Natural Gas Processing Plants.
Contents.

3 Introduction

4 Components and pretreatment of natural gas

5 Natural gas plants

6 Extraction of hydrocarbons and LPG plants

7 References for LPG/C$_3$, recovery plants

8 NGL plants

8 References for NGL/C$_2$, recovery plants

10 Extraction of non hydrocarbons

- Nitrogen rejection units (NRU)
- Helium recovery and liquefaction plants

11 References for nitrogen rejection and helium plants

12 Contact
Introduction.

Natural gas is valuable both as a clean source of energy and as a chemical feedstock. Before reaching the customer, it has to pass several processing steps. These steps are partly necessary to be able to transport the gas over long distances and partly necessary for the recovery of valuable components contained in the gas.

Linde AG’s Engineering Division has world-class experience in the entire natural gas processing chain. Linde offers engineering as well as technical and commercial services, including feasibility studies, pre-FEED, FEED, detail engineering and turnkey plant construction. Plant design and scope of supply typically includes specialized and tailor made cryogenic equipment manufactured in Linde workshops such as plate-fin and coil-wound heat exchangers.

Linde’s competence in project development, planning, execution and construction of turn-key plants is clearly demonstrated by the fact that it has built more than 4,000 plants world-wide.
Components of natural gas
Natural gas is a mixture of gases containing primarily hydrocarbon gases. It is colorless and odorless in its pure form. It is the cleanest fossil fuel with the lowest carbon dioxide emissions. Natural gas is an important fuel source as well as a major feedstock for fertilizers and petrochemicals.

Pretreatment of natural gas
Natural gas pretreatment typically consists of mercury removal, gas sweetening and drying. Natural gas is dried in molecular sieve adsorbers. Depending on the downstream processing steps and the concentration of the sour gas components, it may be necessary to remove H₂S and CO₂ from the natural gas. Scrubbing processes such as MDEA, Benfield or SULFINOL are offered for this service. Should only minor amounts of sour gas be present, they can be removed by adsorption along with the removal of water. Mercury guard beds are recommended to protect people and equipment.
Cryogenic processes are the most economical method for separating natural gas components. Nitrogen is removed from natural gas to reduce transportation volumes and increase heating value. Nitrogen removal is combined with the recovery of helium, when present. High purity helium is produced by the combination of cryogenic and pressure swing adsorption process steps.

NGL, LPG and condensate as well as the pure components methane, ethane, propane and butane often have higher sales values compared to the pipeline gas itself. Therefore, they are often extracted and fractionated in tailor made processing plants according to the specific requirements of the regional market and the customers.

Processes for the pretreatment and separation of natural gas as well as the extraction of NGL, LPG, nitrogen and helium are offered by the Engineering Division. Combined with Linde’s project execution know-how, these processes can be implemented on a turn-key basis for all kinds of projects.

Natural gas plants.
Extraction of hydrocarbons and LPG plants.

Extraction of hydrocarbons
Due to their added value, heavier hydrocarbons are often extracted from natural gas and fractionated by using several tailor made processing steps.

LPG plants
LPG (Liquefied Petroleum Gas) is widely used as alternative fuel for cars, but is also suitable as a chemical feedstock. It consists of propane and butane (C₃/C₄).

For the recovery of LPG/C₃+ the Engineering Division offer an absorber process, which guarantees recovery rates as high as 99.9 %, while at the same time featuring low specific energy consumption. Furthermore the tolerable CO₂ content of the feed gas is higher than for conventional expander processes.

To achieve high C₃ recovery rates, Linde implements an absorber column upstream of the deethanizer. Here the feed gas is scrubbed by using a light hydrocarbon reflux coming from the top of the deethanizer. LPG is separated from the heavier hydrocarbons downstream of the deethanizer using a distillation column.
References for LPG/C$_3+$ recovery plants.

C$_3+$ recovery plant
in Constanța, Romania
FEED gas capacity: 160,000 Nm3/h
Customer: Petrom S.A. (member of OMV Group)
Start of production: 2009

C$_3+$ recovery plant
in Kollsnes, Norway
FEED gas capacity: 1,100,000 Nm3/h
Customer: Troll Group (Statoil)
Start of production: 2003

C$_3+$ recovery and fractionation plant
in Rayong, Thailand
FEED gas capacity: 258,000 Nm3/h
Customer: Petroleum Authority of Thailand
Start of production: 1995
NGL consists of ethane and heavier hydrocarbons (C_{2+}) and constitutes an ideal feedstock for steam crackers producing olefins. It has a higher sales value compared to the pipeline gas itself, which justifies an extraction.

For the recovery of NGL/C_{2+}, the Engineering Division offers a well proven expander process enabling recovery rates up to 98%. The cryogenic process utilizes an expander to provide the refrigeration duty, which is necessary for the partial liquefaction of the natural gas upstream of the distillation process.

The process is characterized by the use of internal refrigeration to the maximum extent in order to minimize or even eliminate the necessity of external refrigeration. This ensures the lowest possible life cycle costs and investment costs for the customer.

References for NGL/C_{2+} recovery plants.

C$_2$+ recovery and fractionation plant
in Middle East
FEED gas capacity : 3,000,000 Nm3/h
Customer : National oil and gas company
Start of production : 2005

C$_2$+ recovery plant
in Middle East
FEED gas capacity : 1,000,000 Nm3/h
Customer : National petrochemical company
Start of production : 2005
Expander process for C\textsubscript{2+} recovery

C\textsubscript{2+} recovery and fractionation plant in Rayong, Thailand
FEED gas capacity: 390,000 Nm3/h
Customer: Petroleum Authority of Thailand
Start of production: 1997

C\textsubscript{2+} recovery and fractionation plant in Kårstø, Norway
FEED gas capacity: 670,000 Nm3/h
Customer: Statoil for Statpipe Group
Start of production: 1986
Extraction of non-hydrocarbons.

Natural gas is a mixture of gases containing primarily hydrocarbon gases. It is colorless and odorless in its pure form. It is the cleanest fossil fuel with the lowest carbon dioxide emissions. Natural gas is an important fuel source as well as a major feedstock for fertilizers and petrochemicals.

Nitrogen rejection units (NRU)

Nitrogen is removed from natural gas to reduce transportation volumes and increase heating value. In some cases nitrogen rejection units are integrated within LNG plants to limit the nitrogen content in the fuel gas or to recover methane from tank return or end flash gas.

The Engineering Division is typically using a double column process for the removal of nitrogen. This maximizes the heat integration of the process. Depending on the nitrogen content of the feed gas, an additional enrichment column may be foreseen upstream of the actual removal process.

Helium recovery and liquefaction plants

Helium is a rare gas, which is recovered from natural gas when present in sufficient concentrations. Linde Engineering offers a well-proven cryogenic process for the recovery of high purity helium (> 99.999 %). High purity helium is used for special applications such as space technology or the realization of superconductivity.

To attain high purity the raw helium is first recovered from natural gas in a cryogenic separation process. Down-stream of this process step it is purified in a pressure swing adsorption (PSA) unit and than liquefied for storage at temperatures of about -270°C. The Engineering Division has own technologies for each process step and is in a position to offer complete plants on a turn-key lumpsum basis.
References for NRUs and helium plants.

NRU integrated in Pluto LNG plant in Karratha, Australia
FEED gas capacity: 78,000 Nm³/h
Customer: Woodside Burrup Pty. Ltd.
Start of production: 2010

NRU integrated in Snøhvit LNG plant in Hammerfest, Norway
FEED gas capacity: 71,400 Nm³/h
Customer: Snøhvit Group
Start of production: 2007

NRU integrated in a helium plant in Skikda, Algeria
FEED gas capacity: 47,000 Nm³/h
Customer: Helison S.p.A.
Start of production: 2005

Helium recovery and liquefaction plant in Darwin, Australia
Production rate: 2,6 t/d liquid helium
Customer: BOC Australia
Start of production: 2009

Helium recovery and liquefaction plant in Skikda, Algeria
Production rate: 10 t/d liquid helium
Customer: Helison S.p.A.
Start of production: 2005

NRU in Onslow, Australia
FEED gas capacity: 47,000 Nm³/h
Customer: BHP Petroleum
Start of production: 1994
Linde’s Engineering Division continuously develops extensive process engineering know-how in the planning, project management and construction of turnkey industrial plants.

The range of products comprises:
- Petrochemical plants
- LNG and natural gas processing plants
- Synthesis gas plants
- Hydrogen plants
- Gas processing plants
- Adsorption plants
- Air separation plants
- Cryogenic plants
- Biotechnology plants
- Furnaces for petrochemical plants and refineries

The Engineering Division and its subsidiaries manufacture:
- Packaged units, cold boxes
- Coil-wound heat exchangers
- Plate-fin heat exchangers
- Cryogenic standard tanks
- Air heated vaporizers
- Spiral-welded aluminium pipes

More than 4,000 plants worldwide document the leading position of the Engineering Division in international plant construction.

Designing processes – constructing plants.

Linde AG
Engineering Division, Head office, Dr.-Carl-von-Linde-Strasse 6-14, 82049 Pullach, Germany
Phone +49.89.7445-0, Fax +49.89.7445-4908, E-Mail: info@linde-le.com, www.linde-engineering.com