Overall Equipment Effectiveness

OEE - sweating manufacturing assets against the clock to maximise the output of prime quality product
This slideshow will briefly cover…

- Overall Equipment Effectiveness & the OEE metric
- The Six Big Losses
- The ‘Hidden Factory’
- Theory of Constraints - *manufacturing bottlenecks & pinchpoints*

It’s purpose is to merely place things in context. Further reading is required for an in-depth understanding of OEE.
OEE fundamentals

OEE is data driven

Good data collection and analysis are key requirements for a successful OEE project.
OEE fundamentals

OEE is data driven

Good data collection and analysis are key requirements for a successful OEE project.

If you can’t put a number on it, you can’t measure it – and, if you can’t measure it, you can’t manage it!
OEE fundamentals

OEE is data driven

Good data collection and analysis are key requirements for a successful OEE project

...plus, if you’re not keeping score, you’re only practicing!
OEE fundamentals

Manufacturing assets must be sweated!

Manufacturing equipment must run flat out at face plate rating – with vertical start-ups and shutdowns, minimal stops and no defects in production output.
OEE fundamentals

Manufacturing assets must be sweated!

Manufacturing equipment must run **flat out at face plate rating** – with **vertical** start-ups and shutdowns, **minimal stops** and **no defects** in production output

The only rest is when the whistle blows…
OEE fundamentals

Manufacturing assets must be sweated!

Manufacturing equipment must run **flat out at face plate rating** – with **vertical** start-ups and shutdowns, **minimal stops** and **no defects** in production output

Beware of ‘twilight’ production and reworking
OEE fundamentals

Manufacturing assets must be sweated!

Manufacturing equipment must run *flat out at face plate rating* – with *vertical* start-ups and shutdowns, *minimal stops* and *no defects* in production output

An IDEAL!
The world class benchmark is 6 *Sigma*
OEE fundamentals

Manufacturing assets must be sweated!

Manufacturing equipment must run **flat out at face plate rating** – with **vertical** start-ups and shutdowns, **minimal stops** and **no defects** in production output.

An IDEAL!

The world class benchmark is **6 Sigma**

3.4 defects per million ‘opportunities’
The OEE Metric
The OEE metric
As far as capital manufacturing assets are concerned...

- Time is money!
- Time ‘lost’ is money down the drain
- Time must be strictly accounted for
The OEE metric

\[
OEE = \frac{\text{ACTUAL quantity of good products produced}}{\text{Total quantity that COULD BE produced}} \times \text{In the scheduled production time (loading time)}
\]
The OEE metric

OEE = \frac{\text{ACTUAL quantity of good products produced}^*}{\text{Total quantity that COULD BE produced}}

* In the scheduled production time (loading time)

COULD = \text{without losses due to:}
- Start-ups
- Downtime
- Low speed
- Shutdowns
- Changeovers
- Lack of supplies
- Quality defects

© Shire Systems Limited
The OEE metric

\[
\text{OEE} = \frac{\text{ACTUAL quantity of good products produced}^*}{\text{Total quantity that COULD BE produced}}
\]

Resulting in \textit{LOW}
- Output
- Overall efficiency
- Yield
- First-time pass rate
- Quality
- OTIF delivery
 (‘on time & in full’)

\textit{scheduled production time}
\textit{(loading time)}

Factors due to:
- Downtime
- Speed
- Shutoffs
- Changeovers
- Lack of supplies
- Quality defects
- Start-ups

© Shire Systems Limited
The OEE metric

\[
\text{OEE} = \frac{\text{ACTUAL quantity of good products produced}}{\text{Total quantity that COULD BE produced}} \times \text{In the \textit{scheduled production time} (loading time)}
\]

OEE is calculated by measuring the ‘Six Big Losses’
The Six Big Losses
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield

SMED

Minimise
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield

‘Single Minute Exchange of Die’
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield

SMED

‘Single Minute Exchange of Die’

Benchmark: Formula 1 pit stop!

F1 workflow also used to ‘turnaround’ Jumbo jets and plan complex surgical procedures
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield

These are real killers – they combine insidiously to trash production performance - *and yet tend to be ‘accepted’*
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield

Computerised Maintenance Management Management (CMMS) helps with this

These are real killers – they combine insidiously to trash production performance - *and yet tend to be ‘accepted’*
The Six Big Losses

1. Equipment Failure
2. Setup & Adjustments
3. Idling & Minor Stoppages
4. Reduced Speed
5. Scrap & Rework
6. Startup Low Yield

The OEE factors

Availability
Performance Rate
Quality Rate
The OEE Calculation
Overall Equipment Effectiveness = Availability × Performance Rate × Quality Rate
OEE calculation

Consider an example

Say

Availability = 70%
Performance Rate = 80%
Quality rate = 90%
OEE calculation

Consider an example

Say
- Availability = 70%
- Performance Rate = 80%
- Quality rate = 90%

Then, OEE = 50%
OEE calculation

Consider an example

Saying:
- Availability = 70%
- Performance Rate = 80%
- Quality rate = 90%

Then, OEE = 50%

In reality this is towards the lower limit – OEE performance is generally in the range 40% to 80%
Consider an example

Say

Availability = 70%
Performance Rate = 80%
Quality rate = 90%

Then, OEE = 50%

This means that half the built and maintained factory isn’t contributing
OEE benchmark targets - *World Class*

- Batch processes > 85%
- Continuous discrete processes > 90%
- Continuous processes > 95%

Best petrochem sites achieve 99.9%
OEE benchmark targets - *World Class*

- Batch processes > 85%
- Continuous discrete processes > 90%
- Continuous processes > 95%

1st tier suppliers to major companies are obliged to maintain a minimum OEE level as a condition of contract.
OEE calculation example

Equipment

- Calendar Time
- Operating Time
- Net Operating Time
- Valuable Operating Time
- Defect Losses
- Speed Losses

6 ‘Big Losses’

1. Equipment Failure/Shutdown
2. Production Setup & Adjustment
3. Idling & Minor Stoppages
4. Reduced Speed
5. Defects in Production
6. Reduced Yield

Calculation of the OEE

- **Availability:** \(\text{calendar time} - \text{downtime} \times 100 \) calendar time

 Example: Availability = \(\frac{460 \text{ mins} - 60 \text{ mins}}{460 \text{ mins}} \times 100 = 87\% \)

- **Performance:** \(\frac{\text{theoretical cycle time} \times \text{produced amount}}{\text{operating time}} \times 100 \)

 Example: Performance = \(\frac{0.5 \text{ mins/unit} \times 400 \text{ units}}{400 \text{ mins}} \times 100 = 50\% \)

- **Quality Rate:** \(\frac{\text{produced amount} - \text{defect amount}}{\text{produced amount}} \times 100 \)

 Example: Quality Rate = \(\frac{400 \text{ units} - 8 \text{ units}}{400 \text{ units}} \times 100 = 98\% \)

Overall Equipment Effectiveness (OEE)

\[\text{OEE} = \text{Availability} \times \text{Performance Rate} \times \text{Quality Rate} \]

Example: \(0.87 \times 0.50 \times 0.98 \times 100 = 42.6\% \)

Ref: Nakajima, 1984

8 hour shift with half hour break = 7½ production hours
The Hidden Factory
The Hidden Factory!

OEE can quickly reveal the size of the ‘hidden factory’…
The Hidden Factory!

OEE can quickly reveal the size of the ‘hidden factory’…

If the OEE is 50%, half the ‘factory’ isn’t contributing…
The Hidden Factory!

...but still consumes resources
The Hidden Factory!

which still consumes resources
The Hidden Factory!

...which still consumes resources
The Hidden Factory!
The Hidden Factory!

BIG burden!
NO production!

The 'Hidden Factory'
OEE and the Theory of Constraints

- OEE must be applied to manufacturing bottlenecks & pinchpoints – *not in general like with Kaizen*

- Define the hierarchy of critical processes and bottlenecks and attack in priority order

- As with RCM, beware of ‘analysis paralysis’ - *just get on with it!* – a bias for action is needed
OEE and the Theory of Constraints

Attacking the Points of Constraint – the manufacturing bottlenecks & pinch points - to maximise performance

Achievable manufacturing performance

Manufacturing performance gap

Present manufacturing performance

Focused OEE projects

Conventional continuous improvement initiative

Do nothing – the suicide scenario!

© Shire Systems Limited
OEE and the Theory of Constraints

Attacking the Points of Constraint – the manufacturing bottlenecks & pinch points - to maximise performance

Achievable manufacturing performance

Present manufacturing performance

Top ranked bottleneck FIRST!
OEE and the Theory of Constraints

Attacking the Points of Constraint – the manufacturing bottlenecks & pinch points - to maximise performance

Achievable manufacturing performance

Present manufacturing performance

Performance

Top ranked bottleneck FIRST!

It’s not rocket science. Get going!

© Shire Systems Limited
<End>