PART 1 GENERAL

1.1 SECTION INCLUDES

A. Communications
 1. Cell Tower Foundations
 2. Equipment Shelters
 i. Controlled Environmental Cabinets (CEC)
 ii. Maxi-Mod ® Expandable Buildings
 iii. Shelters
 iv. Controlled Environmental Vaults (CEV)
 3. Telephone / CATV
 i. Telephone Vaults
 ii. Fiber Optic Vaults
 iii. Pull Boxes and Handholes
 iv. Meter Boxes

B. Drainage & Storm Water
 1. Storm Water
 i. Box Culverts
 ii. Catch Basins
 iii. Manholes
 iv. Reinforced Concrete Pipe
 v. Water Inlets
 vi. 3-Sided Bridges
 2. Retention / Detention
 i. Box Culvert Systems
 ii. Dry Wells
 iii. Panel Vaults
iv. Storm Capture ®

3. Sewer
 i. Concrete Pipe
 ii. Manholes

4. Pump Stations

5. Wet Wells

C. Energy

1. Natural Gas
2. Oil
3. Solar
 i. Precast Ballasted Foundations
 ii. Prefabricated Structures

4. Wind

D. Environmental

1. Wastewater Treatment
 i. Grease Interceptors
 ii. Oil / Water Separators
 iii. Sand Filters
 iv. Septic Systems

2. Containment
 i. Convault ® Above Ground Storage Tanks
 ii. Below Ground Fuel Vaults
 iii. Storage Tanks

E. Firewalls

F. Retaining Walls

1. Castle Wall HD ®
2. Precast Cantilevered Retaining Structures

G. Transportation

1. Barriers
2. Bridges
3. Bumper Curbs
4. Piling
5. Sound Walls
6. Railroad
 i. Cable Trench
 ii. Road Crossings / Star Track ®

H. Utilities
1. Electrical
 i. Vaults
 ii. Lamp Pole Bases
 iii. Pull Boxes and Handholes
 iv. Equipment Pads
2. Municipal Water
 i. Water Vaults
 ii. Wet Wells
 iii. Valve Vaults
3. Gas
 i. Gas Vaults
4. Custom
 i. Panel Vaults
 ii. Trench
I. Custom
 1. Prison Cells
 2. Hollow Core Plank
 3. Marine Floats
 4. School Modules
 5. Dormitory Modules

1.2 RELATED SECTIONS

A. 21 00 00 Fire Suppression
B. 26 00 00 Electrical
C. 27 00 00 Communications
D. 33 00 00 Utilities
E. 34 00 00 Transportation
F. 35 00 00 Waterway and Marine Construction
G. 43 00 00 Process Gas and Liquid Handling, Purification, and Storage Equipment
H. 48 00 00 Electrical Power Generation

1.3 REFERENCES

Where applicable, the latest editions of the following standards shall form a part of this specification to the extent referenced. The publications are referenced to in the text of this guide specification by the basic designation only.
AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

Standard Specifications for Highway Bridges

Guide Specifications for Structural Design of Sound Barriers

Standard Specification for Transportation Materials and Methods of Sampling and Testing

ACI INTERNATIONAL (ACI)

ACI 211.1 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete

ACI 211.2 Standard Practice for Selecting Proportions for Structural Lightweight Concrete

ACI 211.3 Guide for Selecting Proportions for No-Slump Concrete

ACI 304R Guide for Measuring, Mixing, Transporting, and Placing Concrete

ACI 305R Hot Weather Concreting

ACI 306R Cold Weather Concreting

ACI 309R Consolidation of Concrete

ACI 318 Building Code Requirements for Structural Concrete

ACI 350 Code Requirements for Environmental Engineering Concrete Structures and Commentary

ACI 517.2R Accelerated Curing of Concrete at Atmospheric Pressure

AMERICAN CONCRETE PIPE ASSOCIATION (ACPA)

ACPA Concrete Pipe Handbook

ACPA Design Manual

AMERICAN NATIONAL STANDARDS INSTITUTE (ASTM)

ASTM A 36 Specification for Carbon Structural Steel

ASTM A 82 Specification for Steel Wire, Plain, for Concrete Reinforcement

ASTM A 184 Specification for Fabricated Deformed Steel Mats for Concrete Reinforcement
<p>| ASTM A 185 | Specification for Steel Welded Wire Reinforcement, Plain, for Concrete |
| ASTM A 496 | Specification for Steel Wire, Deformed, for Concrete Reinforcement |
| ASTM A 497 | Specification for Steel Welded Wire Reinforcement, Deformed, for Concrete |
| ASTM A 615 | Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement |
| ASTM A 706 | Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement |
| ASTM A 767 | Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement |
| ASTM A 775 | Specification for Epoxy-Coated Reinforcing Steel Bars |
| ASTM A 884 | Specification for Epoxy-Coated Steel and Welded Wire Fabric for Reinforcement |
| ASTM C 14 | Standard Specification for Concrete Sewer, Storm Drain, and Culvert Pipe |
| ASTM C 31 | Standard Practice for Making and Curing Concrete Test Specimens in the Field |
| ASTM C 33 | Specification for Concrete Aggregates |
| ASTM C 39 | Test Method for Compressive Strength of Cylindrical Concrete Specimens |
| ASTM C 40 | Test Method for Organic Impurities in Fine Aggregates for Concrete |
| ASTM C 70 | Standard Test Method for Surface Moisture in Fine Aggregate |
| ASTM C 76 | Specification for reinforced Concrete Culvert, Storm Drain, and Sewer Pipe |
| ASTM C 117 | Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing |
| ASTM C 123 | Standard Test Method for Lightweight Particles in Aggregate |
| ASTM C 125 | Standard Terminology Relating to Concrete and Concrete Aggregates |</p>
<table>
<thead>
<tr>
<th>ASTM C</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 136</td>
<td>Test Method for Sieve Analysis of Fine and Coarse Aggregates</td>
</tr>
<tr>
<td>C 138</td>
<td>Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete</td>
</tr>
<tr>
<td>C 143</td>
<td>Test Method for Slump of Hydraulic Cement Concrete</td>
</tr>
<tr>
<td>C 150</td>
<td>Specifications for Portland Cement</td>
</tr>
<tr>
<td>C 172</td>
<td>Standard Practice for Sampling Freshly Mixed Concrete</td>
</tr>
<tr>
<td>C 192</td>
<td>Practice for Making and Curing Concrete Test Specimens in the Laboratory</td>
</tr>
<tr>
<td>C 231</td>
<td>Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method</td>
</tr>
<tr>
<td>C 260</td>
<td>Specification for Air-Entraining Admixtures for Concrete</td>
</tr>
<tr>
<td>C 361</td>
<td>Specification for Reinforced Concrete Low-Head Pressure Pipe</td>
</tr>
<tr>
<td>C 403</td>
<td>Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance</td>
</tr>
<tr>
<td>C 443</td>
<td>Specification for Joints for Circular Concrete Sewer and Culvert Pipe, Using Rubber Gaskets</td>
</tr>
<tr>
<td>C 478</td>
<td>Specification for Precast Reinforced Concrete Manhole Sections</td>
</tr>
<tr>
<td>C 494</td>
<td>Standard Specification for Chemical Admixtures for Concrete</td>
</tr>
<tr>
<td>C 497</td>
<td>Test Methods for Concrete Pipe, Manhole Sections, or Tile</td>
</tr>
<tr>
<td>C 506</td>
<td>Standard Specification for Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe</td>
</tr>
<tr>
<td>C 507</td>
<td>Standard Specification for Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe</td>
</tr>
<tr>
<td>C 566</td>
<td>Test Method for Total Evaporable Moisture content of Aggregate by Drying</td>
</tr>
<tr>
<td>C 595</td>
<td>Specification for Blended Hydraulic Cements</td>
</tr>
<tr>
<td>ASTM C 1018</td>
<td>Preformed Flexible Joint Sealants</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ASTM C 1037</td>
<td>Practice for Inspection of Underground Precast Concrete Utility Structures</td>
</tr>
<tr>
<td>ASTM C 1064</td>
<td>Standard Test Method for Temperature of Freshly Mixed Concrete</td>
</tr>
<tr>
<td>ASTM C 1107</td>
<td>Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink)</td>
</tr>
<tr>
<td>ASTM C 1116</td>
<td>Standard Specification for Fiber-Reinforced Concrete</td>
</tr>
<tr>
<td>ASTM C 1214</td>
<td>Standard Test Method for Concrete Pipe Sewer lines by Negative Air Pressure (Vacuum) Test Method</td>
</tr>
<tr>
<td>ASTM C 1227</td>
<td>Standard Specification for Precast Concrete Septic Tanks</td>
</tr>
<tr>
<td>ASTM C 1231</td>
<td>Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders</td>
</tr>
<tr>
<td>ASTM C 1240</td>
<td>Standard Specification for Use of Silica Fume for Use as a Mineral Admixture in Hydraulic-Cement Concrete, Mortar, and Grout</td>
</tr>
<tr>
<td>ASTM C 1244</td>
<td>Standard Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test Prior to Backfill</td>
</tr>
<tr>
<td>ASTM C 1293</td>
<td>Standard Test Method for Determination of Length Change of Concrete due to Alkali-Silica Reaction</td>
</tr>
<tr>
<td>ASTM C 1399</td>
<td>Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete</td>
</tr>
<tr>
<td>ASTM C 1433</td>
<td>Standard Specification for Precast Reinforced Concrete Box Sections for Culverts, Storm Drains and Sewers</td>
</tr>
<tr>
<td>ASTM C 1478</td>
<td>Standard Specification for Storm Drain Resilient Connectors Between Reinforced Concrete Storm Sewer Structures, Pipes and Laterals</td>
</tr>
<tr>
<td>ASTM C 1504</td>
<td>Standard Specification for Manufacture of Precast Reinforced Concrete Three-Sided Structures for Culverts, Storm Drains</td>
</tr>
</tbody>
</table>
1.4 GENERAL REQUIREMENTS

Precast concrete units shall be designed and fabricated by an experienced and acceptable precast concrete manufacturer. The manufacturer shall have been regularly and continuously engaged in the manufacture of precast concrete units similar to that indicated in the project specifications or drawings for at least 10 years with annual sales of more than $40 million. In addition, the manufacturer shall employ a professional engineer registered in the state where the product is to be installed.

1.5 SUBMITTALS
The following items shall be submitted unless specified otherwise herein.

A. Preconstruction Submittals
 1. Upon request by the customer, submit quality control procedures established by the precast manufacturer’s Quality Control Manual

B. Drawings
 1. The drawings for precast concrete units shall be furnished by the precast concrete producer for approval. These drawings shall show the design loads and standards have been met. Installation and construction information shall be included on shop drawings upon request. Details of steel reinforcing size and placement shall be submitted if a professional engineering stamp and calculations are required by the customer. It is the responsibility of the project’s engineer-of-record to verify that the design assumptions are suitable for the proposed application.
 2. For custom made precast concrete units, in addition to the requirements in B.1, the drawing for submittal shall show locations and dimensions to all penetrations and special embed items. Product dimensions and thicknesses shall be shown, and the drawing shall be to a common architectural scale with the precast producer’s information in the title block.

C. Precast Concrete Unit Data
 1. Anchorage, Lifting Inserts and Devices
 i. For anchors, lifting inserts and other devices, the precast concrete producer shall provide product data sheets and proper installation instructions upon request.
 2. Accessory Items
 i. For items including, but not limited to sealants, gaskets, pipe entry connectors, steps, racks, and other items installed before or after delivery, the precast concrete producer shall include proper installation instructions and relevant product data upon request.

D. Design Data
 1. The precast concrete producer shall supply submittals showing design loading and material specifications for supplied products. At a minimum, the following shall be shown on the submittals:
 i. Live load used in design
 ii. Vertical and lateral earth loads used in design
 iii. Depth of soil fill on the structure
 iv. Water table depth used in calculations
 2. Upon request, the precast concrete producer shall supply precast concrete unit design calculations and concrete mix design proportions and appropriate mix design test data. Structural design calculations shall be sealed by a licensed professional engineer in the state of this project.

E. Test Reports
 1. Upon request, the precast concrete producer shall supply copies of material certifications and/or laboratory test reports, including mill tests and all other test data, for Portland cement, blended cement, pozzolans, ground granulated blast-furnace slag, silica fume, aggregate, admixtures, and curing compound proposed for use on this project.
 2. Upon request, the precast concrete producer shall submit copies of test reports showing that the mix has been successfully tested to produce concrete with the

034100-10
properties specified and will be suitable for the project conditions. Such tests may include compressive strength, plastic air content, temperature of freshly mixed concrete, and slump of freshly mixed concrete. Special tests for precast concrete items shall be clearly detailed in the specifications.

3. Upon request, the precast concrete producer shall supply copies of in-plant QA/QC inspection reports.

1.6 DESIGN

The following items shall be accounted for in the precast unit design.

A. Precast Concrete Unit Design
 1. Design standard precast concrete units to withstand design load conditions in accordance with the applicable industry design standards. Design must also consider stresses induced during handling, shipping, and installation in order to avoid product cracking or other handling damage. Design loads for precast concrete units shall be indicated on the shop drawings, and designed by a licensed professional engineer.

B. Joints and Sealants
 1. Joints and sealants between adjacent units shall be of the type and configuration indicated on the shop drawings meeting specified design and performance requirements.

C. Concrete Mix Design
 1. Concrete type
 i. For non machine cast products, the concrete shall be self-consolidating concrete which produces minimal bugholes and does not segregate.

 2. Concrete Proportions
 i. Selection of proportions for concrete shall be based on current self-consolidating concrete mix design techniques. At a minimum, ACI 211.1 shall be used.
 ii. Upon request the precast concrete producer shall submit a mix design for each strength and type of concrete that will be used. Submitted mix designs shall include the quantity, type, brand and applicable data sheets for all design constituents as well as documentation indicating conformance with applicable reference specifications.

 3. Durability and Performance Requirements
 i. Concrete Compressive Strength
 1. Precast concrete units shall have a 28-day compressive strength of 5000 psi for SCC.
 ii. Water-Cementitious Ratio
 1. Concrete that will be exposed to freezing and thawing shall contain air and shall have a water-cementitious ratio of 0.45 or less. Concrete which will not be exposed to freezing, but which is required to be leak resistant, shall have a water-cementitious ratio of 0.48 or less. For corrosion protection, reinforced concrete exposed to deicer salts, brackish water or seawater shall have a water-cementitious
ratio of 0.40 or less.

iii. Air Content

1. The air content of concrete that will be exposed to freezing conditions shall be within the limits given below

<table>
<thead>
<tr>
<th>Nominal Maximum Aggregate size (in)</th>
<th>Air Content %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Severe Exposure</td>
</tr>
<tr>
<td>3/8</td>
<td>6.0 to 9.0</td>
</tr>
<tr>
<td>1/2</td>
<td>5.5 to 8.5</td>
</tr>
<tr>
<td>3/4</td>
<td>4.5 to 7.5</td>
</tr>
<tr>
<td>1</td>
<td>4.5 to 7.5</td>
</tr>
<tr>
<td>1-1/2</td>
<td>4.5 to 7.0</td>
</tr>
</tbody>
</table>

* For specified compressive strengths greater than 5000 psi, air content may be reduced 1%.

1.7 QUALITY ASSURANCE

The precast concrete producer shall demonstrate adherence to the standards set forth in the plant Quality Control Manual. The precast concrete producer shall meet the requirements written in subparagraph 1.7.A.

A. Qualifications, Quality Control and Inspection

1. The precast producer shall maintain a permanent quality control department.
2. The precast concrete producer shall have a quality control program which is audited for compliance annually by persons outside that plant’s employee structure.
3. Upon request, the precast concrete producer shall supply a copy of their quality control manual.

B. Quality Control

1. The precast concrete producer shall show that the following quality control tests are performed as required and in accordance with the ASTM International standards indicated

 i. Concrete Testing

 1. Slump: A slump test shall be performed at least once per day per mix design used. Slump tests shall be performed in accordance with ASTM C 1611 for self-consolidating concrete.
 2. Temperature: The temperature of fresh concrete shall be measured each time a slump, air content, or compressive strength tests are made. Temperature shall be measured in accordance with ASTM C 1064.
 3. Compressive Strength: At least four compressive strength specimens shall be made each day for each mix design unless otherwise specified. In accordance with ASTM C 31, C 39, C 192.
4. *Air Content*: Tests for air content shall be performed if the mix design specifies air entrainment. The air content will be measured in accordance with ASTM C 231. The Air Content shall be measured once per day per mix design.

5. *Density (Unit Weight)*: Tests for Density (Unit Weight) shall be performed monthly for each mix design used at a minimum. Tests shall be in accordance with ASTM C 138

ii. *Aggregate Testing*

1. A full set of aggregate tests shall be performed on each aggregate at least annually by an independent testing agency or an in house test lab. These tests will include gradations (ASTM C136), Soundness (ASTM C 88), Organic Impurities (ASTM C 40), Sand Equivalent for fine aggregates only (ASTM D 2419)

2. Potential reactivity shall be performed once per each aggregate source, and when aggregate sources change (ASTM C 1260 or C 1293)

3. Monthly, at a minimum, gradations shall be performed per ASTM C 33.

4. *Aggregate Moisture tests*: Moisture tests on aggregates shall be performed in accordance with ASTM C 70 or ASTM C 566. Fine aggregate moisture content tests shall be performed at least once per day if there are no moisture meters, otherwise it shall be performed once per month. Alternatively the speedy moisture test is acceptable (ASTM D 4944).

iii. *Preplacement Check*

1. All products shall be inspected for accuracy prior to placing concrete. Checks shall include, but not be limited to, form condition and cleanliness, form dimensions, joints, release agent, blockouts, inserts and locations, lifting devices, reinforcing steel size, spacing, clearances and proper placement.

2. Preplacement checks shall be documented and initialed by the inspector. A drawing with verifications of the above criteria can be used as documentation.

iv. *Postplacement Check*

1. All products shall be inspected for accuracy after the concrete forms have been removed. Checks shall include, but not be limited to, dimensional checks, finishing, insert locations, squareness, honeycombing, cracking, marking, coatings, racking, hole size and location. Postplacement checks may require a corrective action report.

2. Postplacement checks shall be documented and initialed by the inspector. A drawing with verifications of the above criteria can be used as documentation.

2. Copies of the test results and Inspections above shall be available upon request.

C. *Outside Inspection*

1. The customer or customer’s agent (specifier) may place an inspector in the plant when the units covered by this specification are being manufactured. The precast concrete producer shall give notice of 3 days prior to the time the precast concrete units will be available for plant inspection
1.8 DELIVERY, STORAGE, AND HANDLING

A. Handling
 1. Precast concrete units shall be handled and transported in a manner to minimize damage. Lifting devices or holes shall be consistent with industry standards. Lifting shall be accomplished with methods or devices intended for this purpose as indicated on the shop drawings. Upon request, the precast concrete producer shall provide documentation on acceptable handling methods for the product.

B. Storage
 1. Precast concrete units shall be stored in a manner that will minimize potential damage.

C. Delivery
 1. Precast concrete units shall be delivered to the site in accordance with the delivery schedule. Upon delivery to the jobsite, all precast concrete units shall be inspected by the customer’s agent for quality and final acceptance.

D. Final Acceptance
 1. Upon final acceptance, the customer’s agent acknowledges and understands the appropriate methods for handling the accepted precast concrete unit(s). Upon acceptance by the customer or customer’s agent, the precast concrete manufacturer is not responsible for replacing damaged product resulting from improper handling practices on the job site.

1.9 PLANT CONDITIONS

Any plant producing precast concrete units for this specification shall have a written, implemented, comprehensive safety and environmental program. Upon request, documentation shall be provided to show the safety program meets the following minimum requirements.

A. Safety Program Requirements
 The safety program shall include the following written and documented parts as a minimum.
 1. Housekeeping
 2. Lock-Out Tag-Out
 3. Machine Guarding
 4. Risk Assessment
 5. Personal Protective Equipment
 6. Contractor and Visitor Safety
 7. Cranes and Lifting Equipment Safety
 8. Ergonomics and handling Safety
 9. Fall Protection
B. Health and Safety Management System Requirements

The health and safety management system shall be used to manage the safety program and all measurable aspects.

C. Environmental Management System Requirements

The Environmental Management System shall encompass the following:

1. Air Pollution Control
2. Water and Wastewater Management

D. Recordable rate

1. The recordable rate shall be below the industry average. If the industry average is not readily available, assume a value of 6 recordable injuries per 200,000 hours worked as the industry average.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturer: Oldcastle Precast Inc., which has over 75 locations Nationwide; Toll Free Tel: 866-9-OLDCASTLE (866-965-3227); Email: sales@oldcastleprecast.com; Web: www.OldcastlePrecast.com

B. Substitutions: Not permitted.

C. Requests for substitutions will be considered in accordance with provisions of section 01 62 00

2.2 MATERIALS

Except as otherwise specified, material shall conform to the following section.

A. Materials

Cement

Standard Specification for Admixtures to Inhibit
ASTM C 150 (Type I, II, III, or V)

ASTM C 595 (for Blended Cements)

Silica Fume

ASTM C 1240

Fly Ash and Pozzolans

ASTM C 618

Ground Granulated Blast-Furnace Slag

ASTM C 989

Water

ASTM C 1602 (the use of reclaimed/recycled water shall be permitted)

Aggregates

ASTM C 33 (and aggregate specifications)

Air Entraining Admixtures

ASTM C 260
2.3 MANUFACTURE

Manufacture shall conform to the producer’s acceptable quality control manual

A. Forms

1. Forms for manufacturing precast concrete units shall be of the type and design consistent with industry standards and practices. They should be capable of consistently providing uniform products and dimensions. Forms shall be constructed so that the forces and vibrations to which the forms will be subjected cause no damage to the precast concrete unit.

2. Forms shall be cleaned of concrete build-up after each use.

3. Form release agents shall be applied according to the manufacturer’s recommendations and shall not be allowed to build up on the form casting surface.

B. Reinforcement

1. Cages of reinforcement shall be fabricated by tying the bars, wires or welded wire reinforcement. The tolerances for concrete cover shall be 3/8 in. or as specified in the design. Welding shall be allowed only for ASTM A 706 rebar.

2. Positive means shall be taken to assure that the reinforcement does not move significantly during the casting operations
C. Embedded Items

1. Embedded items shall be positioned at locations specified in the design documents. Inserts and other embeds shall be held rigidly in place so that they do not move significantly during casting operations.

D. Concrete

1. Concrete Mixing

i. Mixing operations shall produce batch-to-batch uniformity of strength, consistency and appearance

ii. Batching weight and volume measurement devices shall be annually calibrated by an independent testing laboratory or more frequently if batching irregularities or concrete inconsistencies are observed

2. Concrete placing

i. Concrete shall be placed in a manner in which it flows and consolidates without segregation or air entrapment. The freefall of concrete shall be kept to a minimum.

ii. Cold Weather Concreting

 1. Recommendations for cold weather concreting are given in detail in ACI 306 R. Adequate equipment shall be provided for heating concrete materials and protecting concrete during freezing or near-freezing temperatures. All concrete materials, reinforcement, and forms shall be free from frost. In cold weather, the temperature of the concrete at the time of placement shall not be below 45 degrees F. Concrete that freezes before it reaches a compressive strength of 500 psi shall be discarded.

 iii. Hot Weather Concreting

 1. Recommendations for hot weather concreting are given in detail in ACI 305 R. During hot weather excessive concrete temperatures and water evaporation shall be minimized. The temperature of concrete at the time of placing shall not exceed 95 degrees F.

3. Concrete Curing

i. Curing operations shall commence immediately following the initial set of the concrete and completion of surface finishing.

 ii. Curing by moisture retention

 1. Precast products shall be protected from drafts and wind to prevent plastic shrinkage cracking.

 2. Moisture shall be prevented from excessively evaporating from exposed surfaces until adequate strength for stripping the precast concrete unit from the form is reached.

 iii. Curing with Heat and Moisture

 1. Concrete shall not be subjected to steam or hot air until after the concrete has attained its initial set. If hot air is used, precautions shall be taken to prevent moisture loss from the concrete. The temperature of the concrete shall not be permitted to exceed 150 degrees F. The temperature gain shall not exceed 40 degrees F per hour.

4. Surface Finish

i. The surface finish shall be as specified on the contract documents and/or
approved shop drawings.

5. Stripping Precast Concrete Units from Forms

Precast concrete units shall not be removed from the forms until the concrete reaches the compressive strength for stripping required by design. Stripping strengths shall be routinely measured to ensure product has attained sufficient strength for safe handling.

6. Patching and Repair

 i. Repairing Minor Defects

 1. Defects that will not impair the functional use or expected life of the precast concrete unit may be repaired by any method that does not impair the product.

 ii. Repairing Honeycombed Areas

 1. When honeycombed areas are to be repaired, all loose material shall be removed and the areas cut back into essentially horizontal or vertical planes to a depth at which coarse aggregate particles break under chipping rather than being dislodged. Proprietary repair materials shall be used in accordance with the manufacturer’s instructions. Otherwise, the area shall be saturated with water. Immediately prior to repair, the area should be damp, but free of excess water. A cement-sand grout or an approved bonding agent shall be applied to the chipped surfaces, followed immediately by consolidating an appropriate repair material into the cavity.

 iii. Repairing Major Defects

 1. Defects in precast concrete products which impair the functional use or the expected life of products shall be evaluated by qualified personnel to determine if repairs are feasible and, if so, to establish the repair procedure.

7. Shipping Precast Concrete Units

 i. Precast concrete units shall not be shipped until they have reached at least 70% of their specified 28-day design strength, unless damage will not result, impairing the performance of the product.

PART 3 EXECUTION

3.1 SURVEY

A. The installation area shall be surveyed using the work print and a checklist to identify the work to be done and to determine that the plans are correct.

B. All underground facilities and structures such as gas, water, sewer, power, telephone cable, and so forth shall be located and identified. Location markings shall be placed by the affected utilities before construction.

C. The survey shall identify and obstacles such as overhead wires, building structures that will interfere with crane operations, work progress, or create a safety hazard.

D. The survey shall give consideration to the soil structure so that proper shoring, sloping, or both may be planned in advance of the excavation work.
3.2 PLANNING

A. Permits required to do work in accordance with the detail plans shall be secured before starting the job. All permits or a record of the permits shall be retained on the job for immediate reference.

B. All utilities and owners of surface and subsurface facilities and structures in the area shall be given advance notification of proposed excavation. Every effort shall be made to avoid damage to the facilities of others. If any damage occurs, the owner of the damaged facility shall be notified immediately.

C. Planning shall include the coordination of all responsible parties to ensure that arrangements for removal of excess and damaged material have been made.

D. Should it appear that a structure location will interfere with traffic, review the situation with the engineer and notify appropriate authorities.

E. Provide for access to call boxes, fire hydrants, etc.

3.3 SAFETY REQUIREMENTS

A. Safety requirements for construction shall be in accordance with all federal, state, and local regulations.

3.4 EXCAVATING

A. If unforeseen facilities or obstructions are encountered, stop excavation operations immediately. Expose the obstruction with wood handled digging tools and investigate them with caution. If there is any doubt as to the type of obstruction exposed, request positive identification from those suspected of owning the facility and then proceed as circumstances dictate.

B. Inspect excavations after every rainstorm or other hazard-increasing occurrence, and increase the protection against slides and cave-ins, if necessary.

C. In dewatering excavations, make certain that the discharge is carried to a suitable runoff point. Also verify that the design accounts for the level of groundwater encountered.

D. Excavation size shall be large enough to allow access around the structure after it is installed.

3.5 SHORING

A. Shoring for construction shall be in accordance with all federal, state, and local regulations.

3.6 INSTALLATION

A. Site Access
 The general contractor shall be responsible for providing adequate access to the site to facilitate hauling, storage, and proper handling of the precast concrete units.

B. Subgrade Bedding Materials and compaction
 The installation contractor shall be responsible for ensuring that the subgrade is compacted to 95%
of ASTM D558 density. The subgrade shall be a minimum of 6” in depth. A granular material shall be used to create a level surface for placing the precast concrete unit.

C. Installation

Precast concrete units shall be installed: to the lines and grades shown on the contract documents or otherwise specified; be lifted by suitable lifting devices at points provided by the precast concrete producer; in accordance with applicable industry standards. Upon request, the precast concrete producer shall provide installation instructions.

Field modifications to the product shall relieve the precast producer of liability and warranty regardless if such modifications result in the failure of the precast concrete unit.

D. Leak Resistance

Where leak resistance is a necessary performance characteristic of the precast concrete unit’s end use, joint sealant, pipe-entry connectors and other penetrations shall be sealed according to manufacturers requirements to ensure the integrity of the system.

3.7 BACKFILLING AND RESTORATION

A. Do the backfilling as soon as possible after the structure has been placed.
B. Backfill material shall be granular and free from large stones, rocks, and pavement. Expansive soil material shall not be used as backfill around the structure.
C. Backfilling shall be achieved by lifts (layers) to the required compaction.
D. Follow up inspections for settlements are required. Should settlement occur, the contractor shall be responsible for all necessary repairs.

3.8 FIELD QUALITY CONTROL

A. Job Site Tests

When leak resistance testing is required for a precast concrete structure, one of the following methods may be followed

1. Vacuum Testing
 i. Prior to backfill, vacuum test system according to ASTM C 1244 for manholes and ASTM C 1227 for septic tanks.

2. Hydrostatic Testing
 i. First backfill the structure, then fill to the normal water level, let stand for 24 hours. Refill to the original water line and measure the water level change over a 24 hour period. Leak shall not exceed 5% of volume.

B. Inspection

1. Final field elevations and compaction properties shall be verified and documented.

END OF SECTION