Tribology

<table>
<thead>
<tr>
<th>Test Methods</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribology (Friction and Wear) Testing of Lubricants</td>
<td></td>
</tr>
<tr>
<td>Friction and Wear Test Equipment</td>
<td></td>
</tr>
<tr>
<td>Four Ball Wear and EP</td>
<td></td>
</tr>
<tr>
<td>ASTM D2266, D2596, D2783, D2793, D4172, D5183,</td>
<td>140</td>
</tr>
<tr>
<td>IP 239, IP 300</td>
<td></td>
</tr>
<tr>
<td>Measurement and Data Acquisition System</td>
<td></td>
</tr>
<tr>
<td>TriboDATA Tribology Software</td>
<td>141</td>
</tr>
<tr>
<td>High Frequency Reciprocating Rig (HFRR)</td>
<td>141</td>
</tr>
<tr>
<td>ASTM D6079; ISO 12156</td>
<td></td>
</tr>
<tr>
<td>Pin-On-Disc Machine</td>
<td>142</td>
</tr>
<tr>
<td>ASTM G99</td>
<td></td>
</tr>
<tr>
<td>Timken</td>
<td>143</td>
</tr>
<tr>
<td>ASTM D2509, D2782</td>
<td></td>
</tr>
<tr>
<td>Corrosion Inhibition Properties of Greases</td>
<td>144</td>
</tr>
<tr>
<td>IP 220; ISO 11007; DIN 51802; NFT 60-135; SIS 15513</td>
<td></td>
</tr>
<tr>
<td>Scratch Tester</td>
<td>144</td>
</tr>
<tr>
<td>Pin and Vee Block Tester</td>
<td>145</td>
</tr>
<tr>
<td>ASTM D2670, D2353</td>
<td></td>
</tr>
<tr>
<td>BOCLE</td>
<td>145</td>
</tr>
<tr>
<td>ASTM D9001</td>
<td></td>
</tr>
<tr>
<td>Multispecimen Tester</td>
<td>146</td>
</tr>
<tr>
<td>ASTM D2266, D3702, D4172</td>
<td></td>
</tr>
<tr>
<td>Test Methods</td>
<td></td>
</tr>
<tr>
<td>Slurry Abrasion Tester</td>
<td>146</td>
</tr>
<tr>
<td>ASTM G105</td>
<td></td>
</tr>
<tr>
<td>Air Jet Erosion Tester</td>
<td>146</td>
</tr>
<tr>
<td>ASTM G76</td>
<td></td>
</tr>
<tr>
<td>Dry Abrasion Tester</td>
<td>146</td>
</tr>
<tr>
<td>ASTM G65</td>
<td></td>
</tr>
<tr>
<td>Universal Wear</td>
<td>146</td>
</tr>
<tr>
<td>ASTM G77, G99</td>
<td></td>
</tr>
<tr>
<td>Shear Stability</td>
<td>146</td>
</tr>
<tr>
<td>ASTM D6278</td>
<td></td>
</tr>
<tr>
<td>Tapping Torque Tester</td>
<td>146</td>
</tr>
<tr>
<td>ASTM D5619</td>
<td></td>
</tr>
<tr>
<td>Grease Life Tester</td>
<td>146</td>
</tr>
<tr>
<td>ASTM D3336</td>
<td></td>
</tr>
<tr>
<td>Vane Pump Wear</td>
<td>146</td>
</tr>
<tr>
<td>ASTM D2882</td>
<td></td>
</tr>
<tr>
<td>Bearing and Greases Noise Characteristics</td>
<td>146</td>
</tr>
<tr>
<td>Mechanical Stability of Greases</td>
<td>146</td>
</tr>
<tr>
<td>Lubricating Ability of Greases</td>
<td>146</td>
</tr>
<tr>
<td>Mechanical and Dynamic Behavior of Greases</td>
<td>146</td>
</tr>
</tbody>
</table>

www.koehlerinstrument.com
Tribology (Friction and Wear) Testing of Lubricants

Friction and Wear Test Equipment

Koehler Instrument Company is pleased to offer advanced equipment for a variety of friction and wear tests. Several of the standard instruments that we offer are listed here. Please contact us to discuss your requirements for these as well as custom-designed units for tribology analysis methods. Our applications personnel will consult with you on your requirements and work with our design staff to provide solutions for your tribology testing needs.

Test Method

Determines the Wear Preventative (WP) and Extreme Pressure (EP) characteristics of lubricating oils and greases in sliding steel-on-steel applications. The test consists of rotating a steel ball under load against three stationary steel balls coated with lubricant. Measurements are taken at the rotating speeds, temperatures, and duration as specified by published standards. The load-wear index can be calculated from the weld point in EP tests, and lubricant comparisons can be made based upon scar diameters incurred from wear tests.

Four Ball Wear and EP Tester

- Conforms to ASTM D2266, D2596, IP 239, and related specifications
- Performs Wear Preventative (WP) and Extreme Pressure (EP) tests
- Displays and records normal load, frictional torque, time, and temperature
- Test speeds and temperatures are electronically controlled
- Data Acquisition Software and Card are included
- Custom configurations are available
- Precise variable loading capability*

Four Ball Tester performs both Wear Preventative (WP) and Extreme Pressure (EP) analyses for measuring the wear and frictional properties of lubricants under sliding steel-on-steel test conditions. Tests are performed in accordance to the latest ASTM and IP published methods. Normal load on the ball assembly and frictional torque are measured through load cells. Data is processed and stored utilizing TriboDATA, an advanced data acquisition and processing software package. Test results can be plotted and compared, as well as exported to other programs. Wear scars on the steel balls are measured and recorded with a High Resolution Digital Microscope available as recommended accessory for the Four Ball Tester.

High Resolution Digital Microscope

Koehler’s Four Ball Microscope is a versatile device for measuring the wear scar diameter on a steel test ball. This apparatus consists of the “Dinolite” Microscope with “DinoCapture” Software mounted at an angle on an aluminum base. The device is designed to measure the wear scar without removing the test balls from the ball pot allowing for a safer measurement procedure. The wear scar can be viewed through an external PC. The software measures the wear scar using a diameter and line tool. The images can be saved at varied resolutions on a PC.

Specifications

Conforms to the specifications of:
ASTM D2266, D2596, D2783, D4172, D5183*, IP 239

Electrical Requirements: 220V, 60Hz, 3 phase
440V, 50Hz, 3 phase

Drive Motor: 1.5 kW

Test Speeds: 1200, 1440, 1760 rpm
Optional Test Speeds (min/max): 1000/3000, 300/3000 rpm

Maximum Axial Load: 10000 N at 3000 rpm or 12000 N at 1800 rpm

Test Duration (min/max): 1/9999 min

Test Ball diameter: 12.7 mm

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
<th>Order Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>K93100</td>
<td>Four Ball Tester, 220V 60Hz</td>
<td>1</td>
</tr>
<tr>
<td>K93100-PN</td>
<td>Four Ball Tester with pneumatic loading, 220V 60Hz</td>
<td>1</td>
</tr>
<tr>
<td>K93190</td>
<td>Four Ball Tester, 380V 50Hz</td>
<td>1</td>
</tr>
<tr>
<td>K93190-PN</td>
<td>Four Ball Tester with pneumatic loading, 380V 50Hz</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K93105</td>
<td>Test Balls (Pack of 100)</td>
</tr>
<tr>
<td>K93111</td>
<td>High Resolution Digital Microscope</td>
</tr>
</tbody>
</table>
TriboDATA Data Acquisition System

• Powerful data acquisition system provides analog to digital conversion and data analysis of test results for many tribology instruments available from Koehler as well as other tribology instrument manufacturers
• Real-time display of critical test parameters such as normal load, friction force, temperature, and time

The Koehler TriboDATA System is designed to acquire and process analog data from the various tribology test instrumentation offered from Koehler as well as from other tribology instrument manufacturers. The analog-to-digital converter card is comprised of four analog inputs, and the test data is recorded and displayed in real-time. Up to four graphs can be displayed simultaneously. The data can be stored to disk for future reference or exported in an ASCII text format to other software packages. Critical test parameters are also saved with the data. With the TriboDATA hardware and software package, data acquisition of crucial test parameters such as normal load, friction load, temperature, and time can be seamlessly performed to ensure that your test results are consistent and repeatable within prescribed test conditions. As an option, a CCD camera package is available to capture wear scar images and store them on a PC for analysis.

Computer Requirements
Processor: Pentium or higher
Processor Speed: 100 MHz or higher
Operating System: Windows® 95/98/NT
Memory (RAM): 16 Mb
Required Disk Space: 10 Mb
One Free Expansion ISA Slot

Included Accessories
- Software on CD
- Acquisition Data Card
- Connection Cable
- Instruction Manual

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
<th>Order QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>K93900</td>
<td>TriboDATA Data Acquisition System</td>
<td>1</td>
</tr>
</tbody>
</table>

High Frequency Reciprocating Rig

Test Method
A 2-mL test specimen of fuel is placed in the test reservoir and maintained at 25 or 60°C. When the temperature has stabilized, a vibrator arm holding a nonrotating steel ball and loaded with a 200-g mass is lowered until it contacts a test disk completely submerged in the fuel. The ball is caused to rub against the disk with a 1-mm stroke at a frequency of 50 Hz for 75 min. The ball is removed from the vibrator arm and cleaned. The dimensions of the major and minor axes of the wear scar are measured under magnification and recorded.

High Frequency Reciprocating Rig
The two-station Fuel Lubricity Wear Test Machine incorporates two test positions with heater pads and mounting arrangements for fuel lubricity test specimens. Load is applied manually by means of dead weights directly to the fixed ball specimen carrier by means of a loading yoke. Machine controls are limited to speed control of the drive motor to give the required frequency, temperature control of the specimen bath and test duration. Test data is limited to post test wear scar measurement only and no facilities are provided for friction force measurement.

Electrical Requirements
- 115V 60Hz, Single Phase
- 230V 50/60Hz, Single Phase

Specifications
- Test specifications: ASTM D6079, ISO 12156
- Contact Geometry: Ball on Plate
- Ball Specimen: 6 or 10 mm diameter
- Load: 1.95 to 10.00 N (± 0.01 N)
- Stroke: 1 mm (± 0.02 mm)
- Frequency: 2.5 to 50 Hz (± 1 Hz)
- Fluid Volume: 2 mL (± 0.2 mL)
- Test Temperature: 25 or 60°C (± 2°C)
- Test Duration: 75 min (± 0.1 min)
- Bath Surface Area: 6 cm²
Pin-On-Disc

K93500 Pin-On-Disc Tester

Specifications for Pin-On-Disc with Environmental Chamber & Lubricant Recirculating System

Temperature: 60°C Maximum
Discharge Rate: 0-1 L/min
Viscosity Range: 90 SAE Maximum
Capacity: 3L of Lubricant

Shipping Information
Shipping Weight: 440 lbs (200 kg)
Dimensions: 18 Cu. ft.

Included Accessories
- Electrical Controller Unit
- Connecting Cables
- Spare Fuses
- TriboDATA Software
- Set of Weights
- Set of Hand Tools
- Set of Pins
- Calibration and Test Reports

Electrical Requirements
- 115V 60Hz
- 230V 50/60Hz

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Order Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>K93500</td>
<td>1</td>
</tr>
<tr>
<td>K93590</td>
<td>1</td>
</tr>
</tbody>
</table>

Optional Configurations Available
- Environmental Chamber
- Lubricant Recirculating System
- Environmental Chamber and Lubricant Recirculating System

High temperature models (up to 700°C) are available. Please contact Koehler Customer Service for additional information.

Pin-On-Disc Tester

- Conforms to ASTM G99 standard test method
- Analyzes wear and friction characteristics of sliding contacts (dry or lubricated conditions)
- Tests can be performed on a variety of materials: metals, polymers, composites, ceramics, lubricants, cutting fluids, abrasive slurries, coatings, and heat-treated samples
- TriboDATA software package varies and records pin pressure, pin temperature, sliding speed, and lubrication parameters
- Custom configurations available

The Pin-On-Disc machine is a versatile unit designed to evaluate the wear and friction characteristics on a variety of materials exposed to sliding contacts in dry or lubricated environments. The sliding friction test occurs between a stationary pin stylus and a rotating disk. Normal load, rotational speed, and wear track diameter can be varied. Electronic sensors monitor wear and the tangential force of friction as a function of load, speed, lubrication, or environmental condition. These parameters as well as the acoustic emissions at the contact are measured and displayed graphically utilizing the TriboDATA software package.

Specifications

Conforms to the specifications of: ASTM G99

- Sliding Speed Range: 0.26-10 m/sec
- Disc Rotation Speed: 100-2000 rpm
- Maximum Normal Load: 200 N
- Frictional Force: 0-200 N
- Wear Measurement Range: 4 mm
- Pin Size: 3-12 mm diagonal/diameter
- Disc Size: 160 mm diameter x 8 mm thick
- Wear Track Diameter: 10-140 mm

Electrical Requirements

- 115V 60Hz
- 230V 50/60Hz

Included Accessories

- Electrical Controller Unit
- Connecting Cables
- Spare Fuses
- TriboDATA Software
- Set of Weights
- Set of Hand Tools
- Set of Pins
- Calibration and Test Reports

Specifications

Conforms to the specifications of: ASTM G99

- Sliding Speed Range: 0.26-10 m/sec
- Disc Rotation Speed: 100-2000 rpm
- Maximum Normal Load: 200 N
- Frictional Force: 0-200 N
- Wear Measurement Range: 4 mm
- Pin Size: 3-12 mm diagonal/diameter
- Disc Size: 160 mm diameter x 8 mm thick
- Wear Track Diameter: 10-140 mm

Electrical Requirements

- 115V 60Hz
- 230V 50/60Hz
Timken Mechanical Tester
A steel test cup rotating at 800 RPM is pressed against a steel test block. Sample under test is carried by the test cup into the sliding contact. Test load at the contact is progressively increased, score value and OK value are determined.

Test Method
This tester is used to measure extreme pressure properties of lubricating grease and lubricating fluids.

Specifications
Conforms to the specifications of:
ASTM D 2509 - IP 326 for greases.
ASTM D 2782 - IP 240 for lubricating fluids.
Rate of loading : 0.9 to 1.3 Kg/sec.
Grease feed rate : 45 ± 9 g / min.
Fluid feeder : 3.8 liter with recirculating pump and heater.
Motor : 1.5 kW with variable frequency drive.
Power : 220V 60Hz, 380V 50Hz, 5 KVA max.

Included Accessories
• Calibration kit for load and RPM
• Set of tools for operation
• Microscope for scar measurement
• Electronic timer

Timken Pneumatic Tester
A steel test cup rotating at 800 RPM is pressed against a steel test block. Sample under test is carried by the test cup into the sliding contact. Test load at the contact is progressively increased, score value and OK value are determined.

Test Method
This tester is used to measure extreme pressure properties of lubricating grease and lubricating fluids.

Features & Benefits
• Loading is pneumatic. Frictional torque is measured with a torque cell.

Specifications
Conforms to the specifications of:
ASTM D 2509 - IP 326 for greases.
ASTM D 2782 - IP 240 for lubricating fluids.
Rate of loading : 0.9 to 1.3 Kg/sec.
Grease feed rate : 45 ± 9 g / min.
Fluid feeder : 3.8 liter with recirculating pump and heater.
Motor : 1.5 kW with variable frequency drive.
Power : 220V 60Hz, 380V 50Hz, 5 KVA max.

Included Accessories
• Calibration kit for load and RPM
• Set of tools for operation
• Vibration sensor
• Microscope for scar measurement
• Electronic timer

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K92000</td>
<td>Timken Tester, 220V 60Hz</td>
</tr>
<tr>
<td>K92000-PN</td>
<td>Timken Tester with pneumatic loading, 220V 60Hz</td>
</tr>
<tr>
<td>K92090</td>
<td>Timken Tester, 380V 50Hz</td>
</tr>
<tr>
<td>K92090-PN</td>
<td>Timken Tester with pneumatic loading, 380V 50Hz</td>
</tr>
</tbody>
</table>

Koehler
RESEARCH COMPANY, INC.
Corrosion Inhibition Properties of Greases

Test Method
Measures the ability of a grease to protect a bearing against corrosion in the presence of water. Two sets of grease-coated bearings per station are partially immersed in water and rotated at a speed of 80 rpm in a sequence of running and resting periods. At the end of the test, the raceways of the bearing outer rings are inspected for rust.

Emcor Grease Testing Machine
- Evaluates the rust preventive properties of greases and oils
- Performs both standing and dynamic testing

The Emcor Grease Testing Machine evaluates the rust preventive properties of greases on bearing components, measuring the ability of a grease to protect a bearing against corrosion in the presence of water. As bearings are normally used in environments exposed to humidity and temperature variations, condensation may form on the bearing thus promoting the onset of rust. Rust is detrimental to proper bearing operation and will compromise the longevity of the bearing. A good quality grease should be designed to protect the bearing from rust and corrosion under these conditions.

The Emcor system features test method versatility, since both greases and oils can be tested as well as variations can be made with regard to the test medium (e.g., brine instead of water). The costs for running these tests are minimal. The two test bearings are the only machined parts that have to be renewed for each test, and the polyamide material for the housing is rigid and strong and rarely ever needs replacement.

Specifications
Conforms to the specifications of:
- ASTM D6138; IP 220; ISO 11007;
- DIN 51802; NFT 60-135;
- SIS 155130

Electrical Requirements:
- 115V, 60Hz, 1 phase
- 230V, 50Hz, 1 phase

Dimensions
- 48\(\times\)15\(\times\)11 (123\(\times\)38\(\times\)28)
- Net Weight: 88 lbs (40 kg)

Shipping Information
- Shipping Weight: 121 lbs (55 kg)
- Dimensions: 8 Cu. ft.

Scratch Tester

Scratch Tester
The Scratch Tester is a versatile instrument capable of quantifying scratch resistance, critical load, adhesion and bond strength for a wide range of surfaces. The tester evaluates scratch resistance of a sliding surface in relative motion (X movement) to a stylus. The stylus is pressed against the moving surface with controlled force which is normal to the surface. Tangential force at the contact is measured. The ratio of tangential and normal forces is merely the coefficient of friction till the threshold of surface damage. Energy required to damage the surface contributes an additional component to the tangential force, which increase this ratio. Force ratio is not the only sign of damage - acoustic emission level also increases corroborating the occurrence of surface damage. Image of the entire scratch may be captured and the view at any given load can be seen to study nature of failure.

Specifications
- Normal load control range: 2 - 20N
- Normal load accuracy: 1% or 10mN
- Tangential force measurement range: 2 - 20N
- Tangential force accuracy: 1% or 10mN
- Stroke (X): 0.1 - 50mm
- Speed: 0.1 - 5mm/s
- Pitch(Y): 0.2 - 50mm
- Loading Rate: 0 - 20N/s. In steps of 0,2,5,10,15,20N/s
- Sample Size (LxWxT): 60x60x10mm
- Operating Temperature: 15 - 40°C, RH: 25 - 85%
- Storage Temperature: -10 - 40°C, RH: 0 - 90%
- Electrical Requirements: CE
- 115V 60Hz, 1 phase
- 220V 50Hz

Included Accessories
- Control Box
- Diamond Indenter
- Reference Sample (2)
- Data Acquisition Software
- Tool Kit
- Operating and Instruction Manual

Dimensions
- 11.81x10.83x21.65 (30x27.5x55)
- Net Weight: 44.1 lbs (20 kg)
Pin and Vee Block Tester

Test Method
To evaluate wear preventative and load carrying properties of fluid lubricants, and endurance (wear) life of film lubricants.

Pin and Vee Block Tester
- Automatic Start of Test at Set Temperature
- Over-Temperature and Over-Torque Protection
- Maintenance of Test Speed within Specified Limits over entire Load Range
- Calibration kit for Load, Torque, and Wear
- High Performance Sensor to cover entire test load range with single load cell with adequate resolution.

The Pin and Vee Block Tester consists of a rotating pin pressed between two stationary steel Vee blocks. Load is applied to the Vee blocks by a ratchet mechanism. Ramping of load during extreme pressure testing is made possible by auto advancement mechanism of ratchet. Pin and Vee blocks are immersed in lubricant fluid under test in heated test cup. Wear, torque and endurance life is evaluated accordingly. The Pin and Vee Block tester comes with data acquisition software. Test torque, load, temperature and wear are measured and recorded. The software permits users to view, compare and report various test results.

Specifications
Conforms to the Specifications of:
ASTM D2625, D2670, D3233, D5620; FTM 791C-3807.1, FTM 791C-3812.1
Test Load: 0 to 4500 lbf
Torque: 0 to 100 in-lb
Speed: 100 to 500 RPM
Temperature: Ambient to 200°C
Duration: 0 to 999.9 minutes
Electrical Requirements: 230V, 50/60Hz, 2 KVA, 1 Phase

Included Accessories
- Calibration Kit
- Data Acquisition Software
- Brinell Ball Attachment
- Test Pin (50)
- Vee Block (100)

Ordering Information
Catalog No.
K95190 Pin and Vee Block Tester, 230V 50/60Hz.

Measurement of Lubricity of Aviation Turbine Fuels by the Ball-on-Cylinder Lubricity Evaluator (BOCLE)

Test Method
Covers the Assessment of the wear aspects of the boundary lubrication properties of aviation turbine fuels on rubbing steel surfaces.

Data Acquisition
Test parameters such as speed, test duration, fuel temperature, air temperature and humidity are acquired, displayed and recorded. The acquired data can be viewed in graphs. The data acquisition system provides the users with the facility to super impose up to four test graphs for comparative viewing.

Specifications
Conforms to the Specifications of: ASTM D5001
Motor Speed: 240 ± 0.5 RPM
Fuel Temperature Control: 25±1.0 max, 0.1°C typical
Flow Rate: 3.8 ± 0.1 L/min
Relative Humidity: 10.0 ± 0.2% indicated
Temperature: 25±1.0 max, 0.1°C typical
Fuel Conditioning: 15 min ± 0.1s
Test Duration: 30 min ± 0.1s
Ambient Temperature: 15 to 22°C
Electrical Requirements: 230V, 50Hz, 2 KVA, 1 Phase

ATF Lubricity Test Rig (BOCLE)
The instrument consists of a rotating test ring against which a fixed test ball is pressed with the required force. A fuel bath containing the fuel under test is placed on – movable stage under the test ring. The temperature is controlled and the air is conditioned.
Fuel under test is conditioned by maintaining the fuel temperature at 25°C maintained at 25°C with 10% Relative Humidity is passed through the test area which is enclosed.
After conditioning of the fuel, a test ball of 12.7 mm diameter is pressed against the outer surface of the test ring. The lower part of the test ring is immersed in the test fuel bath.
The test ball is pressed with a force of 10 N against the test ring. The test ring is made to rotate at 240 RPM for a period of 30 minutes after which the test stops.
The wear scar on the test ball is studied and the scar diameters of the wear scar (major and minor axis) are measured.

Ordering Information
Catalog No.
K94190 ATF Lubricity Test Rig (BOCLE), 230V 50Hz
Multispecimen Tester

- Multiple test configuration for wear and friction monitoring in one unit
- Speeds variable to 2000 rpm and loads to 1000 N
- Data acquisition system records speed of rotation, normal load, sample temperature, and frictional torque

Measures and displays a variety of friction and wear characteristics on various geometric test samples with different compositions and forms. Test configurations are easy to change on the instrument: single or multiple, sliding or rolling, point, line or area contacts are available. A wide range of materials including coatings, lubricants, plastics, metals, polymers, ceramics, and composites can be readily analyzed. The test is performed by mounting a test sample into the spindle and rotating it against a stationary counter-face test specimen. The spindle rotation speed, normal load, and interface temperature can be user-adjusted in accordance with published ASTM standards. Specimen holders are designed for standard test configurations; optional custom-designed holders for customer specific applications are also available. This unit has a temperature range to 120°C, load to 1000 N and speed up to 2000 rpm. Windows®-based TriboDATA data acquisition software is included, and some of the possible configurations are shown in the table to the right.

Specifications

Conforms to the specifications of:
- ASTM D2266, D3702, D4172
- Non-Rotating Sample
- Frictional Torque Measurement
- Range: 0-10 Nm
- Shaft Speed: 200-2000 rpm
- Wear Measurement: 0-2000 µm

- Normal Load: 5-1000 N
- Pin Sample Diameter: up to 8 mm
- Ball Diameter: 12.7 mm
- Non-rotating Sample Temperature: Ambient to 100°C

Configurations Table

Ball on flat	Sliding point contact	1, 2, 3 balls can be used	Dry or lubricated contact
Cylinder on flat	Sliding line contact	1 or 2 pins.	Dry or lubricated
Pin on flat	Sliding area contact	1, 2 or 3 pins.	Dry or lubricated
Four ball wear	Wear preventive properties of lubricants	ASTM D2266, D4172	
Thrust washer	Rotating washer against fixed washed with axial load	ASTM D3702	

Ordering Information

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Order Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K83600</td>
<td>1</td>
<td>Multispecimen Tester, 220V 60Hz 3 Phase</td>
</tr>
<tr>
<td>K83690</td>
<td>1</td>
<td>Multispecimen Tester, 380V 50Hz 3 Phase</td>
</tr>
</tbody>
</table>

Included Accessories

- Electrical Controller
- Electrical Cables
- TriboDATA Software
- Set of Hand Tools
- Calibration and Test Reports

Electrical Requirements

- 220V 60Hz 3 Phase
- 380V 50Hz 3 Phase

Shipping Information

- Shipping Weight: 880 lbs (400 kg)
- Dimensions: 32 Cu. ft.

Tribology Test Specimens and Other Tribology Equipment

Slurry Abrasion Tester

Measures the slurry abrasive resistance of solid materials as prescribed by ASTM G105 specifications. Performs tests on metals, minerals, polymers, composites, ceramics, coatings, and heat-processed materials. A rectangular test sample is rotated in a slurry cup with the temperature maintained using a water bath. The test speed, temperature, duration, sample size, and slurry composition can be varied. The differential mass of the sample before and after the test is converted to volume loss (abrasion index) for direct comparison of the tested materials.

Tapping Torque Tester

Evaluates metal working fluids and various machining operations according to ASTM D5619 for the torque requirements of tapping operations in pre-drilled samples. Software package acquires cutting torque and rotational speed and displays them as a function of test duration or angle of tool rotation.

Air Jet Erosion Tester

Performs air jet erosion test according to ASTM G76 specifications. A test sample is bombarded by a gas containing particulates with a known velocity and concentration of particles. Comparison can be made by varying test sample composition, size, particle velocity, angle of incidence, and temperature.

Dry Abrasion Tester

Measures index of abrasive resistance to dry sand according to ASTM G65 test specifications. Test specimen is held against a rotating wheel and abraded with a grit of controlled size, composition, and flow with the proper test duration and applied force as prescribed by the ASTM test method. The differential mass of the specimen before and after the test is recorded and converted to volume loss (abrasion index) for direct comparison of tested materials.

Custom-Built Tribology Test Equipment and Test Specimens

Test specimens are available for all of the tribology instrumentation offered from Koehler. Please inquire with customer service about other custom-built tribology test equipment and test specimens. Custom-designed equipment is readily available for the following tribology test methods:

- Universal Wear (ASTM G77, G99)
- Vane Pump Wear (ASTM D2882)
- Shear Stability (ASTM D6278)
- Slurry Erosion Tester
- Reichert Tester
- Grease Life Tester (D3336)
- Grease Noise Tester
- V2F Grease Testing Machine
- ROF Grease Testing Machine (DIN 51806)
- R2F Grease Testing Machine

Included Adapters

- Ball on Flat
- Cylinder on Flat
- Pin on Flat
- Four Ball Wear Preventative
- Thrust Washer

Shipping Information

- Shipping Weight: 880 lbs (400 kg)
- Dimensions: 32 Cu. ft.