SECTION TABLE OF CONTENTS

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

SECTION 07 60 00

FLASHING AND SHEET METAL

08/08

PART 1 GENERAL

1.1 REFERENCES
1.2 GENERAL REQUIREMENTS
1.3 SUBMITTALS
1.4 DELIVERY, HANDLING, AND STORAGE

PART 2 PRODUCTS

2.1 MATERIALS
 2.1.1 Exposed Sheet Metal Items
 2.1.2 Drainage
 2.1.3 Copper, Sheet and Strip
 2.1.4 Lead-Coated Copper Sheet
 2.1.5 Lead Sheet
 2.1.6 Steel Sheet, Zinc-Coated (Galvanized)
 2.1.6.1 Finish
 2.1.7 Zinc Sheet and Strip
 2.1.8 Stainless Steel
 2.1.9 Terne-Coated Steel
 2.1.10 Aluminum Alloy Sheet and Plate
 2.1.10.1 Alclad
 2.1.10.2 Finish
 2.1.11 Aluminum Alloy, Extruded Bars, Rods, Shapes, and Tubes
 2.1.12 Solder
 2.1.13 Polyvinyl Chloride Reglet
 2.1.14 Bituminous Plastic Cement
 2.1.15 Roofing Felt
 2.1.16 Asphalt Primer
 2.1.17 Fasteners

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Metal Roofing
 3.1.1.1 [Flat Copper,] [Zinc,] [Terne-coated Steel] Roofing
3.1.1.2 Standing-seam Method
3.1.1.3 Flat-seam Method
3.1.2 Workmanship
3.1.3 Nailing
3.1.4 Cleats
3.1.5 Bolts, Rivets, and Screws
3.1.6 Seams
 3.1.6.1 Flat-lock Seams
 3.1.6.2 Lap Seams
 3.1.6.3 Loose-Lock Expansion Seams
 3.1.6.4 Standing Seams
 3.1.6.5 Flat Seams
3.1.7 Soldering
 3.1.7.1 Edges
3.1.8 Welding and Mechanical Fastening
 3.1.8.1 Welding of Aluminum
 3.1.8.2 Mechanical Fastening of Aluminum
3.1.9 Protection from Contact with Dissimilar Materials
 3.1.9.1 Copper or Copper-bearing Alloys
 3.1.9.2 Aluminum
 3.1.9.3 Metal Surfaces
 3.1.9.4 Wood or Other Absorptive Materials
3.1.10 Expansion and Contraction
3.1.11 Base Flashing
3.1.12 Counterflashing
3.1.13 Metal Reglets
 3.1.13.1 Caulked Reglets
 3.1.13.2 Friction Reglets
3.1.14 Polyvinyl Chloride Reglets [Temporary Construction Installation]
3.1.15 Gravel Stops and Fascias
 3.1.15.1 Edge Strip
 3.1.15.2 Joints
3.1.16 Metal Drip Edge
3.1.17 Gutters
3.1.18 Downspouts
 3.1.18.1 Terminations
3.1.19 Flashing for Roof Drains
3.1.20 Scuppers
3.1.21 Conductor Heads
3.1.22 Splash Pans
3.1.23 Open Valley Flashing
3.1.24 Eave Flashing
3.1.25 Sheet Metal Covering on Flat, Sloped, or Curved Surfaces
3.1.26 Expansion Joints
 3.1.26.1 Roof Expansion Joints
 3.1.26.2 Floor and Wall Expansion Joints
3.1.27 Flashing at Roof Penetrations and Equipment Supports
3.1.28 Single Pipe Vents
3.1.29 Stepped Flashing
3.1.30 Copings
3.2 PAINTING
 3.2.1 Aluminum Surfaces
3.3 CLEANING
3.4 REPAIRS TO FINISH
3.5 FIELD QUALITY CONTROL
 3.5.1 Procedure

ATTACHMENTS:
Table II

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for flashing and sheet metal work including gutters and downspouts, scuppers, splash pans, and sheet metal roofing.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: The specified sheet metal roofing is the type commonly used for on-site fabrication which does not include factory fabricated or preformed metal roofing. Preformed and Standing Seam metal roofing is covered in other Division 7 sections. Gravity roof ventilators, roof scuttles, louvers, and similar items are not included. This guide specification requires extensive editing when used with single ply roof systems in order to assure compatibility.

NOTE: Details of sheet metalwork will be shown on project drawings in accordance with the appropriate details in the Architectural Sheet Metal Manual of the Sheet Metal and Air Conditioning Contractors.
Coordinate specifications with the drawings so that drawing details and SMACNA Arch. Manual requirements do not conflict or repeat. Delete references to SMACNA Arch. Manual when requirements are detailed in the drawings.

NOTE: On the drawings, show:

1. Base, counter open valley, and eave flashing

2. Roof drain flashing

3. Expansion joints - (The drawings should contain interior and exterior details of building expansion joints at walls, ceiling, floors, roof, and parapets. Provide isometric detailing for expansion joint intersections.)

4. Sheet metal roofing; extent and slope.

5. Gutters and downspouts.

PART 1 GENERAL

NOTE: Sheet metal color will be long lasting such as anodized aluminum, or baked enamel, and will not be painted in the field. This does not preclude the use of natural materials like copper or aluminum when that is the choice of the designer. Avoid use of copper where drainage from the copper will pass over exposed masonry, stonework, or other metal surfaces.

Galvanized steel will not be permitted as an option to other metals specified. Galvanized steel may be specified for temporary structures or where it may be satisfactory due to climatic conditions. Where galvanized steel is specified, changes will be made to the text as follows:

Paragraph REFERENCES:

ASTM A653/A653M

(Galvanized) by the Hot-Dip Process,

Commercial Quality

Paragraph PROTECTION OF ALUMINUM: Require galvanized steel to be treated the same as aluminum,
i.e., separated from copper or protected.

Paragraph CONNECTIONS AND JOINTING: Require galvanized steel to be soldered.

Paragraph EXPANSION JOINTS: Expansion joints to be spaced at 12.0 m 40 foot intervals for galvanized steel.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.2/D1.2M (2014) Structural Welding Code – Aluminum

ASTM INTERNATIONAL (ASTM)

1.2 GENERAL REQUIREMENTS

Finished sheet metalwork will form a weathertight construction without waves, warps, buckles, fastening stresses or distortion, which allows for expansion and contraction. Sheet metal mechanic is responsible for cutting, fitting, drilling, and other operations in connection with sheet metal required to accommodate the work of other trades. Coordinate installation of sheet metal items used in conjunction with roofing with
roofing work to permit continuous roofing operations.

1.3 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor’s Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Covering on flat, sloped, or curved surfaces; G[, [_____]]
 Gutters; G[, [_____]]
 Downspouts; G[, [_____]]
Expansion joints; G[, [____]]
Gravel stops and fascias; G[, [____]]
Splash pans; G[, [____]]
Flashimg for roof drains; G[, [____]]
Base flashing; G[, [____]]
Counterflashimg; G[, [____]]
Flashimg at roof penetrations; G[, [____]]
Reglets; G[, [____]]
Scuppers; G[, [____]]
Copings; G[, [____]]
Drip edge; G[, [____]]
Conductor heads
Open valley flashing; G[, [____]]
Eave flashing; G[, [____]]

Indicate thicknesses, dimensions, fastenings and anchoring methods, expansion joints, and other provisions necessary for thermal expansion and contraction. Scaled manufacturer's catalog data may be submitted for factory fabricated items.

SD-11 Closeout Submittals

Quality Control Plan

Submit for sheet metal work in accordance with paragraph entitled "Field Quality Control."

1.4 DELIVERY, HANDLING, AND STORAGE

Package and protect materials during shipment. Uncrate and inspect materials for damage, dampness, and wet-storage stains upon delivery to the job site. Remove from the site and replace damaged materials that cannot be restored to like-new condition. Handle sheet metal items to avoid damage to surfaces, edges, and ends. Store materials in dry, weather-tight, ventilated areas until immediately before installation.

PART 2 PRODUCTS

2.1 MATERIALS

**
NOTE: Permit use of optional materials to extent that project design, relative costs, local environmental conditions, and commercial availability permit. Relative costs for materials
listed in Table I range from 100 as index for stainless steel followed by terne-coated steel, zinc-coated steel, and copper in that order down to approximately 50 for aluminum, based on weights, gages and thicknesses indicated. Exposed sheet metal should be of materials noted except where additions to buildings are made, match existing if appearance of structure would be detrimentally affected by use of different material. Use aluminum to match existing exposed zinc-alloy or galvanized metal, except use stainless steel in highly corrosive atmospheres such as around or in industrial buildings or in coastal areas that experience high winds or sand abrasion problems. Where Contractor’s choice is limited because of above conditions, revise accordingly. Delete inapplicable items. Weights and thicknesses listed are minimum for items described. If greater weights and thicknesses are justified by unusual local conditions, modify accordingly.

**
**

[NOTE: If material is not specified, Contractor will have a choice of aluminum, copper or stainless steel, as listed in SMACNA Arch. Manual and not prohibited herein. If the material is specified, delete this paragraph and delete all other material specifications listed in this section.

The minimum thicknesses specified in SMACNA Arch. Manual may be increased and other materials may be used if justified by local conditions.

If galvanized steel is required for temporary facilities, delete "galvanized steel" from the first sentence below.]
**
**

Do not use [lead, lead-coated metal, or galvanized steel. Use any metal listed by SMACNA Arch. Manual for a particular item, unless otherwise specified or indicated. Conform to the requirements specified and to the thicknesses and configurations established in SMACNA Arch. Manual for the materials. Different items need not be of the same metal, except that if copper is selected for any exposed item, all exposed items must be copper.]

Furnish sheet metal items in 2400 to 3000 mm 8 to 10 foot lengths. Single pieces less than 2400 mm 8 feet long may be used to connect to factory-fabricated inside and outside corners, and at ends of runs. Factory fabricate corner pieces with minimum 300 mm 12 inch legs. Provide accessories and other items essential to complete the sheet metal installation. Provide accessories made of the same or compatible materials as the items to which they are applied. Fabricate sheet metal items of the materials specified below and to the gage, thickness, or weight shown in Table I at the end of this section. Provide sheet metal items with mill finish unless specified otherwise. Where more than one material is listed for a particular item in Table I, each is acceptable and may be used except as follows:
2.1.1 Exposed Sheet Metal Items

Must be of the same material. Consider the following as exposed sheet metal: gutters, including hangers; downspouts; gravel stops and fascias; cap, valley, steeped, base, and eave flashings and related accessories.

2.1.2 Drainage

Do not use copper for an exposed item if drainage from that item will pass over exposed masonry, stonework or other metal surfaces. In addition to the metals listed in Table I, lead-coated copper may be used for such items.

2.1.3 Copper, Sheet and Strip

ASTM B370, cold-rolled temper, H 00 (standard).

2.1.4 Lead-Coated Copper Sheet

**
NOTE: Factory-applied color coating on sheet aluminum and galvanized steel may be used on building additions where necessary to match existing galvanized or other exposed painted metal work. This coating may also be used on sheet aluminum and galvanized steel surfaces of new buildings where a long-life exterior color finish is desired.
**

ASTM B101.

2.1.5 Lead Sheet

Minimum weight 19.6 kilograms per square meter 4 pounds per square foot.

2.1.6 Steel Sheet, Zinc-Coated (Galvanized)

**
NOTE: Factory-applied color coating on sheet aluminum and galvanized steel may be used on building additions where necessary to match existing galvanized or other exposed painted metal work. This coating may also be used on sheet aluminum and galvanized steel surfaces of new buildings where a long-life exterior color finish is desired.
**

ASTM A653/A653M.

2.1.6.1 [Finish]

Exposed exterior items of zinc-coated steel sheet must have a baked-on, factory-applied color coating of polyvinylidene fluoride or other equivalent fluorocarbon coating applied after metal substrates have been cleaned and pretreated. Provide finish coating dry-film thickness of 0.020 to 0.033 mm 0.8 to 1.3 mils and color of [______].

2.1.7 Zinc Sheet and Strip

ASTM B69, Type I, a minimum of 0.61 mm 0.024 inch thick.
2.1.8 Stainless Steel

**
NOTE: Factory-applied color coating on sheet aluminum and galvanized steel may be used on building additions where necessary to match existing galvanized or other exposed painted metal work. This coating may also be used on sheet aluminum and galvanized steel surfaces of new buildings where a long-life exterior color finish is desired. Finishes are described in SMACNA Arch Manual. See ASTM A48/A48M for other than standard mill finishes.
**

ASTM A480/A480M, Type 302 or 304, 2D Finish, fully annealed, dead-soft temper.

2.1.9 Terne-Coated Steel

Minimum of 350 by 500 mm 14 by 20 inch with minimum of 18 kilogram 40 pound coating per double base box. ASTM A308/A308M.

2.1.10 Aluminum Alloy Sheet and Plate

**
NOTE: Factory-applied color coating on sheet aluminum and galvanized steel may be used on building additions where necessary to match existing galvanized or other exposed painted metal work. This coating may also be used on sheet aluminum and galvanized steel surfaces of new buildings where a long-life exterior color finish is desired.
**

ASTM B209M ASTM B209 [anodized [clear] [color [_____]____]] form alloy, and temper appropriate for use.

2.1.10.1 Alclad

When fabricated of aluminum, fabricate the items Alclad 3003, Alclad 3004, Alclad 3005, clad on [one side] [both sides] unless otherwise indicated.

a. Gutters, downspouts, and hangers

b. Gravel stops and fascias

c. Flashing

2.1.10.2 Finish

Exposed exterior sheet metal items of aluminum must have a baked-on, factory-applied color coating of polyvinylidene fluoride (PVF2) or other equivalent fluorocarbon coating applied after metal substrates have been cleaned and pretreated. Provide finish coating dry-film thickness of 0.020 to 0.033 mm 0.8 to 1.3 mils and color of [_____].
2.1.11 Aluminum Alloy, Extruded Bars, Rods, Shapes, and Tubes

ASTM B221M ASTM B221.

2.1.12 Solder

ASTM B32, 95-5 tin-antimony.

2.1.13 Polyvinyl Chloride Reglet

ASTM D1784, Type II, Grade 1, Class 14333-D, 1.9 mm 0.075 inch minimum thickness.

2.1.14 Bituminous Plastic Cement

ASTM D4586/D4586M, Type I.

2.1.15 Roofing Felt

**
NOTE: Type I is for 30 no./in. Type II is for 40#/in. Edit paragraph as necessary to fit project requirements.
**

ASTM D226/D226M [Type I] [Type II].

2.1.16 Asphalt Primer

ASTM D41/D41M.

2.1.17 Fasteners

Use the same metal or a metal compatible with the item fastened. Use stainless steel fasteners to fasten dissimilar materials.

PART 3 EXECUTION

3.1 INSTALLATION

**
NOTE: On-site fabricated flat copper, zinc, or terne-coated steel metal roofing is not included in text of this guide specification because it is infrequently used. These materials do not require field painting. (However, if terne plate is used, field painting must be specified: one coat of iron oxide paint on underside before application, and on exposed surfaces after application. Exposed surfaces also require finish coat of compatible exterior oil paint over iron oxide paint). If design requires this type of metal roofing, edit subsections below as necessary.
**

3.1.1 Metal Roofing

[3.1.1.1] [Flat Copper,] [Zinc,] [Terne-coated Steel] Roofing

Before applying roofing, cover deck with rosin-sized roofing felt. Lap 50 mm 2 inch at joints and secure in place with roofing nails. Using solder
of equal parts tin and lead, solder slowly with well-heated irons to thoroughly heat sheet and completely sweat solder through full width of seam. [Tin edges of copper to be soldered at least 20 mm 3/4 inch before sheets are locked.] [Use stainless nails in terne-coated steel]; [in copper, use solid copper or bronze roofing nails] [in zinc, use zinc-coated roofing nails.] Where roof decks abut vertical surfaces, turn metal roofing up vertical surfaces about 200 mm 8 inch where practicable; where vertical surfaces are covered with applied materials, turn up roofing behind applied materials. Use standing-seam method for roofs having rise of more than one in four 3 inch per foot, and use flat-seam method when rise is one in four 3 inch per foot or less. Walking not permitted directly on metal roofs; provide approved walkways.

[3.1.1.2 Standing-seam Method]

Make standing seams parallel with slope of roof. Fabricate sheets into long lengths at shop by locking short dimensions together and thoroughly soldering joints thus formed. In applying metal, turn up one edge of course at each side seam at right angles 40 mm 1.5 inch. Then install 50 by 75 mm 2 by 3 inch cleats spaced 300 mm 12 inch apart by fastening one end of each cleat to roof with two 25 mm one inch long nails and folding roof end back over nail heads. Turn end adjoining turned-up side seam up over upstanding edge of course. Turn up adjoining edge of next course 45 mm 1.75 inch and abutting upstanding edges locked, turned over, and flattened against one side of standing seam. Make standing seams straight, rounded neatly at the top edges, and stand about 25 mm one inch above roof deck. All sheets must be same length, except as required to complete run or maintain pattern. Locate transverse joints of each panel half way between joints in adjacent sheets. Align joints of alternate sheets horizontally to produce uniform pattern, as shown in SMACNA Arch. Manual.

[3.1.1.3 Flat-seam Method]

Lay metal so short dimension is parallel to gutter or eave lines and so water will flow over and not into seams. Make seams by turning edges of sheet 20 mm 3/4 inch and lock and solder together. If sheets are laid one at a time, secure to roof deck with cleats, using three cleats to each sheet, two on long side and one on short side. Use cleats 50 mm inch wide, hooked over 20 mm 3/4 inch upturned edges of sheets, and nail to roof deck with two 25 mm one inch long nails. Turn back roof end of cleat over nail heads before next sheet is applied. If desired, sheets may be made into long lengths at shop by locking short dimensions together and soldering seams thus formed. Turn long lengths 20 mm 3/4 inch, and secure each length to roof deck by cleats spaced 300 mm 12 inch apart. Mallet and solder seams after pans are in place." All sheets to be same length, except as required to complete run or maintain pattern. Locate transverse joints of each panel half way between joints in adjacent sheets. Align joints of alternate sheets horizontally to produce uniform pattern, as shown in SMACNA Arch. Manual.

[3.1.2 Workmanship]

Make lines and angles sharp and true. Free exposed surfaces from visible wave, warp, buckle, and tool marks. Fold back exposed edges neatly to form a 13 mm 1/2 inch hem on the concealed side. Make sheet metal exposed to the weather watertight with provisions for expansion and contraction.

Make surfaces to receive sheet metal plumb and true, clean, even, smooth, dry, and free of defects and projections. For installation of items not
shown in detail or not covered by specifications conform to the applicable requirements of SMACNA 1793, Architectural Sheet Metal Manual. Provide sheet metal flashing in the angles formed where roof decks abut walls, curbs, ventilators, pipes, or other vertical surfaces and wherever indicated and necessary to make the work watertight. Join sheet metal items together as shown in Table II.

3.1.3 Nailing

Confine nailing of sheet metal generally to sheet metal having a maximum width of 450 mm 18 inch. Confine nailing of flashing to one edge only. Space nails evenly not over 75 mm 3 inch on center and approximately 13 mm 1/2 inch from edge unless otherwise specified or indicated. Face nailing will not be permitted. Where sheet metal is applied to other than wood surfaces, include in shop drawings, the locations for sleepers and nailing strips required to secure the work.

3.1.4 Cleats

Provide cleats for sheet metal 450 mm 18 inch and over in width. Space cleats evenly not over 300 mm 12 inch on center unless otherwise specified or indicated. Unless otherwise specified, provide cleats of 50 mm wide by 75 mm long 2 inch wide by 3 inch long and of the same material and thickness as the sheet metal being installed. Secure one end of the cleat with two nails and the cleat folded back over the nailheads. Lock the other end into the seam. [Where the fastening is to be made to concrete or masonry, use screws and drive in expansion shields set in concrete or masonry.] Pretin cleats for soldered seams.

3.1.5 Bolts, Rivets, and Screws

Install bolts, rivets, and screws where indicated or required. Provide compatible washers where required to protect surface of sheet metal and to provide a watertight connection. Provide mechanically formed joints in aluminum sheets 1.0 mm 0.040 inch or less in thickness.

3.1.6 Seams

Straight and uniform in width and height with no solder showing on the face.

3.1.6.1 Flat-lock Seams

Finish not less than 20 mm 3/4 inch wide.

3.1.6.2 Lap Seams

Finish soldered seams not less than 25 mm one inch wide. Overlap seams not soldered, not less than 75 mm 3 inch.

3.1.6.3 Loose-Lock Expansion Seams

Not less than 75 mm 3 inch wide; provide minimum 25 mm one inch movement within the joint. Completely fill the joints with the specified sealant, applied at not less than 3 mm 1/8 inch thick bed.

3.1.6.4 Standing Seams

Not less than 25 mm one inch high, double locked without solder.
3.1.6.5 Flat Seams

Make seams in the direction of the flow.

3.1.7 Soldering

Where soldering is specified, apply to copper, terne-coated stainless steel, zinc-coated steel, and stainless steel items. Pretin edges of sheet metal before soldering is begun. Seal the joints in aluminum sheets of 0.040 inch or less in thickness with specified sealants. Do not solder aluminum.

3.1.7.1 Edges

Scrape or wire-brush the edges of lead-coated material to be soldered to produce a bright surface. Flux brush the seams in before soldering. Treat with soldering acid flux the edges of stainless steel to be pretinned. Seal the joints in aluminum sheets of one mm 0.040 inch or less in thickness with specified sealants. Do not solder aluminum.

3.1.8 Welding and Mechanical Fastening

Use welding for aluminum of thickness greater than one mm 0.040 inch. Aluminum one mm 0.040 inch or less in thickness must be butted and the space backed with formed flashing plate; or lock joined, mechanically fastened, and filled with sealant as recommended by the aluminum manufacturer.

3.1.8.1 Welding of Aluminum

Use welding of the inert gas, shield-arc type. For procedures, appearance and quality of welds, and the methods used in correcting welding work, conform to AWS D1.2/D1.2M.

3.1.8.2 Mechanical Fastening of Aluminum

Use No. 12, aluminum alloy, sheet metal screws or other suitable aluminum alloy or stainless steel fasteners. Drive fasteners in holes made with a No. 26 drill in securing side laps, end laps, and flashings. Space fasteners 300 mm 12 inch maximum on center. Where end lap fasteners are required to improve closure, locate the end lap fasteners not more than 50 mm 2 inch from the end of the overlapping sheet.

3.1.9 Protection from Contact with Dissimilar Materials

3.1.9.1 Copper or Copper-bearing Alloys

Paint with heavy-bodied bituminous paint surfaces in contact with dissimilar metal, or separate the surfaces by means of moistureproof building felts.

3.1.9.2 Aluminum

Do not allow aluminum surfaces in direct contact with other metals except stainless steel, zinc, or zinc coating. Where aluminum contacts another metal, paint the dissimilar metal with a primer followed by two coats of aluminum paint. Where drainage from a dissimilar metal passes over aluminum, paint the dissimilar metal with a non-lead pigmented paint.
3.1.9.3 Metal Surfaces

Paint surfaces in contact with mortar, concrete, or other masonry materials with alkali-resistant coatings such as heavy-bodied bituminous paint.

3.1.9.4 Wood or Other Absorptive Materials

Paint surfaces that may become repeatedly wet and in contact with metal with two coats of aluminum paint or a coat of heavy-bodied bituminous paint.

3.1.10 Expansion and Contraction

Provide expansion and contraction joints at not more than 9750 mm 32 foot intervals for aluminum and at not more than 12 meter 40 foot intervals for other metals. Provide an additional joint where the distance between the last expansion joint and the end of the continuous run is more than half the required interval. Space joints evenly. Join extruded aluminum gravel stops and fascias by expansion and contraction joints spaced not more than 3600 mm 12 feet apart.

3.1.11 Base Flashing

**
NOTE: Bracketed first sentence applies only to shingled roofs. Do not include for built-up roofing. Normally, only bituminous base flashing should be specified with built-up roofing. Limit use of metal base flashing to locations where flashing is subject to injury by foot traffic and to runs of 6000 mm 20 feet or less when used with built-up roofing. Flashing for heating, plumbing, and electrical equipment should be specified in the appropriate sections.
**

[Lay the base flashings with each course of the roof covering, shingle fashion, where practicable, where sloped roofs abut chimneys, curbs, walls, or other vertical surfaces.] Extend up vertical surfaces of the flashing not less than 200 mm 8 inch and not less than 100 mm 4 inch under the roof covering. Where finish wall coverings form a counterflashing, extend the vertical leg of the flashing up behind the applied wall covering not less than 150 mm 6 inch. Overlap the flashing strips [or shingles] with the previously laid flashing not less than 75 mm 3 inch. Fasten the strips [or shingles] at their upper edge to the deck. Horizontal flashing at vertical surfaces must extend vertically above the roof surface and fastened at their upper edge to the deck a minimum of 6 inch on center with [large headed aluminum roofing nails] [hex headed, galvanized shielded screws] a minimum of 2-inch lap of any surface. Solder end laps and provide for expansion and contraction. Extend the metal flashing over crickets at the up-slope side of [chimneys,] [curbs,] [and similar] vertical surfaces extending through sloping roofs, the metal flashings. Extend the metal flashings onto the roof covering not less than 115 mm 4.5 inch at the lower side of [dormer walls,] [chimneys,] [and similar] vertical surfaces extending through the roof decks. Install and fit the flashings so as to be completely weathertight. Provide factory-fabricated base flashing for interior and exterior corners. Do not use metal base flashing on built-up roofing.
3.1.12 Counterflashing

Except where indicated or specified otherwise, insert counterflashing in reglets located from 230 to 250 mm 9 to 10 inch above roof decks, extend down vertical surfaces over upturned vertical leg of base flashings not less than 75 mm 3 inch. Fold the exposed edges of counterflashings 13 mm 1/2 inch. Where stepped counterflashings are required, they may be installed in short lengths a minimum [8 inch by 8 inch] [8 inch by 10 inch] or may be of the preformed one-piece type. Provide end laps in counterflashings not less than 75 mm 3 inch and make it weathertight with plastic cement. Do not make lengths of metal counterflashings exceed 3000 mm 10 feet. Form the flashings to the required shapes before installation. Factory-form the corners not less than 300 mm 12 inch from the angle. Secure the flashings in the reglets with lead wedges and space not more than 450 mm 18 inch apart; on [chimneys and] [stair/elevator towers] short runs, place wedges closer together. Fill caulked-type reglets or raked joints which receive counterflashing with caulking compound. Turn up the concealed edge of counterflashings built into masonry or concrete walls not less than 6 mm 1/4 inch and extend not less than 50 mm 2 inch into the walls. Install counterflashing to provide a spring action against base flashing. [Where bituminous base flashings are provided, extend down the counter flashing as close as practicable to the top of the cant strip. Factory form counter flashing to provide spring action against the base flashing.]

3.1.13 Metal Reglets

Provide factory fabricated caulked type or friction type reglets with a minimum opening of 6 mm 1/4 inch and a depth of 30 mm 1 1/4 inch, as approved.

3.1.13.1 Caulked Reglets

Provide with rounded edges and metal strap brackets or other anchors for securing to the concrete forms. Provide reglets with a core to protect them from injury during the installation. Provide built-up mitered corner pieces for internal and external angles. Wedge the flashing in the reglets with lead wedges every 450 mm 18 inch, caulked full and solid with an approved compound.

3.1.13.2 Friction Reglets

Provide with flashing receiving slots not less than 16 mm 5/8 inch deep, 25 mm one inch jointing tongues, and upper and lower anchoring flanges installed at 24 inch maximum snaplock receiver. Insert the flashing the full depth of the slot and lock by indentations made with a dull-pointed tool, wedges, and filled with a sealant. For friction reglets, install flashing snaplock receivers at 24 inch on center maximum. When the flashing has been inserted the full depth, caulk the slot and lock [with wedges] and fill with sealant.

3.1.14 Polyvinyl Chloride Reglets [Temporary Construction Installation]

Rigid polyvinyl chloride reglets ASTM D1784, Type II, Grade 1, Class 14333-D, 0.075 inch minimum thickness may be provided in lieu of metal reglets for temporary construction.
3.1.15 Gravel Stops and Fascias

**
NOTE: On projects having smooth surfaced roofs, the upstanding leg of the gravel stop may be omitted. Specify in the appropriate roofing section. Coordinate installation requirements for sheet metal gravel stops and fascias with the referenced roofing section.
**

Prefabricate in the shapes and sizes indicated and in lengths not less than 2400 mm 8 feet. Extend flange at least 100 mm 4 inch onto roofing. Provide prefabricated, mitered corners internal and external corners. Install gravel stops and fascias after all plies of the roofing membrane have been applied, but before the flood coat of bitumen is applied. Prime roof flange of gravel stops and fascias on both sides with an asphalt primer. After primer has dried, set flange on roofing membrane and strip-in. Nail flange securely to wood nailer with large-head, barbed-shank roofing nails 38 mm 1.5 inch long spaced not more than 75 mm 3 inch on center, in two staggered rows.

3.1.15.1 Edge Strip

Hook the lower edge of fascias at least 20 mm 3/4 inch over a continuous strip of the same material bent outward at an angle not more than 45 degrees to form a drip. Nail hook strip to a wood nailer at 150 mm 6 inch maximum on center. Where fastening is made to concrete or masonry, use screws spaced 300 mm 12 inch on center driven in expansion shields set in the concrete or masonry. Where horizontal wood nailers are slotted to provide for insulation venting, install strips to prevent obstruction of vent slots. Where necessary, install strips over 2 mm 1/16 inch thick compatible spacer or washers.

3.1.15.2 Joints

Leave open the section ends of gravel stops and fascias 6 mm 1/4 inch and backed with a formed flashing plate, mechanically fastened in place and lapping each section end a minimum of 100 mm 4 inch set laps in plastic cement. Face nailing will not be permitted. Install prefabricated aluminum gravel stops and fascias in accordance with the manufacturer's printed instructions and details.

3.1.16 Metal Drip Edge

Provide a metal drip edge, designed to allow water run-off to drip free of underlying construction, at eaves and rakes prior to the application of roofing shingles. Apply directly on the wood deck at the eaves and over the underlay along the rakes. Extend back from the edge of the deck not more than 75 mm 3 inch and secure with compatible nails spaced not more than 250 mm 10 inch on center along upper edge.

3.1.17 Gutters

**
NOTE: Where it is local practice to omit gutters because of glaciation and ice damage, eave flashing should be provided in accordance with paragraph entitled "Eave Flashing."
**
The hung type of shape indicated and supported on underside by brackets that permit free thermal movement of the gutter. Provide gutters in sizes indicated complete with mitered corners, end caps, outlets, brackets, and other accessories necessary for installation. Bead with hemmed edge or reinforce the outer edge of gutter with a stiffening bar not less than 20 by 5 mm 3/4 by 3/16 inch of material compatible with gutter. Fabricate gutters in sections not less than 2400 mm 8 feet. Lap the sections a minimum of 25 mm one inch in the direction of flow or provide with concealed splice plate 150 mm 6 inch minimum. Join the gutters, other than aluminum, by riveted and soldered joints. Join aluminum gutters with riveted sealed joints. Provide expansion-type slip joints midway between outlets. Install gutters below slope line of the roof so that snow and ice can slide clear. Support gutters on [adjustable hangers spaced not more than 750 mm 30 inch on center] [as indicated] [by continuous cleats] [and] [or] [by cleats spaced not less than 36 inch apart]. Adjust gutters to slope uniformly to outlets, with high points occurring midway between outlets. Fabricate hangers and fastenings from metals.

3.1.18 Downspouts

NOTE: For additions to existing buildings, downspouts may be specified to match the design of the existing portion of the building.

Space supports for downspouts according to the manufacturer’s recommendation for the [wood] [masonry] or [steel] substrate. Types, shapes and sizes are indicated. Provide complete including elbows and offsets. Provide downspouts in approximately 3000 mm 10 foot lengths. Provide end joints to telescope not less than 13 mm 1/2 inch and lock longitudinal joints. Provide gutter outlets with wire ball strainers for each outlet. Provide strainers to fit tightly into outlets and be of the same material used for gutters. Keep downspouts not less than 25 mm one inch away from walls. Fasten to the walls at top, bottom, and at an intermediate point not to exceed 1500 mm 5 feet on center with leader straps or concealed rack-and-pin type fasteners. Form straps and fastenings of metal compatible with the downspouts.

3.1.18.1 Terminiations

Neatly fit into the drainage connection the downspouts terminating in drainage lines and fill the joints with a portland cement mortar cap sloped away from the downspout. Provide downspouts terminating in splash blocks with elbow-type fittings. Provide splash pans as specified.

3.1.19 Flashing for Roof Drains

Provide a 750 mm 30 inch square sheet indicated. Taper insulation to drain from 600 mm 24 inch out. Set flashing on finished felts in a full bed of asphalt roof cement, ASTM D4586/D4586M. Heavily coat the drain flashing ring with asphalt roof cement. Clamp the roof membrane, flashing sheet, and stripping felt in the drain clamping ring. Secure clamps so that felts and drain flashing are free of wrinkles and folds. Retrofit roof drains must conform to ANSI/SPRI RD-1.
3.1.20 Scuppers

Line interior of scupper openings with sheet metal. Extend the lining through and project outside of the wall to form a drip on the bottom edge and form to return not less than 25 mm one inch against the face of the outside wall at the top and sides. Fold outside edges under 13 mm 1/2 inch on all sides. Provide the perimeter of the lining approximately 13 mm 1/2 inch less than the perimeter of the scupper. Join the top and sides of the lining on the roof deck side to a closure flange by a locked and soldered joint. Join the bottom edge by a locked and soldered joint to the closure flange, where required, form with a ridge to act as a gravel stop around the scupper inlet. Provide surfaces to receive the scupper lining and coat with bituminous plastic cement.

3.1.21 Conductor Heads

Type indicated and fabricated of the same material as the downspouts. Set the depth of top opening equal to two-thirds of the width. Provide outlet tubes not less than 100 mm 4 inch long. Flat-lock solder the seams. Where conductor heads are used in conjunction with scuppers, set the conductor a minimum of 50 mm 2 inch wider than the scupper. Attach conductor heads to the wall with masonry fasteners, and loose-lock to provide conductor heads with screens of the same material. Securely fasten screens to the heads.

3.1.22 Splash Pans

Install splash pans where downspouts discharge on roof surfaces and at other locations as indicated. Unless otherwise shown, provide pans not less than 600 mm long by 450 mm wide 24 inch long by 18 inch wide with metal ribs across the bottom of the pan. Form the sides of the pan with vertical baffles not less than 25 mm one inch high in the front, and 100 mm 4 inch high in the back doubled over and formed continuous with horizontal roof flanges not less than 100 mm 4 inch wide. Bend the rear flange of the pan to contour of cant strip and extend up 150 mm 6 inch under the side wall covering or to height of base flashing under counterflashings. Bed the pans and roof flanges in plastic bituminous cement and strip-flash as specified.

3.1.23 Open Valley Flashing

Provide valley flashing free of longitudinal seams, of width sufficient to extend not less than 150 mm 6 inch under the roof covering on each side. Provide a 13 mm 1/2 inch fold on each side of the valley flashing. Lap the sheets not less than 150 mm 6 inch in the direction of flow and secure to roofing construction with cleats attached to the fold on each side. Nail the tops of sheets to roof sheathing. Space the cleats not more than 300 mm 12 inch on center. Provide exposed flashing not less than 100 mm 4 inch in width at the top and increase 25 mm one inch in width for each additional 2400 mm 8 feet in length. Where the slope of the valley is one in 2.67 or less 4.5 inch or less per foot, or the intersecting roofs are on different slopes, provide an inverted V-joint, 25 mm one inch high, along the centerline of the valley; and extend the edge of the valley sheets 200 mm 8 inch under the roof covering on each side.

Valley flashing for asphalt shingle roofs is specified in section 07 31 13 ASPHALT SHINGLES.
3.1.24 Eave Flashing

One piece in width, applied in 2400 to 3000 mm 8 to 10 foot lengths with expansion joints spaced as specified in paragraph entitled "Expansion and Contraction." Provide a 20 mm 3/4 inch continuous fold in the upper edge of the sheet to engage cleats spaced not more than 250 mm 10 inch on center. Locate the upper edge of flashing not less than 450 mm 18 inch from the outside face of the building, measured along the roof slope. Fold lower edge of the flashing over and loose-lock into a continuous edge strip on the fascia. Where eave flashing intersects metal valley flashing, secure with 25 mm one inch flat locked joints with cleats that are 250 mm 10 inch on center.

3.1.25 Sheet Metal Covering on Flat, Sloped, or Curved Surfaces

Except as specified or indicated otherwise, cover and flash all minor flat, sloped, or curved surfaces such as crickets, bulkheads, dormers and small decks with metal sheets of the material used for flashing; maximum size of sheets, 375 by 455 mm 16 by 18 inch. Fasten sheets to sheathing with metal cleats. Lock seams and solder. Lock aluminum seams as recommended by aluminum manufacturer. Provide an underlayment of roofing felt for all sheet metal covering.

3.1.26 Expansion Joints

**
NOTE: The contract drawings should contain details
of building expansion joints at walls, ceiling,
floors, roof, and parapets. Include exterior and
interior details. Provide isometric detailing for
expansion joints intersections.
**

Provide expansion joints for roofs, walls, and floors as [specified] [indicated]. Provide [expansion joints in continuous sheet metal at [40 foot intervals for copper and stainless steel] [and at 32 foot intervals for aluminum], [aluminum gravel stops and fascias which must have expansion joints at not more than 12 foot spacing]. Provide evenly spaced joints. Provide an additional joint where the distance between the last expansion joint and the end of the continuous run is more than half the required interval spacing]. Conform to the requirements of Table I.

3.1.26.1 Roof Expansion Joints

Consist of curb with wood nailing members on each side of joint, bituminous base flashing, metal counterflashing, and metal joint cover. Bituminous base flashing is specified in Roofing Section. Provide counterflashing as specified in paragraph "Counterflashing," except as follows: Provide counterflashing with vertical leg of suitable depth to enable forming into a horizontal continuous cleat. Secure the inner edge to the nailing member. Make the outer edge projection not less than 25 mm one inch for flashing on one side of the expansion joint and be less than the width of the expansion joint plus 25 mm one inch for flashing on the other side of the joint. Hook the expansion joint cover over the projecting outer edges of counterflashing. Provide roof joint with a joint cover of the width indicated. Hook and lock one edge of the joint cover over the shorter projecting flange of the continuous cleat, and the other edge hooked over and loose locked with the longer projecting flange. Joints are specified in Table II.
3.1.26.2 Floor and Wall Expansion Joints

Provide U-shape with extended flanges for expansion joints in concrete and masonry walls and in floor slabs.

3.1.27 Flashing at Roof Penetrations and Equipment Supports

**
NOTE: Insert appropriate Section number and title in the blank below using format per UFC 1-300-02.
**

Provide metal flashing for all pipes, ducts, and conduits projecting through the roof surface and for equipment supports, guy wire anchors, and similar items supported by or attached to the roof deck. Goose-necks, rainhoods, power roof ventilators, and [_____] are specified in [____].

3.1.28 Single Pipe Vents

See Table I, footnote (d). Set flange of sleeve in bituminous plastic cement and nail 75 mm 3 inch on center. Bend the top of sleeve over and extend down into the vent pipe a minimum of 50 mm 2 inch. For long runs or long rises above the deck, where it is impractical to cover the vent pipe with lead, use a two-piece formed metal housing. Set metal housing with a metal sleeve having a 100 mm 4 inch roof flange in bituminous plastic cement and nailed 75 mm 3 inch on center. Extend sleeve a minimum of 200 mm 8 inch above the roof deck and lapped a minimum of 75 mm 3 inch by a metal hood secured to the vent pipe by a draw band. Seal the area of hood in contact with vent pipe with an approved sealant.

3.1.29 Stepped Flashing

Stepped flashing shall be installed where sloping roofs surfaced with shingles abut vertical surfaces. Separate pieces of base flashing shall be placed in alternate shingle courses.

3.1.30 Copings

Provide coping using copper sheets 2400 or 3000 mm 8 or 10 feet long joined by a 20 mm 3/4 inch locked and soldered seam. Terminate outer edges in edge strips. Install with sealed [lap joints] [cover plate joints] [standing seam joints] as indicated.

3.2 PAINTING

Field-paint sheet metal for separation of dissimilar materials.

[3.2.1 Aluminum Surfaces

Shall be solvent cleaned and given one coat of zinc-molybdate primer and one coat of aluminum paint.

]3.3 CLEANING

Clean exposed sheet metal work at completion of installation. Remove grease and oil films, handling marks, contamination from steel wool, fittings and drilling debris, and scrub-clean. Free the exposed metal surfaces of dents, creases, waves, scratch marks, and solder or weld marks.
3.4 REPAIRS TO FINISH

Scratches, abrasions, and minor surface defects of finish may be repaired in accordance with the manufacturer's printed instructions and as approved. Repair damaged surfaces caused by scratches, blemishes, and variations of color and surface texture. Replace items which cannot be repaired.

3.5 FIELD QUALITY CONTROL

**

NOTE: When justified by amount or criticality of roofing involved, and similar requirements are not established for Contractor Quality Control organization specified elsewhere, add the following requirements at end of paragraph entitled "Field Quality Control":

"A roofing technician responsible directly to Contractor and experienced in construction of built-up roofing systems and related work shall perform quality control functions and be on site wherever roofing operations are in progress."

**

Establish and maintain a Quality Control Plan for sheet metal used in conjunction with roofing to assure compliance of the installed sheet metalwork with the contract requirements. Remove work that is not in compliance with the contract and replace or correct. Include quality control, but not be limited to, the following:

a. Observation of environmental conditions; number and skill level of sheet metal workers; condition of substrate.

b. Verification that specified material is provided and installed.

c. Inspection of sheet metalwork, for proper size(s) and thickness(es), fastening and joining, and proper installation.

3.5.1 Procedure

Submit for approval prior to start of roofing work. Include a checklist of points to be observed. Document the actual quality control observations and inspections. Furnish a copy of the documentation to the Contracting Officer at the end of each day.

**

NOTE: Metal gauges listed in the following tables are applicable to light commercial and residential types and uses. Compare metal thickness stated herein with the requirements of SMACNA Arch. Manual and edit these tables using the more stringent requirement of the two. Gauges of metal gutters in the following tables are only applicable to gutters less than 150 mm by 150 mm 6 inches by 6 inches. Use SMACNA Arch. Manual for commercial gutters of larger sizes.

**
<table>
<thead>
<tr>
<th>Sheet Metal Items</th>
<th>[Copper kilograms per square meter]</th>
<th>[Aluminum, mm]</th>
<th>[Stainless Steel, mm]</th>
<th>[Terne-Coated Stainless Steel, mm]</th>
<th>[Zinc-Coated Steel, mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Building Expansion Joints]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Cover]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>0.6</td>
</tr>
<tr>
<td>[Waterstop-bellows or flanged, U-type.]</td>
<td>4.9</td>
<td>-</td>
<td>0.38</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>[Covering on minor flat, pitched or curved surfaces]</td>
<td>6.125</td>
<td>1.02</td>
<td>0.46</td>
<td>0.46</td>
<td>-</td>
</tr>
<tr>
<td>[Downspouts and leaders]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>0.6</td>
</tr>
<tr>
<td>[Downspout clips and anchors]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[Downspout straps, 50 mm]</td>
<td>14.7 (a)</td>
<td>1.52</td>
<td>1.27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[Conductor heads]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>[Scupper lining]</td>
<td>6.125</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>[Strainers, wire diameter or gage]</td>
<td>4.0 gage</td>
<td>3.66 cm</td>
<td>2.77 cm</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>[Flashings:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Base]</td>
<td>6.125</td>
<td>1.02</td>
<td>0.46</td>
<td>0.46</td>
<td>0.6</td>
</tr>
<tr>
<td>[Cap (Counter-flashing)]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>0.5</td>
</tr>
<tr>
<td>[Eave]</td>
<td>4.9</td>
<td>-</td>
<td>0.38</td>
<td>0.38</td>
<td>0.6</td>
</tr>
<tr>
<td>[Spandrel beam]</td>
<td>3.1</td>
<td>-</td>
<td>0.25</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>[Bond barrier]</td>
<td>4.9</td>
<td>-</td>
<td>0.38</td>
<td>0.38</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE I. SHEET METAL WEIGHTS, THICKNESSES, AND GAGES

<table>
<thead>
<tr>
<th>Sheet Metal Items</th>
<th>[Copper kilograms per square meter]</th>
<th>[Aluminum, mm]</th>
<th>[Stainless Steel, mm]</th>
<th>[Terne-Coated Stainless Steel, mm]</th>
<th>[Zinc-Coated Steel, mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Stepped]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>[Valley]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>[Roof drain]</td>
<td>4.9 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Pipe vent sleeve (d)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Coping]</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Gravel stops and fascias:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Extrusions]</td>
<td>-</td>
<td>1.91</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[Sheets, corrugated]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>[Sheets, smooth]</td>
<td>6.125</td>
<td>1.27</td>
<td>0.46</td>
<td>0.46</td>
<td>0.6</td>
</tr>
<tr>
<td>[Edge strip]</td>
<td>7.35</td>
<td>1.27</td>
<td>0.635</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[Gutters:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Gutter section]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>0.6</td>
</tr>
<tr>
<td>[Continuous cleat]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>0.6</td>
</tr>
<tr>
<td>[Hangers, dimensions]</td>
<td>25 mm by 3 mm (a) 25 mm by 2 mm (c)</td>
<td>25 mm by 1 mm (a)</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[Joint Cover plates (See Table II)]</td>
<td>4.9</td>
<td>0.81</td>
<td>0.38</td>
<td>0.38</td>
<td>0.6</td>
</tr>
<tr>
<td>[Reglets (c)]</td>
<td>3.1</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>[Splash pans]</td>
<td>4.9</td>
<td>1.02</td>
<td>0.46</td>
<td>0.46</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Brass.

(b) May be lead weighing 19.6 kilograms per square meter.

(c) May be polyvinyl chloride.

(d) 12.25 kilogram minimum lead sleeve with 100 mm flange. Where lead sleeve is impractical, refer to paragraph entitled "Single Pipe Vents" for optional material.
<table>
<thead>
<tr>
<th>Sheet Metal Items</th>
<th>[Copper kilograms per square foot]</th>
<th>[Aluminum, inch]</th>
<th>[Stainless Steel, inch]</th>
<th>[Terne-Coated Stainless Steel, inch]</th>
<th>[Zinc-Coated Steel, U.S. Std. Gage]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Building Expansion Joints]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Cover]</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td>24</td>
</tr>
<tr>
<td>[Waterstop-bellows or flanged, U-type.]</td>
<td>16</td>
<td></td>
<td>.015</td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td>[Covering on minor flat, pitched or curved surfaces]</td>
<td>20</td>
<td>.040</td>
<td>.018</td>
<td>.018</td>
<td></td>
</tr>
<tr>
<td>[Downspouts and leaders]</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td>24</td>
</tr>
<tr>
<td>[Downspout clips and anchors]</td>
<td>-</td>
<td></td>
<td>.040 clip .125 anchor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Downspout straps, 2-inch]</td>
<td>48 (a)</td>
<td>.060</td>
<td>.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Conductor heads]</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td>[Scupper lining]</td>
<td>20</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td>[Strainers, wire diameter or gage]</td>
<td>No. 9 gage</td>
<td>.144 diameter</td>
<td>.109 diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Flashings:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Base]</td>
<td>20</td>
<td>.040</td>
<td>.018</td>
<td>.018</td>
<td>24</td>
</tr>
<tr>
<td>[Cap (Counter-flashing)]</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td>26</td>
</tr>
<tr>
<td>[Eave]</td>
<td>16</td>
<td></td>
<td>.015</td>
<td>.015</td>
<td>24</td>
</tr>
<tr>
<td>[Spandrel beam]</td>
<td>10</td>
<td></td>
<td>.010</td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td>[Bond barrier]</td>
<td>16</td>
<td></td>
<td>.015</td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td>Sheet Metal Items</td>
<td>Copper kilograms per square foot</td>
<td>Aluminum, inch</td>
<td>Stainless Steel, inch</td>
<td>Terne-Coated Stainless Steel, inch</td>
<td>Zinc-Coated Steel, U.S. Std. Gage</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Stepped</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td>-</td>
</tr>
<tr>
<td>Valley</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td>-</td>
</tr>
<tr>
<td>Roof drain</td>
<td>16 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe vent sleeve (d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coping</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel stops and fascias:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrusions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheets, corrugated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheets, smooth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge strip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gutters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gutter section</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td>24</td>
</tr>
<tr>
<td>Continuous cleat</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td>24</td>
</tr>
<tr>
<td>Hangers, dimensions</td>
<td>1 inch by 1/8 inch (a)</td>
<td>1 inch by .080 inch (c)</td>
<td>1 inch by .037 inch (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Cover plates (See Table II)</td>
<td>16</td>
<td>.032</td>
<td>.015</td>
<td>.015</td>
<td>24</td>
</tr>
<tr>
<td>Reglets (c)</td>
<td>10</td>
<td></td>
<td>.010</td>
<td>.010</td>
<td>-</td>
</tr>
<tr>
<td>Splash pans</td>
<td>16</td>
<td>.040</td>
<td>.018</td>
<td>.018</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Brass.

(b) May be lead weighing 4 pounds per square foot.

(c) May be polyvinyl chloride.
TABLE I. SHEET METAL WEIGHTS, THICKNESSES, AND GAGES

<table>
<thead>
<tr>
<th>Sheet Metal Items</th>
<th>[Copper kilograms per square foot]</th>
<th>[Aluminum, inch]</th>
<th>[Stainless Steel, inch]</th>
<th>[Terne-Coated Stainless Steel, inch]</th>
<th>[Zinc-Coated Steel, U.S. Std. Gage]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) 2.5 pound minimum lead sleeve with 4 inch flange. Where lead sleeve is impractical, refer to paragraph entitled "Single Pipe Vents" for optional material.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE II. SHEET METAL JOINTS

<table>
<thead>
<tr>
<th>TYPE OF JOINT</th>
<th>Item Designation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint cap for building expansion seam, cleated joint at roof</td>
<td>30 mm single lock, standing seam, cleated</td>
<td>--</td>
</tr>
<tr>
<td>Flashings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>25 mm 75 mm lap for expansion joint</td>
<td>Aluminum producer's recommended hard setting sealant for locked aluminum joints. Fill each metal expansion joint with a joint sealing compound.</td>
</tr>
<tr>
<td>Cap-in reglet</td>
<td>75 mm lap</td>
<td>Seal groove with joint sealing compound</td>
</tr>
<tr>
<td>Reglets</td>
<td>Butt joint</td>
<td>Seal reglet groove with joint sealing compound</td>
</tr>
<tr>
<td>Item Designation</td>
<td>Copper, Terne-Coated Stainless Steel, Zinc-Coated Steel and Stainless Steel</td>
<td>Aluminum</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Eave</td>
<td>25 mm flat locked, cleated. 25 mm loose locked, sealed expansion joint, cleated.</td>
<td>25 mm flat locked, locked, cleated 25 mm loose locked, sealed expansion joints, cleated</td>
</tr>
<tr>
<td>Stepped</td>
<td>75 mm lap</td>
<td>75 mm lap</td>
</tr>
<tr>
<td>Valley</td>
<td>150 mm lap cleated</td>
<td>150 mm lap cleated</td>
</tr>
<tr>
<td>Edge strip</td>
<td>Butt</td>
<td>Butt</td>
</tr>
<tr>
<td>Gravel stops:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrusions</td>
<td>--</td>
<td>Butt with 13 mm space</td>
</tr>
<tr>
<td>Sheet, smooth</td>
<td>Butt with 6 mm space</td>
<td>Butt with 6 mm space</td>
</tr>
<tr>
<td>Sheet, corrugated</td>
<td>Butt with 6 mm space</td>
<td>Butt with 6 mm space</td>
</tr>
<tr>
<td>Gutters</td>
<td>40 mm lap, riveted and soldered</td>
<td>25 mm flat locked riveted and sealed</td>
</tr>
</tbody>
</table>

(a) Provide a 75 mm lap elastomeric flashing with manufacturer's recommended sealant.

(b) Seal Polyvinyl chloride reglet with manufacturer's recommended sealant.
TABLE II. SHEET METAL JOINTS

<table>
<thead>
<tr>
<th>TYPE OF JOINT</th>
<th>Item Designation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint cap for building expansion seam, cleated joint at roof</td>
<td>1.25 inch single lock, standing seam, cleated</td>
<td>1.25 inch single lock, standing</td>
</tr>
</tbody>
</table>

Flashings

<table>
<thead>
<tr>
<th>Base</th>
<th>One inch 3 inch lap for expansion joint</th>
<th>One inch flat locked, soldered; 3 inch lap for expansion joint</th>
<th>Aluminum producer's recommended hard setting sealant for locked aluminum joints. Fill each metal expansion joint with a joint sealing compound.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap-in reglet</td>
<td>3 inch lap</td>
<td>3 inch lap</td>
<td>Seal groove with joint sealing compound.</td>
</tr>
<tr>
<td>Reglets</td>
<td>Butt joint</td>
<td>--</td>
<td>Seal reglet groove with joint sealing compound.</td>
</tr>
<tr>
<td>Eave</td>
<td>One inch flat locked, cleated. One inch loose locked, sealed expansion joint, cleated.</td>
<td>One inch flat locked, locked, cleated one inch loose locked, sealed expansion joints, cleated</td>
<td>Same as base flashing.</td>
</tr>
<tr>
<td>Stepped</td>
<td>3 inch lap</td>
<td>3 inch lap</td>
<td>--</td>
</tr>
<tr>
<td>Valley</td>
<td>6 inch lap cleated</td>
<td>6 inch lap cleated</td>
<td>--</td>
</tr>
<tr>
<td>Edge strip</td>
<td>Butt</td>
<td>Butt</td>
<td>--</td>
</tr>
<tr>
<td>Gravel stops:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Joint</td>
<td>Item Designation</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Extrusions</td>
<td>--</td>
<td>Butt with 1/2 inch space Use sheet flashing beneath and a cover plate.</td>
<td></td>
</tr>
<tr>
<td>Sheet, smooth</td>
<td>Butt with 1/4 inch space Butt with 1/4 inch space Use sheet flashing backup plate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet, corrugated</td>
<td>Butt with 1/4 inch space Butt with 1/4 inch space Use sheet flashing beneath and a cover plate or a combination unit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gutters</td>
<td>1.5 inch lap, riveted and soldered One inch flat locked riveted and sealed Aluminum producers recommended hard setting sealant for locked aluminum joints.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Provide a 3 inch lap elastomeric flashing with manufacturer's recommended sealant.

(b) Seal Polyvinyl chloride reglet with manufacturer's recommended sealant.

} -- End of Section --