BHT from Merisol Antioxidants
CHOOSE THE HIGHEST STANDARDS, THE FINEST QUALITY

Butylated Hydroxy Toluene (BHT) is a low molecular weight, non-staining hindered-phenol antioxidant commonly used in plastics, elastomers, petroleum products, foods and other items. Merisol Antioxidants manufactures food grade BHT, suitable for use in the full spectrum of BHT applications.

Our manufacturing facility in Oil City, Pennsylvania, has been continually upgraded to produce material of consistently high quality and is certified as meeting ISO-9001 quality standards. Merisol Antioxidants maintains a third-party certified Responsible Care Management System® (RCMS) to continually improve safety, health, environmental and security performance. In addition, Merisol Antioxidants follows Food and Drug Administration (FDA) Current Good Manufacturing Practices (cGMP) at its facilities and warehouse space to further ensure that its BHT can be safely incorporated into food, feed, and pharmaceutical products.

MULTIPLE FORMS OF BHT FROM MERISOL ANTIOXIDANTS

- **Crystal BHT** - Composed of random crystalline shapes.

- **Free Flow BHT Crystal** - Composed of small spherical free-flowing shapes (pellets), with no anti-caking agent used or added.

- **Molten BHT** - Liquid designed for large volume users (molten due to temperature).

- **BHT Blends** - In various oils.

BHT AND ITS APPLICATIONS

Effective and safe in a great variety of hydrocarbon products, BHT is the most prevalent and approved antioxidant in the world. As an antioxidant, BHT preserves organic materials by reducing the effects of time, heat and light.

BHT is used predominantly in the production of plastics and is also an important ingredient in rubber, elastomer and styrene production. It is used in lubricating oils, gasoline, specialty oils and synthetic lubricants, as well as in food, feed and forage products. BHT prevents oils from turning rancid and is an excellent antioxidant and gum inhibitor in fuels. It functions as a stabilizer in plastics, waxes, natural and synthetic rubber and resins.
PLASTICS - THE LARGEST BHT USAGE WORLDWIDE

Comprising over 65% of the worldwide application of BHT, plastics require the BHT antioxidant to stabilize the polymer during processing and protect it throughout the service life of the finished product. Merisol Antioxidants’ food-grade BHT has proven itself effective in a variety of polymers. It is recognized as safe and is approved for use in plastic food containers and wrappings.

BHT is classified as a non-staining, non-discoloring, low-odor and low-color antioxidant and can be used in the following plastics:

- Polypropylene
- Polyvinyl Chloride (PVC)
- High Density Polyethylene (HDPE)
- Acrylic Resins
- Low Density Polyethylene (LDPE)
- High Impact Polystyrene
- Polyurethane
- Polyacetals
- Styrenic Block Copolymers
- Polybutylene
- Linear Low Density Polyethylene (LLDPE)
- Styrene Acrylonitrile
- Acrylonitrile-Butadiene-Styrene (ABS)
- Thermoplastic Hydrocarbon Resins

Nearly all polymeric resins require the addition of antioxidants to retain the necessary physical properties that ensure adequate performance in their end uses. The selection of an antioxidant or antioxidant system is dependent upon the configuration of the polymer and its final end use. Since BHT is a low molecular weight molecule, it is sometimes used with a higher molecular weight antioxidant to obtain a synergistic effect. Polymerization conditions, as well as end use performance, will dictate the antioxidant system and amounts used.

EXAMPLES OF SPECIFIC POLYMERS AND USE RATES

Polypropylene - This resin is the most easily degraded of the polyolefins since it is processed at relatively high temperatures (200-250°C). As a result, oxygen attacks the labile tertiary carbons in the chain, which leads to rapid increases in melt flow, brittleness, and color, necessitating the addition of antioxidant systems in the range of 0.12-0.25% by weight. BHT is often used with higher molecular weight phenolic antioxidants or thioesters and organophosphites in polypropylene.

High Density Polyethylene (HDPE) - This polymer is produced from low pressure processes and contains very few side chains. Consequently, it is relatively linear, highly crystalline and has a fairly high density. Because of these properties, and because it has few tertiary carbon atoms, HDPE is fairly stable to oxygen attacks. Antioxidant systems at about 0.1% by weight perform quite well. Combinations of BHT and higher molecular weight phenols are commonly used.
Low Density Polyethylene - LDPE is a highly branched polymer that is processed at relatively low temperatures (350-400°F). Compared to HDPE, it is lower in crystallinity, hardness, tensile strength, oxidation resistance and melting point. BHT in the amount of 0.03% has been found to perform quite well. If higher performance is needed, other hindered phenols may be added to the antioxidant mix.

Polyurethane - Polyurethane made from either bulk resin or rigid foam typically does not need to be protected by antioxidants. Flexible foams, however, possess an open structure which must be protected from oxidation. BHT is normally the antioxidant of choice for this application. BHT is added during resin production to prevent it from scorching during the highly exothermic reaction, which in turn protects it from later oxidation. Because of its closely controlled polyol chain length, catalyst concentration, and low bun thickness, only minor amounts of other antioxidants are needed in the inhibitor system for flexible polyurethanes. The antioxidant level can range from 0.05% to 0.15% by weight.

Styrenic Block Copolymers - Styrene Butadiene Styrene (SBS) and Styrene Isoprene Styrene (SIS) - Styrenic block copolymers can be used in place of other thermoplastics, elastomers and leather. They have much of the flexibility of elastomers, but do not need to be vulcanized and remain thermoplastic. Antioxidants are necessary in these materials due to the unsaturation contained in the diene molecule. BHT is usually the antioxidant of choice. Where higher processing or end use temperatures are a factor, higher molecular weight hindered phenols may be used with BHT.

Acrylonitrile-Butadiene-Styrene (ABS) - ABS obtains its good properties by obtaining heat resistance from acrylonitrile, its toughness and impact resistance from butadiene and its stiffness and gloss from styrene. Because of its unsaturation, it is the butadiene portion of the molecule that must be protected from oxidation. Add-on levels of 0.7%-0.9% by weight are used in most cases, depending on the butadiene content of the molecule. Since ABS can be processed at fairly high temperatures (up to 525°F) and with a higher molecular weight, phenols may be used along with BHT in the inhibitor system.

Linear Low Density Polyethylene (LLDPE) - This polymer differs in molecular structure from conventional LDPE, in that it has virtually no long-chain branching. Due to this difference, LLDPE has higher melt point, tensile strength and better stress crack resistance than LDPE. Since LLDPE is processed at about 100°F higher than typical LDPE, the antioxidant add-on must also be higher, approximately 0.07%, compared to 0.03% for conventional LDPE. These higher temperatures cause increased loss of BHT during processing. Consequently, antioxidant formulations for LLDPE also include higher molecular weight hindered phenols and possibly secondary antioxidants such as organo-phosphites.
IDENTIFICATION, SPECIFICATIONS AND PROPERTIES

Butylated Hydroxy Toluene (BHT)
2,6-di-tert-butyl-p-cresol (DBPC)
2,6-di-tert-butyl-4-methyl-phenol

C₆H₂(C₄H₉)₂(CH₃)OH
C₁₅H₂₄O
Molecular Weight: 220.34

CAS# 128-37-0
EINECS (EU) 204-88-14

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td>99% wt. minimum</td>
<td>LAB-218</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>69.2 °C minimum</td>
<td>LAB-216</td>
</tr>
<tr>
<td>Color, molten</td>
<td>50 APHA maximum</td>
<td>LAB-220</td>
</tr>
<tr>
<td>Ash (residue on ignition)</td>
<td>0.002 % maximum</td>
<td>LAB-243B</td>
</tr>
<tr>
<td>Arsenic</td>
<td>3 ppm maximum</td>
<td>LAB-239</td>
</tr>
<tr>
<td>Heavy Metals (as Pb)</td>
<td>10 ppm maximum</td>
<td>LAB-242</td>
</tr>
</tbody>
</table>

Solubilities of BHT in Various Mediums at 20°C (weight %)

Methyl Alcohol	20	Benzene	40	Mineral Oil	30
Isopropyl Alcohol	20	Methyl Ethyl Ketone	45	Linseed Oil	28
Ethyl Alcohol	26	Petroleum Ether	50	Lard (50 °C)	48
Sodium Hydroxide	Insoluble	Water	Practically Insoluble		

Typical Size Distribution (%)

<table>
<thead>
<tr>
<th></th>
<th>BHT Crystal</th>
<th>BHT Free Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>On 10 mesh</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Through 10 mesh, on 20 mesh</td>
<td>30</td>
<td>63</td>
</tr>
<tr>
<td>Through 20 mesh, on 30 mesh</td>
<td>33</td>
<td>12</td>
</tr>
<tr>
<td>Through 30 mesh, on 60 mesh</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>Through 60 mesh</td>
<td>3</td>
<td><1</td>
</tr>
</tbody>
</table>
Physical Properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>White, crystalline solid for crystal and free flow; clear liquid for molten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling Points (°C)</td>
<td>265 (760 mm Hg) 190 (100 mm Hg) 171 (50 mm Hg) 147 (20 mm Hg)</td>
</tr>
<tr>
<td>Viscosity (cS)</td>
<td>3.45 (37.5 S.S.U.) 1.54 (31.4 S.S.U.) 0.92 (29.5 S.S.U.)</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.006 (8.39 lb/gal) 0.890 (7.42 lb/gal) 0.883 (7.36 lb/gal) 0.875 (7.30 lb/gal)</td>
</tr>
<tr>
<td>Refractive Index, ND 75</td>
<td>1.4859</td>
</tr>
<tr>
<td>Flash Point Closed Cup</td>
<td>244 °F ASTM D93-7</td>
</tr>
<tr>
<td>Bulk Density</td>
<td>37.5 lb/ft³</td>
</tr>
</tbody>
</table>
RUBBERS AND ELASTOMERS

BHT is a non-staining, non-discoloring antioxidant and is used, with higher molecular weight hindered phenols, in white and light-colored rubber products. Staining antioxidants are only used in the manufacture of tires and other black products. These elastomers use BHT and other hindered phenol antioxidants: Polyisoprene Rubber, Polybutadiene Rubber and Ethylene-propylene Copolymers (EPR).

These stereo rubbers are clear, highly pure, water white products. Small amounts of unsaturation are vulnerable to oxidation during storage prior to end-use processing. Since the light colored property is necessary in these rubbers, hindered phenols are used as antioxidants rather than the amines.

These polymers are sometimes used in food applications, which necessitate Food and Drug Administration (FDA) approval for its inhibitor system. BHT is on the FDA Generally Recognized as Safe (GRAS) list and accordingly, meets this requirement.

BHT is also used in the following rubbers: Styrene butadiene rubber (SBR), neoprene, nitrile, ethylene propylene diamine (EPDM) and natural rubber. Antioxidant systems for the above rubbers range from 0.5% to 2.0% by weight, depending on processing temperatures and end-use conditions.

PETROLEUM AND OTHER OIL PRODUCTS

BHT is an effective stabilizer and antioxidant for synthetic lubricating fluids. BHT stabilizes petroleum oils, including cutting, spindle, hydraulic and slushing oils, as well as other specialty oils. It may also be used with compounds such as aromatic amines, trithiophenyl phosphate, higher fatty acids, and sulfides of metallic phenates.

Lubricating Oils - BHT performs extremely well in lubricating oils in ranges of 0.1% to 1.0% by weight. BHT can also be used in synthetic lubricating oils with good results.

Transformer Oils - BHT has been used for decades to inhibit oxidation in transformer oils in add-ons of up to 1.0% by weight.

Brake fluids - BHT is used successfully in brake fluid products.

Cutting Oils, Hydraulic Oils & Paraffin Waxes - use BHT to enhance their resistance to oxidation.

Transmission Fluids - Current transmission fluid formulations utilize BHT as an inhibitor.

Industrial Fats, Oils & Fatty Acids - BHT prevents the development of rancidity and the resulting increase in fatty acids and uncombined glycerol in animal and vegetable fats and oils. It is useful in oleic acid, textile oils, leather-treating oils, and other products where rancidity and fatty acid development in fatty oils, waxes and greases is problematic.

Bio-Diesel Fuel Blends - BHT is an effective antioxidant to prevent rancidity in bio-diesel fuel blends at concentrations of less than 0.1%.

Linseed, Soy, & Other Plant-Derived Oils - BHT is used in various plant-derived oils as an antioxidant for industrial uses such as printing ink bases. Merisol can provide BHT blended into bulk transports of these oils at up to 30% BHT.
FOODS AND FEED

Food products containing fats and oils with some amounts of unsaturation are subject to oxidation, which results in rancidity and loss of sensory appeal. BHT is effective in animal feeds as an antioxidant and is internationally recognized as a preservative in animal feeds. It preserves aroma, taste, vitamins and color by preventing the oxidation of food fats and oils and its resulting rancidity, without adding any aroma, taste or color of its own. BHT has proven to be an excellent antioxidant in foods when used by itself. It is also often used in blends with other food approved antioxidants, such as BHA, citric acid, phosphoric acid and propyl gallate to obtain synergistic effects. BHT, when used in foods must have an assay of 99% minimum, and may be used alone or in combination with BHA.

Merisol Antioxidants’ food-grade BHT meets the FDA’s requirements for use in foods and food packaging and the requirements of the U.S. Department of Agriculture for use in animal feeds. Merisol Antioxidants’ BHT has been certified Kosher for Passover and year round use by the Union of Orthodox Jewish Congregations of America and has also been certified Halal by the Islamic Food Nutrition Council of America (IFANCA). It meets FDA GRAS regulations (21 CFR 182.3173 and 21 CFR 582.3173) at up to 0.02% based on fat or oil contents in foods. It is also FDA approved for additional uses such as foods, food contact coatings, paperboard, and chewing gum base (21 CFR 172, 175, 176, 177, 178, and 181).

Kosher Certified

Halal Certified

To the right is a list of the maximum amounts of both BHT and BHA in parts per million that may be used in certain foods (21 CFR 172.115):

<table>
<thead>
<tr>
<th>Food Application</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydrated potato shreds</td>
<td>50</td>
</tr>
<tr>
<td>Dry breakfast cereals</td>
<td>50</td>
</tr>
<tr>
<td>Emulsion stabilizers for shortenings</td>
<td>200</td>
</tr>
<tr>
<td>Potato flakes</td>
<td>50</td>
</tr>
<tr>
<td>Potato granules</td>
<td>10</td>
</tr>
<tr>
<td>Sweet potato flakes</td>
<td>50</td>
</tr>
</tbody>
</table>

ADDITIONAL USES

Merisol Antioxidants’ BHT is successful in minimizing viscosity shifts caused during the blending of paraffin wax and ethylene vinyl acetate copolymers to create hot-melt adhesives and coatings.

BHT reduces three problems in hot-melt adhesives that frequently result from the high processing temperature of 300-400°F (149-205°C). Discoloration, cross-linking that increases viscosity and eventual molecular degradation that minimizes viscosity shifts. By routinely adding only 0.05-0.20% BHT to the hot melt mixture during normal processing, such degradation is substantially reduced.

Finally, BHT is applied in emulsion form to substantially extend the shelf life of paperboard food cartons. It prevents the container from absorbing fats and oils from enclosed foods, which can cause the food to become stale or rancid.
PACKAGING AND TRANSPORT

• Packaging
 100 lb net fiber drums (crystal & free flow) and 200 lb net fiber drums (free flow only)
 50 lb and 25 kg net paper bags with poly lining (crystal and free flow)
 Various sizes of super sacks (currently only for free flow)
 Liquid bulk tank truck quantities (molten due to temperature)
 Other types of packaging will be considered on request

• Transport
 Solid Forms - Not regulated
 Molten Forms – Elevated Temperature Liquid if shipped over 100 °C

RESPONSIBLE CARE® & PRODUCT STEWARDSHIP

Merisol is a member of the American Chemistry Council (ACC) and is committed to Responsible Care (RC). By means of a certified Responsible Care Management System (RCMS), Merisol Antioxidants strives to provide proper hazard and risk information to its stakeholders, including customers and distributors. The following Product Stewardship information should be considered when handling or using BHT. Please refer as well to the most current Material Safety Data Sheet (MSDS) for Merisol Antioxidants’ BHT.

MERISOL’S PRODUCT STEWARDSHIP POLICY

MERISOL is committed to promoting the safe manufacture, handling, use and disposition of our products. To accomplish this, we will:

• Collect and evaluate information on health, safety and environmental hazards, and reasonably foreseeable exposures related to our products.
• Provide health, safety and environmental information to customers, distributors, toll processors and other product handlers promoting the proper storage and handling of our products.
• Educate all employees on product stewardship benefits and responsibilities.
• Make health, safety and environmental considerations a priority in our planning for existing and new products and processes.

• Participate in industry programs that promote the proper distribution, delivery, use, recycle and disposal of chemicals.
• Work with others to create responsible laws, regulations and standards to safeguard the community, workplace and environment.
• Promote the principles and practices of Responsible Care by sharing experiences and offering assistance to those who produce, handle, use, transport or dispose of chemicals.
• Evaluate our product stewardship policies and practices annually to achieve continuous improvement.
MERISOL’S PRODUCT STEWARDSHIP EXPECTATIONS

MERISOL recognizes that effective product stewardship requires a mutual commitment on the part of all involved in the life cycle of chemical products. Therefore, we expect our customers, suppliers, distributors and contract manufacturers to be good product stewards, to operate in a safe and responsible manner and, in doing so, to:

- Use appropriate equipment and qualified personnel to safely receive, store, process and dispose of products;
- Use our products as intended and inform us of new commercial uses;
- Provide their employees, suppliers, customers, distributors and toll processors with appropriate health and safety information;
- Request additional information when needed;
- Meet their regulatory requirements; and
- Use responsible distributors, suppliers, toll manufacturers, warehouses and carriers.

GENERAL STORAGE AND HANDLING

While BHT is relatively non-toxic and non-irritating, practical safety measures are recommended during handling.

Safety glasses with side shields, work clothes, and gloves are recommended. Workers should not wear contact lenses when handling BHT. Prolonged inhalation of dust or contact with skin and eyes should be avoided, as should eating, drinking, or smoking in the work area. A sink, safety shower, and eyewash fountain should be maintained in the work area. If BHT is used in molten form, use personal protective equipment, such as face shields and heat resistant gloves and outer garments to protect against thermal burns.

Merisol BHT is a hindered phenolic antioxidant that is frequently used as a preservative added directly to foods and other materials. It is chemically stable if handled properly in storage.

BHT, kept sealed in its original container, should have the following storage conditions: avoid exposure to heat, moisture, light, nitrogen oxide (NOx) gas (as in propane powered fork-truck exhaust) and other environmental factors. Any one of these conditions or combination of conditions might cause premature product degradation and color development. The efficacy of the BHT (how it works) is not affected by color development.

Store BHT in a cool, dry place, in tightly closed containers. Solid BHT may be stored in metal or fiberboard containers. A natural yellow discoloration that is not detrimental to BHT’s effectiveness may result from uncovered storage. Molten BHT should be stored in stainless steel tanks at approximately 80-85°C. The use of an inert gas blanket will extend color stability substantially. Without it, color develops within 7 to 10 days at the temperatures indicated.

Adequate ventilation is recommended to reduce vapor concentrations as BHT may irritate the eyes, nose, throat or skin. The American Conference of Governmental Industrial Hygienists (ACGIH) has established a Threshold Limit Value (TLV) (8 hr) of 2 mg/m³ (as an inhalable aerosol and/or vapor). The Occupational Safety and Health Administration (OSHA) regulates BHT as a nuisance dust with a Permissible Exposure Limit (PEL) of 5 mg/m³.
SUPER SACK (BULK BAG) SAFETY CONSIDERATIONS

Super sack handling has some unique safety concerns. Super sacks are very heavy when filled with BHT. Ensure that all lifting equipment such as forklifts, slings, and hangers are properly rated for filled weights. Follow proper lifting procedures as outlined on the super sacks. Keep all personnel away from super sacks when being transported or suspended. Due to a dust explosion concern, only properly grounded electrostatically dissipative super sacks should be used with BHT to mitigate the risk of explosion.

BHT DUST EXPLOSION CONSIDERATIONS

BHT dust may form an explosive mixture in air. Take measures to prevent dust buildup and electrostatic charges (such as good housekeeping, dust collection at machinery, exhaust ventilation, proper grounding of equipment, humidification of use areas, and inert gas blanketing). Risks of ignition followed by flame propagation or secondary explosions can be prevented by avoiding accumulation of dust on floors, ledges, and other working surfaces. See the BHT Dust Explosion Risk Data presented in the table to the right for further information.

ENVIRONMENTAL CONSIDERATIONS

BHT has a low acute aquatic toxicity and is only slightly soluble in water. BHT is not readily degradable in the environment and may bio-accumulate in aquatic organisms. Do not contaminate any lakes, streams, ponds, or groundwater sources. Dispose of in accordance with applicable federal, state, and local regulations as a non-hazardous waste.

<table>
<thead>
<tr>
<th>Aquatic Toxicity Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50 (Brachydanio rerio): 96 hours >= 0.57 mg/l</td>
</tr>
<tr>
<td>EC50 (Daphnia magna): 48 hours >= 0.17 mg/l</td>
</tr>
<tr>
<td>NOEC (algae): 72 hours 0.4 mg/l</td>
</tr>
<tr>
<td>NOEC (Daphnia magna): 21 days 0.07 mg/l (reproductive effects)</td>
</tr>
<tr>
<td>BCF (fish) 56 days 230 - 2,500</td>
</tr>
<tr>
<td>Accumulation in aquatic organisms is expected.</td>
</tr>
</tbody>
</table>

BHT Dust Explosion Risk Data

<table>
<thead>
<tr>
<th>Test and Units</th>
<th>BHT Values</th>
<th>Comments/Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Explosion Pressure [Pm (bar)]</td>
<td>7-9</td>
<td>Used for explosion containment design.</td>
</tr>
<tr>
<td>Maximum Rate of Pressure Rise [dP/dt (bar/s)]</td>
<td>800-1300</td>
<td>--</td>
</tr>
<tr>
<td>Kst [bar.m/s]</td>
<td>200-350</td>
<td>Used extensively in designing explosion relief & suppression system requirements. >300 very strong explosion; 201-300 strong explosion.</td>
</tr>
<tr>
<td>Minimum Ignition Energy [M.I.E. (mJ)]</td>
<td>10-25</td>
<td>The majority of ignition incidents occur when ignition energy is below 25 mJ. The hazard from electrostatic discharges from dust clouds should be considered. At 10 mJ, product has high sensitivity to ignition. Consider restrictions on the use of high resistivity materials (plastics).</td>
</tr>
<tr>
<td>Minimum Explosion Concentration [M.E.C. (g/m³)]</td>
<td>10-20</td>
<td>Sometimes used to design plants with air throughput to keep dust levels below flammable limits. Care is needed since dust clouds are rarely uniform. Local concentrations can be higher than the mean concentration.</td>
</tr>
</tbody>
</table>

NO DUMPING TO WATERWAYS

TOXICOLOGICAL DATA

BHT has been tested extensively for toxicity and used widely for many years. It does not contain any ingredient designated as a known, probable, or suspected human carcinogen by IARC, NTP, ACGIH, or OSHA.
RESPONSIBLE CARE COMMUNICATION

As part of our Responsible Care effort, Merisol Antioxidants would like to know of any accidents, health concerns, environmental incidents, or security issues associated with the handling or use of our BHT. Merisol also welcomes any suggestions on how we can improve our Product Stewardship information. Contact Merisol using the address and phone numbers provided below.

For more information, contact:
Merisol Antioxidants LLC
292 State Route 8, Oil City, PA 16301

Technical, Safety/Health, Environmental
Phone: (814) 677-2028
Fax: (814) 677-2936

Customer Service, Orders
Phone: (800) 967-7955
Phone: (713) 428-5690
Fax: (814) 677-5495
E-mail: bht@merisol.com

New Sales Inquiries
Phone: (713) 428-5613

WARNING TO USERS

The information contained in this document is given in good faith and is based on our current knowledge. It is only an indication and is in no way binding, particularly as regards infringement of or prejudice to third party rights through the use of our products. MERISOL ANTIOXIDANTS LLC guarantees that its products comply with its sales specifications.

This information must on no account be used as a substitute for necessary prior tests, which alone can ensure that a product is suitable for a given use. Users are responsible for ensuring compliance with local legislation and for obtaining the necessary certifications and authorizations. Users are requested to check that they are in possession of the latest version of this document and the MSDS.