Learning Objectives

- By the end of this 45-minute session, the audience should be able to:
 - State the common causes of valvular heart disease
 - List the complications of valvular heart disease
 - Describe the hemodynamic consequences of valvular heart disease
 - Describe the indication for and alternatives of pharmacotherapy in valvular heart disease, specifically in aortic stenosis, aortic regurgitation, mitral stenosis and mitral regurgitation
 - Describe the principles of pharmacotherapy after valve surgery
 - State the antithrombotic recommendations for various prosthetic valve replacements, including transcatheter valve implantation
 - Explain when ASA should or should not be added to the vitamin K antagonist in patients with prosthetic heart valves

Guidelines and Resources

- 2014 AHA/ACC Valvular Heart Disease Guidelines
 - Full: Circulation 2014;129(23):e521-643
 - Executive Summary: Circulation. 2014;129(23):2440-92
- 2012 ESC Valvular Heart Disease Guidelines
 - Eur Heart J 2012;33(19):2451-96
- 2012 CHEST Guidelines for Valvular Heart Disease
 - CHEST 2012;141(2)(Suppl):e576S–e600S
- 2006 AHA/ACC Valvular Heart Disease Guidelines
 - J Am Coll Cardiol 2006;48(3);e1-148
- Canadian Cardiovascular Pharmacist Network (CCPN) Antithrombotic Guidelines Pocket Reference 2008
 - http://ccpn.ca/docs/AntithromboticThrombolyticTxPocketcard.pdf

Introduction

- Valvular heart disease (VHD) affects > 100 million people worldwide
- In Canada, VHD is less common than other cardiac conditions like CAD, HF, HTN
- The burden of VHD is increasing
 - High incidence of rheumatic heart disease in developing countries
 - ↑ burden of degenerative valve disease in developed countries
 - Patients with valve disease are living longer and diagnosis is often made at an older age
 - ↑ frequency of comorbidity, ↑ risk of intervention
 - ↑ in previously operated patients who require re-operation

Figure: Number waiting for and completed open heart surgeries in BC (CABG, valve, other)
Heart Valve Anatomy

- Right Heart
 - Tricuspid Valve
 - Pulmonary Valve
- Left Heart
 - Mitral Valve
 - Aortic Valve

Valve Physiology

Valve Function

Valve Pathology

Diagnosis and Types of VHD

- Identification
 - On physical exam (e.g. heart murmur)
 - Symptoms (e.g. syncope, CP, SOB, ↓ exercise tolerance, HF)
 - May not be recognized by the patient due to progressive nature valve disease
 - Incidental finding (e.g. chest imaging)
- Diagnosis
 - Echo (TTE or TEE)
 - Tricuspid valve regurgitation or stenosis
 - Pulmonary valve regurgitation or stenosis
 - Mitral regurgitation or stenosis
 - Aortic regurgitation or stenosis
 - Other: CXR, ECG, coronary angiogram, cardiac CT, cardiac MRI

Valve Disease Classification

- Classification of valve disease severity:
 - Mild, moderate, severe
- Based on:
 - Symptoms
 - Echocardiography findings
 - Valve anatomy
 - Gradients: Pressure difference across the valve
 - Valve area
 - More applicable in valve stenosis
 - Measured when the valve is open
 - Hemodynamic complications

Circulation. 2014 Jun 10;129(23):e521-643

http://www.ssmhealth.com/heart/PublishingImages/heart.jpg

http://www.drugs.com/health-guide/images/205521.jpg

http://www.drugs.com/health-guide/images/205522.jpg

http://www.ssmhealth.com/heart/PublishingImages/heart.jpg

http://www.drugs.com/health-guide/images/205521.jpg

http://www.drugs.com/health-guide/images/205522.jpg
Complications of Valvular Heart Disease

- Symptoms
 - Due to ↓ in cardiac output
- HF
 - With preserved EF
 - ↓ in cardiac output, but LV function and size remain normal
 - With ↓ EF and/or ↓ LV function
 - Will occur over time if the VHD remains untreated
- AF
 - Especially with mitral stenosis
 - Pulmonary hypertension
 - Stroke
 - Mortality

Management Strategies

- Monitoring
 - Asymptomatic valve disease
 - Echo every 1-5 years
- Medical management
 - For those awaiting surgical intervention
 - Valve not amenable to surgical intervention
 - Decreased life expectancy
- Valve repair or replacement
 - Symptomatic or severe valve disease
 - Reasonable life expectancy and quality of life

Circulation. 2014 Jun 10;129(23):e521-643

Aortic Valve

- Normal aortic valve
 - Open
 - Closed

Aortic Stenosis

- Aortic Stenosis (AS)
- Aortic Regurgitation (AR)
- Mitral Stenosis (MS)
- Mitral Regurgitation (MR)

Specific Valve Pathologies
Aortic Stenosis

- Most common type of VHD
- Etiology
 - Calcified disease of normal leaflet (80%)
 - 2-7% in those > 65y: generally present when 70-80y
 - Inflammatory condition similar to atherosclerosis
 - Risk factors: older age, male, smoking, HTN, diabetes, LDL, lipoprotein and CRP
 - Calcified disease of bileaflet valve
 - Present in 2% of population; present in 10% of 1st degree relatives
 - More common in men; presents earlier (ie. 50-60y)
 - Rheumatic: rare (except in India)
- AS is a chronic, progressive condition with a long latency period
 - Aortic sclerosis: leaflet thickening without obstruction (5% progress to AS)
 - Mortality 15-50% over 5 years once symptomatic

Circulation. 2014 Jun 10;129(23):e521-643

Aortic Regurgitation

- Having bicuspid AV ↑ risk of AR, aortic dilatation and dissection
- 2 types: chronic and acute
- Etiology
 - Primary disease of aortic valve or aortic root
 - Calcified disease, annuloaortic ectasia (root dilatation due to HTN or aging), Marfan’s syndrome, aortic dissection, collagen vascular disease, syphilis
 - Rheumatic disease
 - Infective endocarditis (IE)
 - Post-TAVI or valvuloplasty
- Once symptoms present, mortality is 10-20% per year without surgery

Circulation. 2014 Jun 10;129(23):e521-643
Mitral Valve

Mitral Stenosis

Mitral Regurgitation

Mitral Valve

Mitral Stenosis

Mitral Regurgitation

http://www.merckmanuals.com/media/home/figures/CVS_stenosis_regurgitation_valves_b.gif

http://circ.ahajournals.org/content/120/13/1287/F1.large.jpg

http://dokterpenulis.files.wordpress.com/2008/03/mitral-stenosis-lg.jpg

http://circ.ahajournals.org/content/120/13/1287/F1.large.jpg

Mitral Stenosis

Etiology

- Rheumatic heart disease (most common; in women)
- Calcification

Survival in asymptomatic patients is generally up to 10 years

Progression is highly variable with sudden deterioration

- Precipitated by pregnancy, AF or embolism

LV function is generally normal

Most common complication: AF

Mainstay of therapy is valve replacement

- High operative mortality 3-10%

Mitral Regurgitation

Primary MR

Secondary MR

Acute MR

Chronic MR

2nd most common type of VHD requiring surgery

Circulation. 2014 Jun 10;129(23):e521-643

Circulation. 2014 Jun 10;129(23):e521-643

Mitral Stenosis

Medical Management

- Diuretics or nitrates to relieve symptoms
- 40% of patients with MS will develop AF
 - Anticoagulation regardless of CHADS2 score
 • Mitral stenosis = "Valvular" AF
 - HR control
 - Patients with MS are at high risk of atrial arrhythmias
- In patients with NSR
 - HR control if symptomatic with exercise
- Secondary prevention of Rheumatic fever
 - For at least 10y or until patient is 40y (which ever is longer)
 - Pen G, Pen V, Sulfadiazine, Macrolide

Medical Management

Diuretics or nitrates to relieve symptoms

40% of patients with MS will develop AF

Anticoagulation regardless of CHADS2 score

Mitral stenosis = "Valvular" AF

HR control

Patients with MS are at high risk of atrial arrhythmias

In patients with NSR

HR control if symptomatic with exercise

Secondary prevention of Rheumatic fever

For at least 10y or until patient is 40y (which ever is longer)

Pen G, Pen V, Sulfadiazine, Macrolide

Mitral Regurgitation

Primary MR

- Disruption to various parts of the mitral apparatus
- Etiology
 - Rheumatic (↓ incidence)
 - Degenerative (myxomatous degeneration) or collagen vascular disease
 - IE
 - Trauma or radiation (e.g. chordae rupture)
- Acute or chronic
 - Acute: Leaflet perforation, chordae rupture, papillary muscle dysfunction or rupture; may result in acute pulmonary edema
 - Poorly tolerated, poor prognosis
 - Chronic: may progress insidiously, causing LV dysfunction before symptoms
- High risk of mortality and morbidity
 - 14% CV death, 22% all-cause death; 33% cardiac event

Primary MR

Management strategy

- Replacement
- Repair
 - Lower peri-op mortality, improved survival, better preservation of post-op LV function, lower risk of long term morbidity
- Medical management
 - Reduce filling pressures with nitrates and diuretics
 - Nitroprusside for reducing preload and afterload (↓ regurgitant fraction)
 - Inotropes for hemodynamic support
 - Medical therapy for systolic dysfunction if not a valve surgery candidate and EF < 60% (BB, ACEI/ARB, aldosterone antagonists)
 - BB improve surgical outcomes, delays onset of LV dysfunction, reverse LV dysfunction
 - No evidence for ACEI in chronic MR without HF

Secondary (Functional) MR

- Also known as: ischemic MR
- MV leaflets and chordae are structurally normal
- MR caused by LV dysfunction (secondary to CAD, MI, cardiomyopathy)
- Generally poor prognosis compared to primary MR
 - Not improved by revascularization
- Myocardial viability imaging should be performed pre-surgery
- Operative mortality is higher
 - Presence of comorbidities
 - Repair yields better outcomes than replacement
 - High risk of MR recurrence
- Medical Management
 - Treat LV dysfunction (ACEI/ARB, BB, aldosterone antagonists)
 - Treat cause of LV dysfunction
- Operative mortality is higher
 - Presence of comorbidities
 - Repair yields better outcomes than replacement
 - High risk of MR recurrence
- Medical Management
 - Treat LV dysfunction (ACEI/ARB, BB, aldosterone antagonists)
 - Treat cause of LV dysfunction

Basic Principles of Medical Management in VHD

- Risk factor management
 - Treat HTN, dyslipidemia, diabetes
- Treat the altered hemodynamics in each specific valve pathology
- Treat LV dysfunction if present
 - Diuresis, ACEI/ARB, BB, aldosterone blockers
- Rheumatic fever prophylaxis
 - Prompt treatment of streptococcal pharyngitis
- Infective endocarditis prophylaxis (for those with prosthetic heart valves only)
 - Oral health is key
- Vaccinations
 - Influenza and pneumococcal
- Exercise
 - Lack of studies in VHD
 - May suggest regular aerobic exercise for select VHD patients

Open Heart Surgery History

- 1895: First Open Heart Surgery
- 1925: First Valve Surgery
- 1990s: First off-pump open heart surgeries
- 2005: First transapical valve in Canada
- 2013: First "tara device" mitral valve
Open Heart Surgery

Introduction

• Valve surgery is the mainstay of therapy for severe VHD
 – 30% of VHD patients receive a prosthetic heart valve
• Over the last 50 years, there have been major advances in surgical techniques and post-operative care for the VHD patient
• Generally, the risk of mortality of severe VHD greatly outweighs the risk of perioperative mortality
• In BC, 30-day adjusted mortality remains low compared to society of thoracic surgeon (STS) reports
 – Valve surgery: 2-3% (STS 3.4%)
 – CABG + Valve surgery: 4-6% (STS 6.8%)

Open Heart Surgery

Operation

• Sedation
• Mechanical Ventilation
• Sternotomy or thoracotomy
 – Tranexamic acid
• Cardiopulmonary bypass machine
 – Heparinized circuit
 • Protamine to reverse
 – Fluids and blood products PRN
 – Vasopressors (no inotropes)
• Cardioplegia
 – Potassium
 – Hypothermia
• Pre-, intra-, and post-op transesophageal echo (TEE)
• Chest tubes

http://mehmanesh.com/wp-content/uploads/2013/05/open-heart.png

Post Open Heart Surgery

Medical Management

Post-op Care

• Inotropes and vasopressors
• Diuretics
• AF prophylaxis
• Stress ulcer prophylaxis
• DVT prophylaxis
• Post-op complications management
 – Delirium
 – Arrhythmias or heart block
 – AKI
 – Nausea and vomiting
 – Bleeding
 – Hyperglycemia
 – Skin and soft tissue infection
• Home meds restarted

On Discharge

• Diuresis
• Change in antithrombotics
• Change in BP meds
• AF
 – Treatment
 – Prophylaxis
• Change in diabetes meds
• Stress ulcer prophylaxis

Prosthetic Heart Valves

<table>
<thead>
<tr>
<th>Types</th>
<th>Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioprosthetic</td>
<td>~10-20 year life span More physiological hemodynamics</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Indefinite life span Patient has another indication for warfarin</td>
</tr>
<tr>
<td>Transcatheter</td>
<td>Recommended in those who are high risk surgical candidates Expected life expectancy > 12 months post-surgery</td>
</tr>
</tbody>
</table>

Bioprosthetic (1970)

<table>
<thead>
<tr>
<th>Types</th>
<th>Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caged-ball</td>
<td>Transfemoral (AV) Porcine pericardium</td>
</tr>
<tr>
<td>Tilling disc single leaflet</td>
<td>Bileaflet</td>
</tr>
<tr>
<td>Bileaflet</td>
<td>Transcatheter (AV, MV) Sapien XT THV</td>
</tr>
</tbody>
</table>

Transcatheter Valves

Transapical

https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcR4bfMO0p97BSFFz-035ce1nnvCulPQmpC7FE6ewV1JipamAc
Anticoagulation in Prosthetic Valves

- **Goals of Therapy**
 - Prevent thrombosis
 - Valve thrombosis (<2-4% per year)
 - Major embolism (<4-8% per year)
 - Total embolism (<9-18% per year)
 - Prevent thromboembolic stroke
 - Minimize bleeding
 - <1 to 2% yearly
 - Prevent mortality

Therapeutic Alternatives

- **ASA**
 - ↓ major embolism by 40%
 - Total bleeding < 1% per year
- **Warfarin**
 - ↓ major embolism by 75%
 - Total bleeding 2% per year
- **ASA + Warfarin**
 - ↓ major embolism by > 75%
 - Total bleeding ~5% per year

Approach to Anticoagulation in Prosthetic Heart Valves

- Risk of thrombogenicity determines choice of antithrombotic therapy
 - Location of valve
 - Mitral (2x) > Aortic
 - Type of valve
 - Mechanical (m) > Tissue (t)
 - Mechanical: caged-ball (5x) > tilting disc > bileaflet
 - Generation of valve
 - Timing of valve replacement / repair
 - Risk of thrombosis highest in first 3 months
 - Presence of additional thromboembolism risk factors

Choice of Antithrombotic

<table>
<thead>
<tr>
<th>Risk of Thrombosis</th>
<th>Location & Type</th>
<th>+ RF?</th>
<th>Antithrombotic Recommendation</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>MVR(m) or AVR(m) – caged ball or tilting disc</td>
<td>VKA to INR 3 + ASA</td>
<td>Indefinite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVR(m) – bileaflet</td>
<td>VKA to INR 3 + ASA</td>
<td>Indefinite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MVR(t) or MV Repair</td>
<td>VKA to INR 2.5 + ASA</td>
<td>VKA x > 3 mos, ASA indefinitely</td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>MV Repair or AVR(t)</td>
<td>VKA to INR 2.5 + ASA</td>
<td>VKA x > 3 mos, ASA indefinitely</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASA alone</td>
<td>VKA x 3 mos, ASA</td>
<td>ASA indefinitely</td>
<td></td>
</tr>
</tbody>
</table>

Additional Risk Factors (RF) for Thrombosis

- AF
- Enlarged left atria (>4.5-5cm in diameter)
- Reduced EF
- Hypercoagulable state
- Hx thromboembolism
- Atherosclerotic vascular disease
 - Cerebrovascular disease
 - Coronary artery disease
 - Peripheral arterial disease

Evidence for Adding ASA?

- 2003 Cochrane review of 11 RCTs (N=2428) in prosthetic valve patients found that adding ASA to OAC vs OAC alone:
 - ↓ mortality (RR 0.58, 95% CI 0.4-0.86)
 - ↓ thromboembolism (RR 0.42, 95% CI 0.21-0.81)
 - ↑ bleeding (RR 1.44, 95% CI 1.2-2.08)
- Adding low dose ASA (<100mg) did not ↑ bleeding in this population

Adding ASA to VKA

- Additional risk factors for thrombosis:
 - AF
 - Hypercoagulable state (e.g. thrombophilias)
 - Low EF
 - Vascular disease (e.g. CAD)
 - Hx embolism (e.g. VTE)
- Elderly (>80 years)
- Hx recent or severe bleeding (e.g. GIB)
- Other risk factors for bleeding
 - Abnormal renal or liver function
 - Other medications that ↑ bleeding risk
Anticoagulation in AVR(t) without additional thromboembolic risk factors

- 2014 AHA guidelines recommend VKA x 3-6 months then ASA
 - 2008 AHA, 2012 ESC: ASA alone
 - 2012 ESC: VKA x 3 months then ASA
- Aramendi et al. 2005
 - P, R, OL, N=191 with bioprosthetic valves (94% AVR(t))
 - triflusal 600mg daily vs. acenocoumarol (INR 2-3) x 3 mos
 - Outcome: Thromboembolism, hemorrhage, valve-related death at 180d = NSS
- Merie et al. 2012
 - Retrospective cohort (Danish Registry), N=4075 AVR(t)+CABG, no previous indication for warfarin, no POAF
 - ASA, VKA, ASA + VKA, no ASA or VKA x 6.6y
 - Analyses done on VKA vs ASA vs ASA or No antithrombotic
 (N=2278+916 vs. N=181+700)
 - VKA x 30-89d, 90-179d, 180-364d, 365-729d, 730d
 - Outcomes: ↓ stroke, ↓ thromboembolism, ↓ bleeding, ↓ CV death

JAMA. 2012;308(20):2118-25

Merie et al. 2012

- There is controversy about the optimal antithrombotic in mitral valve repair
 - ASA + Warfarin x 3 months, then ASA alone
 - Warfarin x 3 months, then ASA
 - ASA
- Observational studies demonstrate that risk of thromboembolism and bleeding are both low
 - Thromboembolism 0.4-3% per patient year
 - Bleeding 0.3-0.8% per year
 - Confounded by 1/3 of patients developing AF during first 3 months

JAMA. 2012;308(20):2118-25

Anticoagulation in Mitral Valve Repair

Anticoagulation in Transcatheter Valves

- St. Paul’s Hospital first pioneered the transfemoral and transapical approaches for TAVI in 2005
 - > 200 TAVIs have been completed since
- Major complications: stroke, bleeding, hypotension, conduction disturbances, AF, AKI, vascular injury; anemia, paravalvular leak
 - Stroke rates and bleeding rates > 15% at 30d, which are independent risk factors for mortality
- Antithrombotic alternatives
 - ASA 50-100mg daily + clopidogrel 75mg daily x 3-6 months then ASA indefinitely (guideline recommended)
 - 2 RCTs and 1 prospective observational trial
 - ASA alone
 - ASA + warfarin
 - Clopidogrel + warfarin
 - Warfarin alone

Investigational Transcatheter Valves

Bridging of Anticoagulation

- Bridging ↑ risk of bleeding; unknown whether the ↑ risk of bleeding is off-set by the benefits of ↓ thrombosis
- Bridging is not required for procedures that are low risk of bleeding (e.g. dental extractions); warfarin should be continued
- 2012 CHEST recommends bridging for risk of thrombosis 5 to > 10% yearly
 - Any MVR(m), bileaflet AVR(m) with AF, cage-ball or tilting disc AVR(m),
 any AVR and recent CVA (<6 months), AF with Rheumatic valve disease
- Pre-op: stop warfarin x 3-5 days, LMWH bridging
- Post-op management varies
 - Bridging depends on the risk of bleeding from the surgery
 - Heterogeneous definitions exist depending on type of surgery
 - Post open heart surgery (OHS)
 - Generally risk of bleeding > thrombosis post-OHS
 - Do not bridge with LMWH; low target IV heparin protocol to start POD 1-3

Novel Oral Anticoagulants (NOACs) in Prosthetic Heart Valves

- Studies with NOACs in AF excluded patients with valvular heart disease (e.g. mitral stenosis) and prosthetic heart valves
- Dabigatran is contraindicated in those with mechanical valves
 - RE-ALIGN Trial prematurely terminated
 - Phase II, Dabi in mechanical valves
- Unknown if Factor Xa Inhibitors provide adequate anticoagulation
 - Ongoing: Rivaroxaban in mechanical AVR (NCT02128841)
- Lack of evidence in bioprosthetic valves or valve repairs
 - Possible NOAC use in AF and AVR(t)
 - AVR(t) is the least thrombogenic prosthetic valve
 - Low dose ASA daily
 - Select surgeons have been recommending ASA + warfarin x 3 months then resume NOAC

Prosthetic Heart Valves

- Small sample size, non-randomized trials
 - Observational trials or case series
- Risk of thrombosis comes from studies with 1st generation valves
 - For newer valves, company may conduct biased in-house studies and make recommendations
- Heterogeneous valve types (AV and MV) studied with different baseline thrombosis or bleeding risks
- Target INRs, frequency of INR checks, TTR infrequently reported
- Other risks of thrombosis or bleeding poorly documented or uncontrolled for
- Advances in surgical techniques and post-surgical care will affect thrombosis and bleeding outcomes

General Pharmacotherapeutic Approach to the VHD Patient

- Pre-surgical intervention
 - Mild to moderate (watch and wait)
 - Risk factor management
 - Educate patient on important signs and symptoms
 - Moderate to severe (surgery is imminent)
 - Support hemodynamics with pharmacotherapy specific to the pathophysiology
 - Stop anticoagulation in preparation for surgery
- Post-surgical intervention
 - Re-evaluate need for pre-op medical management medications
 - Treat LV dysfunction if present
 - Assess need for anticoagulation and duration
 - Risk factor management
 - Minimize risk for infective endocarditis
 - Recommend routine dental care
 - Antibiotic prophylaxis for dental procedures in those with prosthetic heart valves

Summary

- Valvular heart disease encompasses many valvular pathologies
- Making pharmacotherapeutic decisions in VHD is complex
- Pharmacotherapy has a distinct role in the overall management of VHD patients
- Choice of antithrombotic to balance the risks of thrombosis and bleeding takes into account a variety of factors
- Novel surgical techniques (e.g. TAVI) will pose new therapeutic challenges
- The pharmacist can play an important role in optimizing pharmacotherapy wherever the patient may be in their valvular heart disease journey