An FDA Perspective on Drug Development and the Global Regulatory Landscape

AAPS Annual Meeting
Washington, DC
25 October 2010

Christine M. V. Moore, Ph.D.
Acting Director
ONDQA/CDER/FDA
Outline

• Trends in New Drug Applications
• Background on QbD and Product Understanding
• Examples of Product Understanding in Pharmaceutical Development
• Challenges for a Global Regulatory Environment
• Concluding Thoughts
Trends in New Drug Approvals
CDER New Molecular Entity Approvals (NDA & BLA*)

As of 10/24/11

* Does not include biologics in CBER
2010 New Drug Approvals (NDA & BLA*)

- 94 total approved applications (NME & non-NME)
 - 6 biologics
 - 20 combination products (more than one active ingredient)
- Dosage forms including:
 - Nasal spray - Ophthalmic solution
 - Auto injector - Tablets for oral suspension
 - Bowel prep kit - Powder for inhalation
 - Lotion - Intrathecal solution
 - Gel - Chewable tablets
 - Buccal Tablet - Transdermal
 - Sublingual film - Foam

* Does not include biologics in CBER
Summary of New Drug Trends

- New drug applications are becoming more complex
 - Wide variety of dosage forms
 - Combination drug and drug/device products
 - Complex molecules
 - Low solubility compounds

Good science in development is needed to take turn these molecules into successful products
Quality by Design (QbD) in Pharmaceutical Development
What is Quality by Design (QbD)?

- Systematic approach to pharmaceutical development and manufacturing
- Begins with predefined objectives
- Emphasizes product and process understanding and process control
- Based on sound science and quality risk management

From ICH Q8(R2)
Clarifying Some Misconceptions of QbD

• QbD doesn’t change/reduce regulatory requirements
 – Opportunities for flexible regulatory approaches
• QbD doesn’t equal Design Space and/or Design of Experiments (DOEs)
• QbD is important for all products including generics and biotech
• QbD doesn’t have to be expensive
 – Increased product and process understanding can reduce manufacturing and regulatory costs
Example QbD Approach - ICH Q8(R2)

- Target the product profile
- Determine critical quality attributes (CQAs)
- Link raw material attributes and process parameters to CQAs and perform risk assessment
- Develop a design space
- Design and implement a control strategy
- Manage product lifecycle, including continual improvement
QbD Approach

Understand the Product

- Product profile
- CQAs
- Risk assessment
- Design space

Understand the Process

- Control strategy
- Continual Improvement

Control the Process Over the Product Lifecycle
Understanding the Product
Understanding the Product

Product understanding questions include:

- What defines “good” quality drug substance?
- How do the formulation components interact during and after processing?
- How does the drug product interact with the container closure?
- How does the drug become available at the site of action?
- How might the patient incorrectly use or misuse the drug product?
Examples of Traditional Studies for Product Understanding

- Drug substance properties selection
 - Polymorph screening
 - Particle size evaluation
- Formulation selection
 - Excipient selection and compatibility
 - Container closure leachables and extractables
- Drug distribution within the body
 - Pharmokinetic/Pharmodynamic (PK/PD) studies
 - Bioequivalence studies to previous formulations
Challenges in Product Development

• Traditional approaches to product development often have been:
 – Focused on optimization and not robustness
 – Developed with little or no input from manufacturing
 – Performed without understanding the relevance to bioavailability
 – Not performed with the patient use in mind
Opportunities for Product Understanding

• Application of formal Quality Risk Assessment early in development
 – Involve of all stakeholders
 – Define potential failure modes
 – Include patient use factors
• Understand how variability of excipients and raw materials affects product performance
• Integrate biopharmaceutics into product development
• Use of advanced analytics for complex molecules or products
Examples of Product Understanding
Risk Assessment Example

Ishikawa Diagram for Tablet Compression

- **Machines**
 - Pre and Main Compression
 - Material Addition Method
 - Drop Height
 - Operators
 - Experience
 - Training

- **Methods**
 - Press Speed
 - Feeder Speed
 - Cam Size/Tooling
 - Machine set-up
 - Internal Temp
 - Humidity
 - External Temp

- **Measurements**
 - SOPs
 - Batch records
 - Weight
 - Thickness
 - Metal Check
 - Cylindrical fill height
 - Turret RPM
 - Manufacturing Suite
 - Drug Substance
 - Age
 - P.S. LOD
 - ID
 - Diluent
 - P.S. LOD
 - Batch Size
 - Other Excipients
 - Quantity
 - Properties

- **Personnel**
- **Environment**
- **Materials**

Tablet Quality
- Dissolution
- Hardness
- Appearance
Example of Understanding Excipient Variability: Artificial Neural Network Example

- **Problem:** Dissolution is highly dependent on polymer properties

- **Method:** ANN dissolution model developed from pilot and commercial batches

- **Results:** Dissolution properties successfully predicted based on excipient attributes
Product Understanding: Extractables and Leachable Studies

• Used to screen for and monitor presence of toxic materials from container closure system (CCS)
 – Usually related to plastic components of the CCS
• A risk-based approach can be used to:
 – Determine likelihood and identity of leachables
 – Based on prior knowledge and experimentation
 – Utilizing a team approach, including toxicologists
 – Consider risk to patient, based on route of administration
• Understanding can provide basis for effective and safe product design and CCS specifications
Extractables and Leachables

- Not all extractables are leachables
- Not all leachables are extractable
- When possible, develop a correlation between extractables and leachables
- Control and/or characterize the non-correlatable leachables
Approach for Product Understanding: Biopharmaceutics Studies

• The science and study of the ways in which drugs influence their pharmacodynamic and pharmacokinetic behavior
 – Typically uses plasma concentrations as biomarker for safety and efficacy
• Strives to relate in vivo performance of a drug to in vitro measurements
 – Enables development of clinically relevant specifications
 – Understand the impact of manufacturing process variables
• Supports control strategy development through setting clinically meaningful dissolution specifications to assure consistent therapeutic benefit
Example In vitro/In vivo Correlation (IVIVC) Approach

Formulation and Manufacturing Process

In Vivo Response
(Plasma Conc. Profile)

In Vitro Release
(Dissolution Profile)

In Vitro/In Vivo Correlation

Predictive Model

Reference: Medscape, 2002
In vivo/In vitro correlations (IVIVC)

• A predictive mathematical model describing the relationship between an *in vitro* property and a relevant *in vivo* response

• Links *in vitro* dissolution data to plasma drug concentration or amount of drug absorbed
 – May predict concentration-time profiles and/or exposure (depending on type of correlation)

• Assists formulation development and optimization

• Supports development and selection of release (e.g., dissolution) methods

• Can facilitate the use of *in vitro* dissolution data as a surrogate for human BE studies (e.g. biowaivers)
Example – Bioequivalence without IVIVC

- Multiple batches are produced with widely varied dissolution rates
- Clinical relevance is assured within established range
- Assures product robustness, and can achieve a wider dissolution specification

A, B, C, & clinical are BE

Std approach dissolution spec: Q= 80 at 30 min.

BE approach dissolution spec: Q= 80 at 45 min
Example Patient Use Factors: Alcohol Induced Dose Dumping

- Some modified release solid oral dosage forms can contain drugs or excipients that are highly soluble in ethanol (EtOH)
- Ingestion of alcohol could lead to dangerously high drug exposure
 - Either intentionally or unintentionally
- Dose dumping should be considered when designing modified release formulations
Alcohol Induced Dose Dumping

• QbD Approach:
 – Consider clinical impact during formulation development
 – Develop greater scientific knowledge and understanding of properties that induce dose dumping
 • Vulnerability of existing ER and MR products
 • Vulnerability of new ER and MR designs
 – Develop formulations and dosage designs not sensitive to dose dumping
 – Perform failure mode analyses (i.e., risk management) early in development – IND formulations
Characterizing Complex Products

• Characterization of complex/heterogeneous products can be difficult
 – Identity, purity
• Chemometrics allows extraction of information from analytical methods
 – Ability to handle multidimensional data
 – Can be used to simultaneously evaluate data from multiple analytical methods to make decisions
• May lead to discovery of “hidden/unexpected” patterns
 – “Fingerprint” approach
 – May be used to identify trace contaminants in products

Wednesday Poster: W5374
Newer Guidance Including Aspects of “Product Understanding”

• “Residual Drug in Transdermal and Related Drug Delivery Systems” – Final, Aug 2011
 – Recommendations for development and throughout lifecycle to minimize residual drug in transdermal, transmucosal and topical products

 – Recommendations on evaluation of tablet scores and data to provide in the application

• “Size of Beads in Drug Products Labeled for Sprinkle” – Draft, Jan 2011
 – Recommendations for size of particles for drug products to be administered via sprinkling
Global Regulatory Environment
Global Regulatory Environment

• Enhanced development approach should not be problematic for the global regulatory environment

• Opportunities for flexibility regulatory approaches might not be available in all regions, e.g.,
 – Acceptance of design space approach
 – Agreement on PAT and/or RTRT approaches
 – Establishing clinically relevant specifications

• Further collaboration, communication and education with non-ICH regions may be needed
ICH Quality Implementation Working Group (Q-IWG)

• Scope: Ensuring harmonized implementation of ICH Q8, Q9 and Q10

• Identified areas needing further clarification:
 – Knowledge Management
 – Design Space, Real Time Release, Control Strategy
 – Pharmaceutical Quality System

• Publication of Q&A

• Training issues

• Collaboration

(Adapted from: M. Nasr, J-L Robert, 2011 DIA Annual Meeting)
ICH Q-IWG Achievements Summary

• Published 45 Q&As
• Training has been a major achievement
 – ICH regions:
 • EU: Tallinn June 2-4, 2010
 • US: Washington October 6-8, 2010
 • Japan: Tokyo October 25-27, 2010
 – ASEAN, Kuala Lumpur: July 2010
 – IFPMA/DIA, Seoul April 2011
 – HC, Ottawa September 2011
 – APEC/AHC, Seoul October 2011
• Training material available at ICH website
(Adapted from: M. Nasr, J-L Robert, 2011 DIA Annual Meeting)
ICH Q-IWG Achievements Summary (cont)

• ‘Points to Consider’ endorsed June 2011
 – Criticality of Quality Attributes and Process Parameters
 – Control Strategy
 – Level of Documentation in enhanced (QbD) Regulatory Submissions

• ‘Points to Consider’ document to be developed
 – Process validation/process verification
 – Role of modeling in QbD
 – Design space

• IWG work to be completed by end of 2011

(Adapted from: M. Nasr, J-L Robert, 2011 DIA Annual Meeting)
FDA Efforts in International Collaboration (Outside of ICH)

• FDA-EMA Parallel Assessment Pilot
 – Set up a pathway for knowledge sharing between FDA/ONDQA and EMA reviewers/assessors
 – Ensure consistent implementation of ICH guidelines
 – Encourage FDA-EMA joint pre-approval inspections
 – At least one application will include Japanese regulators as observers

• Pharmaceutical Inspection Cooperation Scheme (PIC/S)
 – Collaboration between regulatory agencies on pharmaceutical inspection and training

• CDER Forum for International Drug Regulatory Authorities
 – Training and information exchange forum for non-US pharmaceutical regulators
 – Typically offered twice per year; no registration fee
Summary of Progress in Global Harmonization

• Progress has been made in harmonizing implementation of ICH Q8, 9, 10
 – Both in ICH and non-ICH regions

• Efforts are ongoing within FDA and other regulatory agencies to increase global collaboration and harmonization

• Challenges still remain, including
 – Establishing an enhanced global quality culture
 – Clarity of global regulatory and GMP expectations
 – Role of compendial standards and lack of harmonization among pharmacopeias
Concluding Thoughts

• New drug development is becoming more complex
• Using a science and risk based approach for product development can facilitate successful products, throughout product lifecycle
 – Quality built into product design for its intended use
 – Can increase product and subsequent process robustness
• In some cases, regulatory flexibility can result from increased product and process understanding and controls
 – Good progress through ICH documents and IWG activities
 – Increased global coordination will be necessary to fully harmonize these approaches
Thank you!

Questions, comments, concerns:
NewDrugCMC@fda.hhs.gov