreased urine output, thready central pulses, narrow pulse pressure
 - >45%: coma
Table 3—Systemic Responses to Blood Loss in the Pediatric Patient

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>MILD BLOOD VOLUME LOSS (<30%)</th>
<th>MODERATE BLOOD VOLUME LOSS (30%-45%)</th>
<th>SEVERE BLOOD VOLUME LOSS (>45%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>↑ Heart rate; weak, thready peripheral pulses</td>
<td>Low normal blood pressure, narrowed pulse pressure, markedly ↑ heart rate; absent peripheral pulses with weak, thready central pulses</td>
<td>Hypotension; tachycardia then bradycardia</td>
</tr>
<tr>
<td>Central Nervous System</td>
<td>Anxious, irritable, confused</td>
<td>Lethargic, dulled response to pain¹</td>
<td>Comatose</td>
</tr>
<tr>
<td>Skin</td>
<td>Cool, mottled; prolonged capillary refill</td>
<td>Cyanotic; markedly prolonged capillary refill</td>
<td>Pale, cold</td>
</tr>
<tr>
<td>Urinary Output</td>
<td>Minimal ↓</td>
<td>Minimal</td>
<td>None</td>
</tr>
</tbody>
</table>

¹The child's dulled response to pain with this degree of blood loss (30%-45%) is often indicated by the decreased response noted when an IV catheter is inserted.
Management - Circulation

- Assessment: signs of shock
 - Heart rate: tachycardic
 - Pulses: loss of peripheral pulses, narrow pulse pressure, loss of central pulse - you are too late
 - Blood pressure:
 - Lower limits systolic: 70+(2 x age in years)
 - Diastolic: 2/3 systolic
Basic steps to management

- Control active hemorrhage
 - Direct pressure

- Cognition of potential internal bleeding

- No tourniquet or MAST

- Correction of coagulopathies: dilutional / losses
 - Platelets, FFP: replace when greater than 2x blood volume, 80ml/kg in young child
 - Amicar
 - Factor VII
Basic steps to management (cont.)

- Vascular access: essential in all patients
 - Large bore peripheral catheter: ideally two sites of access
 - IO placement: do not delay
 - Central access
Basic steps to management (cont.)

- Volume Replacement
 - 20-40 ml/kg warmed isotonic fluids
 - 3:1 rule
 - Over resuscitation
 - Hemorrhage/edema vs. delayed resuscitation
- Crystalloid vs. colloid
 - Meta-analysis showing no difference
 - Crystalloid cheaper but more important: readily available
 - Albumin: lower levels inflammatory cytokines, apoptosis
 - No hypotonic solutions
 - Isotonic saline vs. Ringers Lactate
Basic steps to management (cont.)
- Other fluids to consider
 - Hypertonic saline
 - Redistribution of extracellular fluid
 - Less neutrophile activation
 - Hyperchloremic metabolic acidosis
 - Albumin
 - Provides approximately 80% intravascular colloid oncotic pressure
 - 5% for acute resuscitation
 - Hydroxyethyl starch
 - Platelet dysfunction
 - Plasma volume expansion 24-36hr
Basic steps to management (cont.)

- Blood products
 - 3:1 rule
 - PRBC: Hct depends on anticoagulant used
 - Citrate phosphate: 65%-75%
 - Adenine anticoagulants: 50%-60%
 - Type and cross ASAP: start with O negative trauma pack
 - Blood warmer
 - Platelet replacement: After 2x blood volume replacement
 - Blood replacement products
Management- Disability / Exposure

- Abbreviated neurologic exam
 - Cognitive
 - GCS
 - AVPU
 - Pupils
 - Early sign of developing intracranial hypertension
 - Asymmetry, sun setting
 - Motor
 - Early detection spinal cord injury
Glascow Coma Scale

Eye Opening (4)
1. NO EYE OPENING
2. TO PAIN
3. TO COMMAND
4. SPONTANEOUSLY

Motor (6)
1. NONE
2. EXTENTION*
3. FLEXION*
4. WITHDRAWL*
5. LOCALIZES*
6. OBEYS COMMANDS

* TO PAIN
Differences In GCS Verbal

ADULT (5)
1. NO RESPONSE
2. INCOMPRHENSIBLE
3. INAPPROPRIATE
4. CONFUSED
5. ORIENTATED

PEDIATRIC (5)
1. NO RESPONSE
2. INCONSOLABLE
3. CONSOLABLE
4. INAPPROPRIATE INTERACTIONS
5. SMILES, ORIENTATED
Hypothermia

- Children have a higher body to surface area to mass ratio
- Hypothermic infants are more difficult to resuscitate
- Loose heat easily
- Resuscitation area, ED, Radiology, OR should be warmed with high humidity
- Minimize exposure: keep covered as much as possible
- Warmed IV fluids
CNS Injury

- Leading cause of death in pediatric trauma
- 85-90% minor: GCS > 12
- Keep on alert: initial exam and scans do not always tell the truth----ICH occurs with time

Anatomical difference kids vs. adults
- Infants with fontanelles/open sutures: edema without ICH
- Felt to have more plasticity
- Larger heads----more torque
- Soft cranium: thus parenchymal injury without fractures
- Less myelin so increased risk affect from shearing forces
- Prone to reactive hyperemia
CNS Injury

- Variable Presentation
 - Altered mental status: LOC, irritability
 - Full fontanelle, split sutures, palpable deformities
 - Ecchymosis, hematomas
 - Asymmetrical, dilated or non-reactive pupils
 - Sun setting eyes, disconjugate gaze
 - Rapid deterioration vs. completely normal
 - GCS not good predictor in infants: trust overall exam
CNS Injury - Management

- Avoid hypoxic ischemic event
 - Maintain adequate oxygenation and ventilation
 - Do not hyperventilate/hypoventilate
 - Intravascular volume resuscitation
 - Maintain MAP:
 - >70 adolescent
 - >60 child
 - >50 infant
- Isotonic fluids
- Optimal ventilation
- Control glucose load
- ICP precautions
- Osm therapy
Spinal Injuries

- Uncommon, only 5% but can be deadly
- Anatomical differences
 - Interspinous ligaments and joint capsules more flexible
 - Vertebral bodies wedge anterior: tend to slide forward in flexion
 - Facet joints are flat
 - Larger head: angular forces applied to upper neck relatively greater
Spinal Injuries
Spinal Injuries- Management

- KEEP IMMOBILIZED
 - Collar that fits/ rolls for infants
 - Side rolls
 - Head straps as well as those to control trunk/extremities

- X-ray vs. CT
 - How high suspicion for injury
 - Limitations of clinical exam: distracting injuries

- Surgical fixation when indicated
- Steroids out of favor
Thoracic Injuries

- Occur in 6% pediatric trauma victims
- Major contributor to mortality
- 90% related to blunt trauma
- Marker for injury severity
Life-threatening Injuries

- Airway injury

- Tension pneumothorax / Massive hemothorax
 - Tension pneumo leads to hemodynamic instability
 - Tracheal deviation, acute respiratory distress, hemodynamic instability not explained by hemorrhage

- Cardiac injury and tamponade
 - Chest pain, dysrhythmias, myocardial dysfunction
 - Sudden death: Commotio Cordis
 - Cardiac tamponade- obstructs venous return and cardiac output
 - Beck’s Triad: pulsus paradoxus, quiet precordium, distended neck veins
 - Unexplained tachycardia in the younger child

- Rib fractures / Flail chest: lost continuity with thorax
 - Paradoxically movement- in inspiration, out expiration
 - Requires controlled mechanical ventilation; intubation in the field
Abdominal Injuries

- Blunt trauma cause in 83% with 9% mortality

- Pay attention to physical exam
 - Skin loss, ecchymosis, puncture wounds, distension, guarding, rebound tenderness

- Labs: may not see bump with initial labs
 - LFT’s, Amylase, Lipase, ABG- acid/base status, UA

- Diagnosis by radiographic studies
 - CT preferred method
 - Fast Exam- beside ultrasound
 - Peritoneal Lavage falling out of favor
Burns

- **Severity**
 - First degree: superficial involvement of epidermis
 - Second degree: epidermis and partial dermis
 - Third degree: full thickness, nerve damage, eschar

- **Infants**: inflicted, immersion, spills

- **Older kids**: flames, fire crackers

- **Assessment**
 - Rules of nine vs. 1% palm
 - Often underestimate
Burns

- Transfer directly to a verified burn center
 - Burns >10% total body surface area
 - Full thickness burns of the face, hands, feet, genitalia, perineum or major joints
 - Third degree burns in any age group
 - Electrical burns (including lightening injury)
 - Chemical burns and inhalation injury
Burns Combined with Traumatic Injuries

- Select destination based on which set of injuries create the greatest risk to life and limb

- Severe injuries with minor burns = Trauma Center

- Severe burns with minor injuries = Burn center
Child Abuse: Clues

History
- story ≠ injuries
- history changing
- injury ≠ development
- delay seeking help
- inappropriate level of concern

Physical Exam
- multiple old and new bruises
- posterior rib #, sternum #, spiral # < 3
- immersion burns, cigarette
Summary

- Trauma leading cause mortality in pediatrics requiring multidisciplinary approach to management
- Rapid organized assessment and intervention required to optimal outcome; dependent on constant reassessment
- Children are not small adults- need for understanding of anatomical and physiologic differences for optimal care
- Rapid aggressive management of the pediatric trauma patient can lead to positive outcomes, even with the most severe injuries
- What happens in the field and on transport sets the stage for things to come
We are just a phone call away! One call puts you in touch with the Transfer and Referral Center and an attending physician in the pediatric Emergency Department.

216-844-PEDS (7337)

If the injuries are particularly severe you will be placed in conference call with the pediatric trauma surgeon on duty as well.