Deep Security
Service Pack 1
Installation Guide (Basic Components)
Advanced Protection for Physical, Virtual, and Cloud Servers
Trend Micro Incorporated reserves the right to make changes to this document and to the products described herein without notice. Before installing and using the software, please review the readme files, release notes, and the latest version of the applicable user documentation, which are available from the Trend Micro Web site at:

http://www.trendmicro.com/download

Trend Micro, the Trend Micro t-ball logo, Deep Security Control Server Plug-in, Damage Cleanup Service Server Plug-in, InterScan, Network VirusWall, ScanMail, ServerProtect, and TrendLabs are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.

Document version: 1.2
Document number: APEM97209_150921
Release date: November 2015
Document generated: September 12, 2016
Table of Contents

Introduction ... 4

- About This Document .. 5
- About Deep Security .. 6
- What's New ... 9
- System Requirements ... 12

Preparation .. 15

- What You Will Need (Basic Components) .. 16
- Database Considerations ... 19

Installation ... 21

- Installing the Deep Security Manager .. 22
- Manually Installing the Deep Security Agent ... 29
- Installing and Configuring a Relay-enabled Agent .. 40

Upgrading .. 41

- Upgrading an Agent-based Installation from 9.0 SP1 to 9.6 SP1 ... 42
- Upgrading an Agent-based Installation from 9.5 SP1 or 9.6 to 9.6 SP1 .. 45

Appendices ... 47

- Deep Security Manager Memory Usage .. 48
- Silent Install of Deep Security Manager ... 49
- Deep Security Manager Settings Properties File .. 51
- Deep Security Manager Performance Features .. 57
- Creating an SSL Authentication Certificate ... 58
- Protecting a Mobile Laptop .. 61
- Enable Multi-Tenancy .. 70
- Multi-Tenancy (Advanced) ... 78
- Installing a Database for Deep Security (Multi-Tenancy Requirements) .. 80
- Uninstalling Deep Security .. 84
Introduction
About This Document

Deep Security Installation Guide (Basic)

This document describes the installation and configuration of the basic Deep Security software components necessary to provide basic agent-based protection to your computers:

1. The Deep Security Manager
2. The Deep Security Agent (with optional Relay functionality)

This document covers:

1. System Requirements
2. Preparation
3. Database configuration guidelines
4. Installing the Deep Security Manager management console
5. Installing Deep Security Agents
7. Guidelines for monitoring and maintaining your Deep Security installation

Intended Audience

This document is intended for anyone who wants to implement Agent-based Deep Security protection. The information is intended for experienced system administrators who have good experience with software deployments and scripting languages.

Other Deep Security Documentation

About Deep Security

Deep Security provides advanced server security for physical, virtual, and cloud servers. It protects enterprise applications and data from breaches and business disruptions without requiring emergency patching. This comprehensive, centrally managed platform helps you simplify security operations while enabling regulatory compliance and accelerating the ROI of virtualization and cloud projects. The following tightly integrated modules easily expand the platform to ensure server, application, and data security across physical, virtual, and cloud servers, as well as virtual desktops.

Protection Modules

Anti-Malware

Integrates with VMware environments for agentless protection, or provides an agent to defend physical servers and virtual desktops.

Integrates new VMware vShield Endpoint APIs to provide agentless anti-malware protection for VMware virtual machines with zero in-guest footprint. Helps avoid security brown-outs commonly seen in full system scans and pattern updates. Also provides agent-based anti-malware to protect physical servers, Hyper-V and Xen-based virtual servers, public cloud servers as well as virtual desktops. Coordinates protection with both agentless and agent-based form factors to provide adaptive security to defend virtual servers as they move between the data center and public cloud.

Web Reputation

Trend Micro Web Reputation Service blocks access to malicious web sites.

Trend Micro assigns a reputation score based on factors such as a website’s age, historical location changes and indications of suspicious activities discovered through malware behavior analysis.

The Web Reputation Service:

- Blocks users from accessing compromised or infected sites
- Blocks users from communicating with Communication & Control servers (C&C) used by criminals
- Blocks access to malicious domains registered by criminals for perpetrating cybercrime

Firewall

Decreases the attack surface of your physical and virtual servers.

Centralizes management of server firewall policy using a bi-directional stateful firewall. Supports virtual machine zoning and prevents Denial of Service attacks. Provides broad coverage for all IP-based protocols and frame types as well as fine-grained filtering for ports and IP and MAC addresses.

Intrusion Prevention

Shields known vulnerabilities from unlimited exploits until they can be patched.

Helps achieve timely protection against known and zero-day attacks. Uses vulnerability rules to shield a known vulnerability -- for example those disclosed monthly by Microsoft -- from an unlimited number of exploits. Offers out-of-the-box vulnerability protection for over 100 applications, including database, web, email and FTP servers. Automatically delivers rules that shield newly discovered vulnerabilities within hours, and can be pushed out to thousands of servers in minutes, without a system reboot.

Defends against web application vulnerabilities
Enables compliance with PCI Requirement 6.6 for the protection of web applications and the data that they process. Defends against SQL injections attacks, cross-site scripting attacks, and other web application vulnerabilities. Shields vulnerabilities until code fixes can be completed.

Identifies malicious software accessing the network

Increases visibility into, or control over, applications accessing the network. Identifies malicious software accessing the network and reduces the vulnerability exposure of your servers.

Integrity Monitoring

Detects and reports malicious and unexpected changes to files and systems registry in real time.

Provides administrators with the ability to track both authorized and unauthorized changes made to the instance. The ability to detect unauthorized changes is a critical component in your cloud security strategy as it provides the visibility into changes that could indicate the compromise of an instance.

Log Inspection

Provides visibility into important security events buried in log files.

Optimizes the identification of important security events buried in multiple log entries across the data center. Forwards suspicious events to a SIEM system or centralized logging server for correlation, reporting and archiving. Leverages and enhances open-source software available at OSSEC.

Deep Security Components

Deep Security consists of the following set of components that work together to provide protection:

- **Deep Security Manager** is the centralized Web-based management console which administrators use to configure security policy and deploy protection to the enforcement components: the Deep Security Virtual Appliance and the Deep Security Agent.

- **Deep Security Virtual Appliance** is a security virtual machine built for VMware vSphere environments that Agentlessly provides Anti-Malware and Integrity Monitoring protection modules for virtual machines in a vShield environment. In an NSX environment, the Anti-Malware, Integrity Monitoring, Firewall, Intrusion Prevention, and Web Reputation modules are available Agentlessly.

- **Deep Security Agent** is a security agent deployed directly on a computer which provides Anti-Malware, Web Reputation Service, Firewall, Intrusion Prevention, Integrity Monitoring, and Log Inspection protection to computers on which it is installed.

- **Deep Security Notifier** is a Windows System Tray application that communicates information on the local computer about security status and events, and, in the case of Relay-enabled Agents, also provides information about the Security Updates being distributed from the local machine.

Deep Security Manager

Deep Security Manager ("the Manager") is a powerful, centralized web-based management system that allows security administrators to create and manage comprehensive security policies and track threats and preventive actions taken in response to them. Deep Security Manager integrates with different aspects of the datacenter including VMware vCenter and Microsoft Active Directory. To assist in deployment and integration into customer and partner environments, Deep Security has a Web Service API that is exposed to allow for an easy, language-neutral method to externally access data and programming configurations.
Policies

Policies are templates that specify the settings and security rules to be configured and enforced automatically for one or more computers. These compact, manageable rule sets make it simple to provide comprehensive security without the need to manage thousands of rules. Default Policies provide the necessary rules for a wide range of common computer configurations.

Dashboard

The customizable, web-based UI makes it easy to quickly navigate and drill down to specific information. It provides:

- Extensive system, event and computer reporting
- Graphs of key metrics with trends
- Detailed event logs
- Ability to save multiple personalized dashboard layouts

Built-in Security

Role-based access allows multiple administrators (Users), each with different sets of access and editing rights, to edit and monitor different aspects of the system and receive information appropriate to them. Digital signatures are used to authenticate system components and verify the integrity of rules. Session encryption protects the confidentiality of information exchanged between components.

Deep Security Virtual Appliance

The Deep Security Virtual Appliance runs as a VMware virtual machine and protects the other virtual machines on the same ESXi Server, each with its own individual security policy.

Deep Security Agent

The Deep Security Agent ("the Agent") is a high performance, small footprint, software component installed on a computer to provide protection.

The Deep Security Agent contains a Relay module (off by default). At least one Relay-enabled Agent is required in any Deep Security installation to distribute Security and Software Updates throughout your Deep Security network. You can enable multiple Relay-enabled Agents and organize them into hierarchical groups to more efficiently distribute Updates throughout your network.

Deep Security Notifier

The Deep Security Notifier is a Windows System Tray application that communicates the state of the Deep Security Agent and Relay-enabled Agent to client machines. The Notifier displays pop-up user notifications when the Deep Security Agent begins a scan, or blocks malware or access to malicious web pages. The Notifier also provides a console utility that allows the user to view events and configure whether pop-ups are displayed.
What's New

Deep Security 9.6 SP1

Increased NSX Policy Integration

- To allow for NSX certification, Deep Security Manager can now be configured to synchronize its policies with NSX. This creates a matching NSX Service Profile (which we call a "Mapped Service Profile" in Deep Security) for each of the Deep Security policies. The Mapped Service Profiles are available as a choice when creating NSX Security Policies.

- vRealize Blueprints can be configured with either an NSX Security Group or an NSX Security Policy that uses a Mapped Service Profile. This will result in VMs being activated and assigned particular Deep Security policies.

Multi-factor Authentication with Google Authenticator

You can now enable multi-factor authentication when logging in to Deep Security Manager.

Windows 10 Support

The Deep Security Agent can protect computers that are running Microsoft Windows 10.

Note: Agentless support requires an update from VMware and is currently unavailable.

Real-Time Anti-Malware Support for Amazon Linux

Real-time Anti-Malware support is now available on Amazon Linux.

Terms and Conditions

Deep Security Manager can be configured to require users to accept Terms and Conditions before logging in to the Deep Security Manager.

Report Classifications

The Reports feature has a new option that allows you to classify and mark reports using:

- Top Secret
- Secret
- Confidential
- For Official Use Only
- Law Enforcement Sensitive (LES)
- Limited Distribution
- Unclassified
- Internal Use Only
Security Module Usage Cumulative Report

A new "Security Module Usage Cumulative" report extends the current Security Module Usage report. The new report provides a cumulative total and the total in blocks of 100, of the protection modules that were active over the course of a specified timeframe.

Deep Security 9.6

VMware vSphere 6 Support

- NSX 6.1.4 Support and Integration:
 - Agentless Anti-Malware, Integrity Monitoring, Firewall, Intrusion Prevention, and Web Reputation are available with NSX.
- vCNS 5.5.4 Support:
 - Agentless Anti-Malware and Integrity Monitoring are available for vCNS.
 - Combined Mode with Agentless Anti-Malware and Integrity Monitoring and Agent-based support for Firewall, Intrusion Prevention, Web Reputation, and Log Inspection.

SAP Protection For Linux

Deep Security has integrated the SAP adapter into the Deep Security Agent. The SAP adapter works seamlessly with the SAP VSI interface (also referred to as NW-VSI-2.0). The VSI interface is available in applications and platforms such as NetWeaver, HANA and Fiori.

The SAP adapter has been fully incorporated into Deep Security 9.6 as part of the Red Hat Enterprise Linux and SUSE Enterprise Linux builds and can now be licensed directly through Deep Security Manager.

IBM QRadar Support

Deep Security can now output syslog messages in Log Event Extended Format (LEEF 2.0) for integration with IBM QRadar.

Real-Time Anti-Malware for CloudLinux

Real-time Anti-Malware is available on CloudLinux 7.

Additional Platform Support

Deep Security 9.6 adds support for the following platforms:

- Debian 6 and 7
- Windows 2012 Server Core
- CloudLinux 7
- Oracle Linux 7
- SUSE Enterprise Linux 12
Deep Security Database Support for Oracle 12c

Deep Security Manager now supports Oracle 12c for its back-end database.

Active Directory Synchronization on Login

New users created in Active Directory can now log in to Deep Security Manager before the Active Directory Sync task has been run.

Deep Security Relay Downloads from Trend Micro Download Center

In situations where the Deep Security Relay cannot directly access the Deep Security Manager, the Relay can now download updates from Trend Micro Download Center.

Minor Report Enhancements

The Security Module usage report now has columns for the Computer Group and the Instance Type (for AWS workloads).

Automatic Updates of Online Help

The Deep Security online help can now be updated seamlessly in Deep Security Manager through a new Online Help package.
System Requirements

Deep Security Manager

- **Minimum Memory**: 8GB, which includes:
 - 4GB heap memory
 - 1.5GB JVM overhead
 - 2GB operating system overhead

- **Minimum Disk Space**: 1.5GB (5GB recommended)

- **Operating System**:
 - Windows Server 2012 (64-bit), Windows Server 2012 R2 (64-bit) with latest service pack or patch
 - Windows Server 2008 (64-bit), Windows Server 2008 R2 (64-bit) with latest service pack or patch
 - Windows 2003 Server R2 SP2 (64-bit) with latest service pack or patch
 - Red Hat Linux 5/6/7 (64-bit)

 Note: If you are installing the AWS Marketplace version of Deep Security Manager, it must be installed on an AWS Linux instance.

- **Database**:
 - Oracle Database 12c
 - Oracle Database 11g, Oracle Database 11g Express
 - Microsoft SQL Server 2014, Microsoft SQL Server 2014 Express
 - Microsoft SQL Server 2012, Microsoft SQL Server 2012 Express
 - Microsoft SQL Server 2008, Microsoft SQL Server 2008 Express
 - Microsoft SQL Server 2008 R2, Microsoft SQL Server 2008 R2 Express

 Note: SQL Server Express is not recommended for production systems, especially in multi-tenant environments.

 (Cookies enabled.)

 Monitor: 1024 x 768 resolution at 256 colors or higher

Deep Security Agent

- **Minimum Memory**:
 - with Anti-Malware protection: 512MB
 - without Anti-Malware protection: 128MB

- **Minimum Disk Space**:
 - with Anti-Malware protection: 1GB
 - without Anti-Malware protection: 500MB
 - with Relay functionality enabled: 8GB

- **Windows**:
 - Windows Server 2012 (64-bit), Windows Server 2012 R2 (64-bit) - Full Server or Server Core with latest service pack or patch
 - Windows 10 (32-bit and 64-bit)
Windows 8.1 (32-bit and 64-bit) with latest service pack or patch
Windows 8 (32-bit and 64-bit) with latest service pack or patch
Windows 7 (32-bit and 64-bit) with latest service pack or patch
Windows Server 2008 (32-bit and 64-bit) with latest service pack or patch
Windows Server 2008 R2 (64-bit) with latest service pack or patch
Windows Vista (32-bit and 64-bit) with latest service pack or patch
Windows Server 2003 R2 SP2 (32-bit and 64-bit) with latest service pack or patch
Windows XP (32-bit and 64-bit) with latest service pack or patch

With Relay functionality enabled: All 64-bit Windows versions above

- Linux:
 - Red Hat 5 (32-bit and 64-bit)
 - Red Hat 6 (32-bit and 64-bit)
 - Red Hat 7 (64-bit)
 - Oracle Linux 5 (32-bit and 64-bit)
 - Oracle Linux 6 (32-bit and 64-bit)
 - Oracle Linux 7 (64-bit)
 - CentOS 5 (32-bit and 64-bit)
 - CentOS 6 (32-bit and 64-bit)
 - CentOS 7 (64-bit)
 - Debian 6 (64-bit)
 - Debian 7 (64-bit)
 - SUSE 10 SP3 and SP4 (32-bit and 64-bit)
 - SUSE 11 SP1, SP2, and SP3 (32-bit and 64-bit)
 - SUSE 12 (64-bit)
 - CloudLinux 5 (32-bit and 64-bit)
 - CloudLinux 6 (32-bit and 64-bit)
 - CloudLinux 7 (64-bit)
 - Amazon AMI Linux EC2 (32-bit and 64-bit)
 - Ubuntu 10.04 LTS (64-bit)
 - Ubuntu 12.04 LTS (64-bit)
 - Ubuntu 14.04 LTS (64-bit)

With Relay functionality enabled: All 64-bit Linux versions above

Note: The CentOS Agent software is included in the Red Hat Agent software package. To install a Deep Security Agent on CentOS, use the Red Hat Agent installer.

Note: For a list of supported Deep Security features by software platform, see the document titled Deep Security 9.6 SP1 Supported Features and Platforms. For a list of specific Linux kernels supported for each platform, see the document titled Deep Security 9.6 SP1 Supported Linux Kernels.

Upgrading a Deep Security Agent system to Windows 10

If you currently have Deep Security Agent 9.6 installed on a Microsoft Windows 7, 8, or 8.1 system and want to upgrade that host system to Microsoft Windows 10 keep these points in mind:
- Upgrade the Deep Security Agent to version 9.6 SP1 before upgrading the operating system. Earlier versions of the Deep Security Agent are incompatible with Windows 10.

- If a Deep Security Agent system has been upgraded to Windows 10 before upgrading to Deep Security Agent 9.6 SP1, you will need to uninstall the Deep Security Agent, reboot the system, and then install Deep Security Agent 9.6 SP1 on the system.

- The upgrade to Deep Security 9.6 SP1 may require a system reboot on Windows 8 and 8.1 systems. If you are prompted to reboot the system, perform the reboot before upgrade the operating system.

- Windows 10 is not supported with Agentless systems and combined mode.

- If you decide to uninstall the Deep Security 9.6 SP1 Agent from a Windows 10 host, it will require a system reboot.
Preparation
What You Will Need (Basic Components)

Deep Security Software Packages

Deep Security Manager: Download a copy of the Deep Security Manager install package from the Trend Micro Download Center:

Note: To manually confirm that you possess a legitimate version of each install package, use a hash calculator to calculate the hash value of the downloaded software and compare it to the value published on the Trend Micro Download Center Web site.

Deep Security Agents: Once the Deep Security Manager is installed, use it to import the Deep Security Agent software packages for the platform you are going to protect.

Note: Any Deep Security installation, regardless of whether it is providing Agentless or Agent-based protection, requires at least one Relay-enabled Agent to be installed to download and distribute Security and Software Updates. Any 64-bit Windows or Linux Agent can provide Relay functionality.

To import the Deep Security Agent software, see *Installing the Deep Security Agent (page 29)* and *Installing and Configuring a Relay-enabled Agent (page 40).*

Other "supporting" packages (such as linux kernel support updates) are available for download as well, but these are imported to Deep Security automatically as required if you have already downloaded the Agent software. For instructions on importing Agent software, see *Installing the Deep Security Agent.*

License (Activation Codes)

You will require Deep Security Activation Codes for the protection modules and a separate Activation Code for Multi-Tenancy if you intend to implement it.

(VMware Licenses will also be required for VMware components)

Administrator/Root

You need to have Administrator/Root privileges on the computers on which you will install Deep Security software components.

SMTP Server

You will need an SMTP server to send alert emails. The DSM uses Port 25 by default for connection to the SMTP Server.

Available Ports

On the Deep Security Manager

You must make sure the following ports on the machine hosting Deep Security Manager are open and not reserved for other purposes:

- **Port 4120:** The port for "heartbeat", used by Deep Security Agents and Appliances to communicate with Deep Security Manager (configurable).
- **Port 4119:** Used for the Deep Security Manager console. Also used for communication from ESXi.
- **Port 1521:** Bi-directional Oracle Database server port.
• **Ports 1433 and 1434**: Bi-directional Microsoft SQL Server Database ports.
• **Ports 389, 636, and 3268**: Used for connection with an LDAP Server and Active Directory (configurable).
• **Port 25**: Communication to an SMTP Server to send email alerts (configurable).
• **Port 53**: For DNS Lookup.
• **Port 514**: Bi-directional communication with a Syslog server (configurable).
• **Port 443**: Communication with VMware vCloud, vCenter, vShield/NSX Manager, Amazon AWS, Microsoft Azure, and other cloud accounts.

Note: For more details about how each of these ports are used by Deep Security, see Ports Used by Deep Security in the Reference section of the online help or the Administrator's Guide.

On the Deep Security Agents, Relay-enabled Agents, and Appliances

You must make sure the following ports on computers running Relay-enabled Agents are open and not reserved for other purposes:

• **Port 4122**: Relay to Agent/Appliance communication.
• **Port 4118**: Manager-to-Agent communication.
• **Port 4123**: Used for internal communication. Should not be open to the outside.
• **Port 80, 443**: Connection to Trend Micro Update Server and Smart Protection Server.
• **Port 514**: Bi-directional communication with a Syslog server (configurable).

The Deep Security Manager automatically implements specific Firewall Rules to open the required communication ports on machines hosting Relay-enabled Agents, Agents and Appliances.

Network Communication

Communication between Deep Security Manager and Relay-enabled Agents, Agents/Appliances and hypervisors uses DNS hostnames by default. In order for Deep Security Agent/Appliance deployments to be successful, you must ensure that each computer can resolve the hostname of the Deep Security Manager and a Relay-enabled Agent. This may require that the Deep Security Manager and Relay-enabled Agent computers have a DNS entry or an entry in the Agent/Appliance computer’s hosts file.

Note: You will be asked for this hostname as part of the Deep Security Manager installation procedure. If you do not have DNS, enter an IP address during the installation.

Reliable Time Stamps

All computers on which Deep Security Software is running should be synchronized with a reliable time source. For example, regularly communicating with a Network Time Protocol (NTP) server.

Performance Recommendations

See Deep Security Manager Performance Features (page 57).

Deep Security Manager and Database Hardware

Many Deep Security Manager operations (such as Updates and Recommendation Scans) require high CPU and Memory resources. Trend Micro recommends that each Manager node have four cores and sufficient RAM in high scale environments.
The database should be installed on hardware that is equal to or better than the specifications of the best Deep Security Manager node. For the best performance, the database should have 8-16GB of RAM and fast access to the local or network attached storage. Whenever possible, a database administrator should be consulted on the best configuration of the database server and a maintenance plan should be put in effect.

For more information, see *Database Considerations (page 19)*.

Dedicated Servers

The Deep Security Manager and the database can be installed on the same computer if your final deployment is not expected to exceed 1000 computers (real or virtual). If you think you may exceed 1000 computers, the Deep Security Manager and the database should be installed on dedicated servers. It is also important that the database and the Deep Security Manager be co-located on the same network with a 1GB LAN connection to ensure unhindered communication between the two. The same applies to additional Deep Security Manager Nodes. A two millisecond latency or better is recommended for the connection from the Manager to the Database.

High Availability Environments

If you use VMware's High Availability (HA) features, make sure that the HA environment is established before you begin installing Deep Security. Deep Security must be deployed on all ESXi hypervisors (including the ones used for recovery operations). Deploying Deep Security on all hypervisors will ensure that protection remains in effect after a HA recovery operation.

Note: When a Virtual Appliance is deployed in a VMware environment that makes use of the VMware Distributed Resource Scheduler (DRS), it is important that the Appliance does not get vMotioned along with the virtual machines as part of the DRS process. Virtual Appliances must be "pinned" to their particular ESXi server. You must actively change the DRS settings for all the Virtual Appliances to "Manual" or "Disabled" (recommended) so that they will not be vMotioned by the DRS. If a Virtual Appliance (or any virtual machines) is set to "Disabled", vCenter Server does not migrate that virtual machine or provide migration recommendations for it. This is known as "pinning" the virtual machine to its registered host. This is the recommended course of action for Virtual Appliances in a DRS environment. An alternative is to deploy the Virtual Appliance onto local storage as opposed to shared storage. When the Virtual Appliance is deployed onto local storage it cannot be vMotioned by DRS. For further information on DRS and pinning virtual machines to a specific ESXi server, please consult your VMware documentation.

Note: If a virtual machine is vMotioned by DRS from an ESXi protected by a DSVA to an ESXi that is not protected by a DSVA, the virtual machine will become unprotected. If the virtual machine is subsequently vMotioned back to the original ESXi, it will not automatically be protected again unless you have created an Event-based Task to activate and protect computers that have been vMotioned to an ESXi with an available DSVA. For more information, see the *Event-Based Tasks* sections of the online help or the Administrator's Guide.
Database Considerations

Refer to your database provider’s documentation for instructions on database installation and deployment but keep the following considerations in mind for integration with Deep Security.

Install before Deep Security

You must install the database software, create a database instance for Deep Security (if you are not using the default instance), and create a user account for Deep Security before you install Deep Security Manager.

Location

The database must be located on the same network as the Deep Security Manager with a connection speed of 1Gb/s over LAN. (WAN connections are not recommended.)

Dedicated Server

The database should be installed on a separate dedicated machine.

Microsoft SQL Server

- The database account used by the Deep Security Manager must have db_owner rights.
- If using Multi-Tenancy, the database account used by the Deep Security Manager must have dbcreator rights.

Oracle Database

- Start the "Oracle Listener" service and make sure it accepts TCP connections.
- The database account used by the Deep Security Manager must be granted the CONNECT and RESOURCE roles and UNLIMITED TABLESPACE, CREATE SEQUENCE, CREATE TABLE and CREATE TRIGGER system privileges.
- If using Multi-Tenancy, the database account used by the Deep Security Manager must be granted the CREATE USER, DROP USER, ALTER USER, GRANT ANY PRIVILEGE and GRANT ANY ROLE system privileges.

Transport Protocol

The recommended transport protocol is TCP.

If using Named Pipes to connect to a SQL Server, a properly authenticated Microsoft Windows communication channel must be available between Deep Security Manager host and the SQL Server host. This may already exist if:

- The SQL Server is on the same host as Deep Security Manager.
- Both hosts are members of the same domain.
- A trust relationship exists between the two hosts.

If no such communication channel is available, Deep Security Manager will not be able to communicate to the SQL Server over named pipes.
Connection Settings Used During Deep Security Manager Installation.

During the Deep Security Manager installation, you will be asked for Database connection details. Enter the Database hostname under "Hostname" and the pre-created database for Deep Security under "Database Name".

The installation supports both SQL and Windows Authentication. When using Windows Authentication, click on the "Advanced" button to display additional options.

Avoid special Characters for the database user name (Oracle)

Note: Although Oracle allows special characters in database object names if they are surrounded by quotes, Deep Security does not support special characters in database object names. This page on Oracle’s web site describes the allowed characters in non-quoted names: http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements008.htm#SQLRF00223

Keep the database Name Short (SQL Server)

If using Multi-Tenancy, keeping the main database name short will make it easier to read the database names of your Tenants. (ie. If the main database is "MAINDB", the first Tenant’s database name will be "MAINDB_1", the second Tenant’s database name will be "MAINDB_2", and so on.)

Note: If you are using a Pay-Per-Use license with the AWS Marketplace version of Deep Security Manager, Multi-Tenancy is not supported.

Oracle RAC (Real Application Clusters) Support

Deep Security supports:

• SUSE Linux Enterprise Server 11 SP3 with Oracle RAC 12c Release 1 (v12.1.0.2.0)
• Red Hat Linux Enterprise Server 6.6 with Oracle RAC 12c Release 1 (v12.1.0.2.0)

Note: The default Linux Server Deep Security Policy is compatible with the Oracle RAC environment, with the exception of Firewall settings. You can disable Firewall or customize the Firewall settings according to the instructions in the "Firewall Settings with Oracle RAC" section of the Deep Security Manager Help or Administrator’s Guide.

High Availability

The Deep Security database is compatible with database failover protection so long as no alterations are made to the database schema. For example, some database replication technologies add columns to the database tables during replication which can result in critical failures.

For this reason, database mirroring is recommended over database replication.
Installation
Installing the Deep Security Manager

Before You Begin

Database

Before you install Deep Security Manager, you must install database software, create a database and user account for Deep Security Manager to use. For information on installing a database, see Database Considerations (page 19).

Co-located Relay-enabled Agent

A Deep Security deployment requires at least one Relay (a Deep Security Agent with Relay functionality enabled). Relays distribute Software and Security Updates to Agents/Appliances which keep your protection up to date. Trend Micro recommends installing a Relay-enabled Agent on the same computer as the Deep Security Manager to protect the host computer and to function as a local Relay.

During the installation of the Deep Security Manager, the installer will look in its local directory for an Agent install package (the full zip package, not just the core Agent installer). If it doesn’t find an install package locally, it will attempt to connect to the Trend Micro Download Center over the Internet and locate an Agent install package there. If it locates an install package in either of those locations, it will give you the option to install a co-located Relay-enabled Agent during the installation of the Deep Security Manager. (If Agent install packages are found in both locations, the latest of the two versions will be selected.) The Agent can be used to protect the Deep Security manager host machine, however it will initially be installed with only the Relay module enabled. To enable protection you will have to apply an appropriate Security Policy.

If no Agent install package is available, the installation of the Deep Security Manager will proceed without it (but you will have to install a Relay-enabled Agent at a later time).

Note: Depending on your environment, additional Relay-enabled Agents can be installed at a later time. (For instructions on installing a Relay-enabled Agent, see Installing the Deep Security Agent (page 29) and Configuring a Relay (page 40).)

Proxy Server Information

If the Deep Security will need to use a proxy server to connect to Trend Micro Update Servers over the Internet, have your proxy server address, port, and login credentials ready.

Multi-Node Manager

Deep Security Manager can be run as multiple nodes operating in parallel using a single database. Running the Manager as multiple nodes provides increased reliability, redundant availability, virtually unlimited scalability, and better performance.

Each node is capable of all tasks and no node is more important than any of the others. Users can sign in to any node to carry out their tasks. The failure of any node cannot lead to any tasks not being carried out. The failure of any node cannot lead to the loss of any data.

Each node must be running the same build number of the Manager software. When performing an upgrade of the Manager software, the first Manager to be upgraded will take over all Deep Security Manager duties and shut down all the other Deep Security Manager nodes. They will appear as “offline” in the Network Map with Activity Graph in the System Activity section of the System Information page with an indication that an upgrade is required. As the upgrades are carried out on the other nodes, they will automatically be brought back online and begin sharing in the DSM tasks.

To add a Deep Security Manager node to your installation, run the Manager install package on a new computer. When prompted, type the location of and login credentials for the database being used. Once the installer connects to the database, you can proceed with adding the node to the system.
You must be using either MS SQL Server or Oracle Database to run multiple nodes.

At no point should more than one instance of the installer be running at the same time. Doing so can lead to unpredictable results including corruption of the database.

Download the Installer Package

Download the latest version of the Deep Security Manager (and optionally the Deep Security Agent) software from the Trend Micro Download Center at:

http://downloadcenter.trendmicro.com/

Install the Deep Security Manager for Windows

2. **License Agreement**: If you agree to the terms of the license agreement, select I accept the terms of the Trend Micro license agreement.

3. **Installation Path**: Select the folder where Deep Security Manager will be installed and click Next.
4. **Database**: Select the database you installed previously.

 ![Database Image]

 If your database is SQL Server, click Advanced to specify a Named Instance, a Domain, or the use of Default Collation. Collation determines how strings are sorted and compared. The default is "unselected", which means that Deep Security will use Latin1_General_CS_AS for collation on text-type columns. If you select Use Default Collation, Deep Security will use the collation method specified by your SQL Server database. For additional information on collation, refer to your SQL Server documentation.

 ![Advanced Options Image]

5. **Product Activation**: Enter your Activation Code(s). Enter the code for All Protection Modules or the codes for the individual modules for which you have purchased a license. You can proceed without entering any codes, but none of the Protection Modules will be available for use. (You can enter your first or additional codes after installation of the Deep Security Manager by going to Administration > Licenses.)

 ![Activation Code Image]

6. **Address and Ports**: Enter the hostname, URL, or IP address of this computer. The Manager Address must be either a resolvable hostname, a fully qualified domain name, or an IP address. If DNS is not available in your environment, or if some computers are unable to use DNS, a fixed IP address should be used instead of a hostname. Optionally, change the default communication ports:

 - The "Manager Port" is the port on which the Manager’s browser-based UI is accessible through HTTPS. The "Heartbeat Port" is the port on which the Manager listens for communication from the Agents/Appliances.

 ![Address and Ports Image]
7. **Administrator Account:** Enter a username and password for the Master Administrator account. Selecting the Enforce strong passwords (recommended) requires this and future administrator passwords to include upper and lower-case letters, non-alphanumeric characters, and numbers, and to require a minimum number of characters.

 Note: The username and password are very important. You will need them to log in to Deep Security Manager.

 Note: If you have admin rights on the Manager host machine, you can reset an account password using the `dsm_c -action unlockout -username USERNAME -newpassword NEWPASSWORD [-disablemfa]` command.

8. **Configure Security Updates:** Selecting the *Create Scheduled Task to regularly check for Security Updates* option will create a Scheduled Task to automatically retrieve the latest Security Updates from Trend Micro and distribute them to your Agents and Appliances. (You can configure Updates later using the Deep Security Manager.) If the Deep Security Manager will need to use a proxy to connect to the Trend Micro Update servers over the Internet, select *Use Proxy Server when connecting to Trend Micro to check for Security Updates* and enter your proxy information.

9. **Configure Software Updates:** The options for software updates are the same as those for security updates in the previous step.

10. **Co-Located Relay-enabled Agent:** If an Agent install package is available either in the local folder or from the Trend Micro Download Center, you will be given the option to install a co-located Relay-enabled Agent. Any Deep Security installation requires at least one Relay to download and distribute Security and Software Updates. If you don’t install a Relay-enabled Agent now, you will need to do so at a later time.

 Note: Installing a co-located Relay-enabled Agent is strongly recommended.
11. **Smart Protection Network**: Select whether you want to enable Trend Micro Smart Feedback (recommended). (You can enable or configure Smart Feedback later using the Deep Security Manager). Optionally enter your industry by selecting from the drop-down list.

12. **Installation Information**: Verify the information you entered and click **Install** to continue.

13. Select **Launch the Deep Security Manager console** to open a web browser to the Deep Security Manager URL when setup is complete. Click **Finish** to close the Setup wizard.
The Deep Security Manager service will start when setup is complete. The installer places a shortcut to Deep Security Manager in the program menu. You should take note of this URL if you want to access the Manager from a remote location.

Installing the Deep Security Manager for Linux

The sequence of steps for installing Deep Security Manager on a Linux OS with X Window System are the same as those described for Windows (above). For information on performing a silent Linux installation, see Silent Install of Deep Security Manager (page 49).

Note: If you are installing Deep Security Manager on Linux with iptables enabled, you will need to configure the iptables to allow traffic on TCP ports 4119 and 4120.

Starting Deep Security Manager

The Deep Security Manager service starts automatically after installation. The service can be started, restarted and stopped from the Microsoft Services Management Console. The service name is “Trend Micro Deep Security Manager”.

To run the Web-based management console, go to the Trend Micro program group in the Start menu (MS Windows) or K-Menu (X Windows) and click Deep Security Manager.

To run the Web-based management console from a remote computer you will have to make note of the URL:

https://[hostname]:[port]/

where [hostname] is the host name of the server on which you have installed Deep Security Manager and [port] is the "Manager Port" you specified in step 8 of the installation (4119 by default).

Users accessing the Web-based management console will be required to sign in with their User Account credentials. (The credentials created during the installation can be used to log in and create other User accounts.)

Note: The Deep Security Manager creates a 10-year self-signed certificate for the connections with Agents/Appliances, Relays, and Users’ web browsers. However, for added security, this certificate can be replaced with a certificate from a trusted certificate authority (CA). (Such certificates are maintained after a Deep Security Manager upgrade.) For information on using a certificate from a CA, see Creating an SSL Authentication Certificate (page 58).

Manually Importing Additional Deep Security Software

Deep Security Agents and their supporting software packages can be imported from within the Deep Security Manager on the Administration > Updates > Software > Download Center page. Other software packages must be imported manually from the Trend Micro Download Center web site (http://downloadcenter.trendmicro.com/).

To manually import additional Deep Security software to the Deep Security Manager:

1. Download the software from the Trend Micro Download Center web site to a local directory.
2. In the Deep Security Manager, go to Administration > Updates > Software > Local and click Import... in the toolbar to display the Import Software wizard.

3. Use the Browse... option to navigate to and select your downloaded software.

4. Click Next and then Finish to exit the wizard.

The software is now imported into the Deep Security Manager.
Manually Installing the Deep Security Agent

This section describes how to install and activate Deep Security Agents and how to enable Relay functionality (if required).

Importing Agent Software

A Deep Security Agent is initially installed with core functionality only. It is only when a Protection Module is enabled on an Agent that the plug-ins required for that module are downloaded and installed. *For this reason, Agent software packages must be imported into Deep Security Manager before you install the Agent on a computer. (A second reason for importing the Agent to Deep Security Manager is for the convenience of being able to easily extract the Agent installer from it using the Deep Security Manager’s UI)*

To import Agent software packages to Deep Security:

1. In Deep Security Manager, go to **Administration > Updates > Software > Download Center**. The **Download Center** page displays the latest versions all Agent software available from Trend Micro.
2. Select your Agent software package from the list and click **Import** in the menu bar. Deep Security will begin to download the software from the Trend Micro Download Center to the Deep Security Manager.
3. When the software has finished downloading, a green check mark will appear in the **Imported** column for that Agent.

To export the Agent installer:

1. In Deep Security Manager, go to **Administration > Updates > Software > Local**.
2. Select your Agent from the list and select **Export > Export Installer...** from the menu bar.

Note: If you have older versions of the Agent for the same platform, the latest version of the software will have a green check mark in the **Is Latest** column.
3. Save the Agent installer to a local folder.

Note: Only use the exported Agent installer (the .msi or the .rpm file) on its own to install the Deep Security Agent. If you extract the full Agent zip package and then run the Agent installer from the same folder that holds the other zipped Agent components, all the Security Modules will be installed (but not turned on). If you use the Agent installer, individual Modules will be downloaded from Deep Security Manager and installed on an as-needed basis, minimizing the impact on the local computer.

The Deep Security Agent “zip” files are made available on the Trend Micro Download Center for users who need to manually import the Agents into their Deep Security environment because their Deep Security Manager is air-gapped and cannot connect directly to the Download Center web site. Users whose Deep Security Manager is able to connect to the Download Center are strongly encouraged to import their Agent software packages using the Deep Security Manager console. Attempting to install an Agent when the corresponding software package has not been imported to Deep Security Manager can lead to serious issues.

Installing the Windows Agent

1. Copy the Agent installer file to the target machine and double-click the installation file to run the installer package. At the Welcome screen, click Next to begin the installation.

Note: On Windows Server 2012 R2 Server Core, you must launch the installer using this command: msiexec /i Agent-Core-Windows-9.6.x-xxxx.x86_64.msi

Note: When installing the Agent on Windows 2012 Server Core, the Notifier will not be included.

2. End-User License Agreement: If you agree to the terms of the license agreement, select I accept the terms of the license agreement and click Next.
3. **Destination Folder:** Select the location where you would like Deep Security Agent to be installed and click **Next**.

4. **Ready to install Trend Micro Deep Security Agent:** Click **Install** to proceed with the installation.

5. **Completed:** when the installation has completed successfully, click **Finish**.

The Deep Security Agent is now installed and running on this computer, and will start every time the machine boots.

Note: During an install, network interfaces will be suspended for a few seconds before being restored. If you are using DHCP, a new request will be generated, potentially resulting in a new IP address for the restored connection.
Installing the Red Hat, SUSE, Oracle Linux, or Cloud Linux Agent

Note: You must be logged on as "root" to install the Agent. Alternatively, you can use "sudo".

1. Copy the installation file to the target machine.
2. Use "rpm -i" to install the ds_agent package:

 # rpm -i <package name>
 Preparing... ## [100%]
 1:ds_agent ## [100%]
 Loading ds_filter_im module version ELx.x [OK]
 Starting ds_agent: [OK]

 (Use "rpm -U" to upgrade from a previous install. This approach will preserve your profile settings)
3. The Deep Security Agent will start automatically upon installation.

Installing the Ubuntu or Debian Agent

Follow the instructions under "Importing Agent Software" (above) to import the appropriate Ubuntu or Debian Agent software package from the Download Center to Deep Security Manager and then export the installer (.deb file).

To install on Ubuntu or Debian, copy the installer file (.deb) to the target machine and use the following command:

 sudo dpkg -i <installer file>

Starting, stopping and resetting the Agent on Linux:

Command-line options:

To start the Agent:

 /etc/init.d/ds_agent start

To stop the Agent:

 /etc/init.d/ds_agent stop

To reset the Agent:

 /etc/init.d/ds_agent reset

To restart the Agent:

 /etc/init.d/ds_agent restart

Installing the Solaris Agent

Requirements:

For Solaris Sparc/9:

- libiconv 1.11 or better
To install the Solaris 11 Agent:

1. Copy the installation file to the target machine
2. Install the agent:

```
gunzip Agent-Solaris_5.x_sparc-9.x.x-xxxx.sparc.p5p.gz
pkg install -g Agent*p5p ds-agent
svcadm enable ds_agent
```

To install the Solaris 10 Agent:

1. Copy the installation file to the target machine
2. Install the Agent:

```
gunzip Agent-Solaris_5.10_U7-9.x.x-xxxx.x86_64.pkg.gz
pkgadd -d Agent-Solaris_5.10_U7-9.x.x-xxxx.x86_64.pkg all
```

To install the Solaris Sparc 9 Agent:

1. Acquire all of the required packages (see above)
2. Copy the installation file to the target machine
3. Install libiconv-1.8-solx-sparc.gz:

```
gunzip libiconv-1.8-solx-sparc.gz
pkgadd -d libiconv-1.8-solx-sparc all
```

4. Install libc6-3.4.6-solx-sparc.gz:

```
gunzip libc6-3.4.6-solx-sparc.gz
pkgadd -d libc6-3.4.6-solx-sparc all
```

5. Install pfil:
pkgadd -d pfil_Solaris_x.pkg all

6. Push the pfil stream module into the network interface:

ifconfig <interface> modinsert pfil@2

Note: pfil should go right after ip in the network interface stream. To determine where ip is, perform: ifconfig <interface> modlist and ensure that the number used on the modinsert is one higher than the number of ip in the modlist.

Note: pfil must be added to the network stack for each of the interfaces the Agent will be protecting touch /etc/ipf.conf /etc/init.d/pfil start (For more information, see “Notes on Installing PFIL on a Solaris (8 and 9 Sparc) Host”, below.)

7. Install the Agent:

gunzip Agent-Solaris_5.x_sparc-9.x.x-xxxx.sparc.pkg.gz
pkgadd -d Agent-Solaris_5.x_sparc-9.x.x-xxxx.sparc.pkg all

To start, stop and reset the Agent on Solaris 10 and 11

• svcadm enable ds_agent - starts the Agent
• svcadm disable ds_agent - stops the Agent
• /opt/ds_agent/dsa_control -r - resets the Agent
• svcadm restart ds_agent - restarts the Agent
• svcs -a | grep ds_agent - displays Agent status

To start, stop and reset the Agent on Solaris 9:

• /etc/init.d/ds_agent start - starts the Agent
• /etc/init.d/ds_agent stop - stops the Agent
• /opt/ds_agent/dsa_control -r - resets the Agent
• /etc/init.d/ds_agent restart - restarts the Agent

Note: Note that the filtering activity log files are in /var/log/ds_agent

Notes on Installing PFIL on a Solaris (8 and 9 Sparc) Host

The Solaris Agent uses the PFIL IP filter component developed by Darren Reed. Deep Security currently supports version 2.1.11. We have built this source code and provided a package on the Trend Micro Download Center, http://downloadcenter.trendmicro.com.

Further information can be found at: http://coombs.anu.edu.au/~avalon. (For a copy of the PFIL source code, contact your support provider.)

Notes on pfil

(The following assumes your interface is hme)

If you do "ifconfig modlist", you will see a list of STREAMS modules pushed onto the interface like this (for hme0):

```bash
Note: Note that the filtering activity log files are in /var/log/ds_agent
```
You need to insert pfil between ip and hme:

```bash
ifconfig hme0 modinsert pfil@2
```

Checking the list, you should see:

```bash
0  arp
1  ip
2  pfil
3  hme
```

To configure the pfil Streams module to be automatically pushed when the device is opened:

```bash
autopush -f /etc/opt/pfil/iu.ap
```

At this point,

```bash
strconf < /dev/hme
```

should return:

```bash
pfil
hme
```

Also, `modinfo` should show:

```
# modinfo | grep pfil
110 102d392c 6383 24 1 pfil (pfil Streams module 2.1.11)
110 102d392c 6383 216 1 pfil (pfil Streams driver 2.1.11)
```

Installing the HP-UX Agent

1. Log in as Root
2. Copy the installation file to the target machine
3. Copy the package to a temporary folder (“/tmp”)
4. Unzip the package using `gunzip`:
   ```bash
   /tmp> gunzip Agent-HPUX_xx.xx-x.x.x-xxxx.ia64.depot.gz
   ```
5. Install the Agent: (Note that the package is referenced using the full path. Relative paths will not be accepted.)
   ```bash
   /tmp> swinstall -s /tmp/Agent-HPUX_xx.xx-x.x.x-xxxx.ia64.depot ds_agent
   ```

To start and stop the Agent on HP-UX, enter one of the following:

- `/sbin/init.d/ds_agent start`
- `/sbin/init.d/ds_agent stop`

Installing the AIX Agent

1. Log in as Root
2. Copy the installation file to the target machine
3. Copy the package to a temporary folder (/tmp)
4. Unzip the package using gunzip:

 /tmp> gunzip Agent-AIX_x.x.x.x-xxxx.powerpc.bff.gz

5. Install the Agent:

 /tmp> installp -a -d /tmp/Agent-AIX_x.x.x.x-xxxx.powerpc.bff ds_agent

To start the Agent on AIX:

startsrc -s ds_agent

To stop the Agent on AIX:

stopsrc -s ds_agent

To load the driver on AIX:

/opt/ds_agent/ds_fctrl load

To unload the driver on AIX:

/opt/ds_agent/ds_fctrl unload

Using Deployment Scripts to Install Agents

Adding a computer to your list of protected resources in Deep Security and implementing protection is a multi-step process. Most of these steps can be performed locally from the command line on the computer and can therefore be scripted. The Deep Security Manager’s Deployment Script generator can be accessed from the Manager’s Support menu.

Note: When installing the Agent on Windows 2012 Server Core, the Notifier will not be included.

To generate a deployment script:

2. Select the platform to which you are deploying the software.

 Note: Platforms listed in the drop-down menu will correspond to the software that you have imported into the Deep Security Manager.

3. Select **Activate Agent automatically after installation**. (Optional, but Agents must be activated by the Deep Security Manager before a protection Policy can be implemented.)
4. Select the Policy you wish to implement on the computer (optional)
5. Select the computer Group (optional)
6. Select the Relay Group

As you make the above selections, the Deployment Script Generator will generate a script which you can import into your deployment tool of choice.

Note: The Deployment Script Generator can also be started from the menu bar on the **Administration > Updates > Software > Local** page.
The deployment scripts generated by Deep Security Manager for Windows Agents must be run in Windows PowerShell version 2.0 or later. You must run PowerShell as an Administrator and you may have to run the following command to be able to run scripts:

```
Set-ExecutionPolicy RemoteSigned
```

Note: On windows machines, the deployment script will use the same proxy settings as the local operating system. If the local operating system is configured to use a proxy and the Deep Security Manager is accessible only through a direct connection, the deployment script will fail.

Iptables on Linux

Deep Security 9.5 or later does not disable Linux iptables during installation. If the Firewall or Intrusion Prevention modules are enabled, iptables is disabled. If the Agent is disabled, iptables is enabled and the settings are reverted. For instructions on how to prevent the Deep Security Agent from changing iptables, see the Deep Security Best Practice Guide.

Activating the Agent

The Agent must be activated from the Deep Security Manager before it can be configured to act as a Relay or to protect the host computer.

To activate the newly installed Agent:

1. In the Deep Security Manager, go to the Computers page and click New > New Computer... to display the New Computer Wizard.

2. Enter the hostname or IP address of the computer. If you want to use the Agent to provide protection for the host computer as well as function as a Relay, select a Deep Security Policy from the Policy menu. Otherwise leave Policy set to "None".
3. The wizard will confirm that it will activate the Agent on the computer and apply a Security Policy (if one was selected).

4. On the final screen, de-select "Open Computer Details on 'Close'" and click Close.

5. The Agent is now activated. In the Deep Security Manager, go to the Computers screen and check the computer’s status. It should display "Managed (Online)".

Enabling Relay Functionality

Any activated 64-bit Windows or Linux Agent can be configured to act as a Relay, downloading and distributing Security and Software Updates.

Note: Once enabled on an Agent, Relay functionality cannot be disabled.

To enable Relay functionality:

1. In the Deep Security Manager, go to the Computers page, double-click the computer with the newly-activated Agent to display its Details editor window.
2. In the computer editor, go to the Overview > Actions > Software area and click Enable Relay. Click Close to close the editor window.

3. In the Deep Security Manager on the Computers page, the computer’s icon will change from ordinary computer () to computer with Relay-enabled Agent (). Click the Preview icon to display the Preview Pane where you can see the number of Update components the Relay Module is ready to distribute.

Considerations for Windows 2012 Server Core

There are a few things you should keep in mind when running a Deep Security Agent with Windows 2012 Server Core:

- Deep Security does not support switching the Windows 2012 server mode between Server Core and Full (GUI) modes after the Deep Security Agent is installed.

- If you are using Server Core mode in a Hyper-V environment, you will need to use Hyper-V Manager to remotely manage the Server Core computer from another computer. When the Server Core computer has the Deep Security Agent installed and Firewall enabled, the Firewall will block the remote management connection. To manage the Server Core computer remotely, turn off the Firewall module.

- Hyper-V provides a migration function used to move a guest VM from one Hyper-V server to another. The Deep Security Firewall module will block the connection between Hyper-V servers, so you will need to turn off the Firewall module to use the migration function.
Installing and Configuring a Relay-enabled Agent

A Relay is a Deep Security Agent with Relay functionality enabled. Relays download and distribute Security and Software Updates to your Deep Security Agents and Appliances. You must have at least one Relay-enabled Agent to keep your protection up to date.

Install and Activate a Deep Security Agent

If you do not already have an agent installed on a computer, do so by following the instructions in Installing the Deep Security Agent (page 29). You skip ahead to the section on "Manual Installation".

Once the Agent is installed, you need to Activate it.

To Activate the Agent,

1. In the Deep Security Manager, go to the Computers page.
2. In the menu bar, click New > New Computer... to display the New Computer Wizard.
3. For Hostname, enter the hostname or IP address of the computer on which you just installed the Agent.
4. For Policy, select an appropriate policy.
5. For Download Security Updates From, leave the default setting (Default Relay Group).
6. Click Finish. Deep Security Manager will import the computer to its Computers page and activate the Agent.

Enable Relay Functionality on a Deep Security Agent

To enable Relay functionality on an installed Deep Security Agent:

1. The Adding a new computer and activation process should have finished by opening the Computer’s Editor window. If it hasn’t, follow step two (below) to open the window.
2. In the Deep Security Manager, go to the Computers screen, find the Agent on which you want to enable Relay functionality and double-click it to open its Computer Editor window.
3. In the Computer Editor window, go to Overview > Actions > Software and click Enable Relay.

Note: If you do not see the Enable Relay button, go to Administration > Updates > Software > Local to check whether the corresponding package has been imported. Also ensure that the computer running a 64-bit version of the Agent.

Deep Security Manager will install the plug-ins required by the Relay Module, and the Agent will begin to function as a Relay.

Note: If you are running Windows Firewall or iptables, you also need to add a Firewall Rule that allows TCP/IP traffic on port 4122 on the Relay-enabled Agents.

Note: Relay-enabled Agents are organized into Relay Groups. New Relay-enabled Agents are automatically assigned to the Default Relay Group. The Default Relay Group is configured to retrieve Security and Software Updates from the Primary Security Update Source defined in the Deep Security Manager on the Administration > System Settings > Updates tab. (The Primary Update Source by default is Trend Micro’s Update Servers, but this configurable.)
Upgrading
Upgrading an Agent-based Installation from 9.0 SP1 to 9.6 SP1

The steps for upgrading a basic Agent-based Deep Security 9.0 SP1 installation to Deep Security 9.6 SP1 are:

1. Upgrade your Deep Security Manager to version 9.6 SP1
2. Install at least one Deep Security 9.6 SP1 Agent with Relay functionality enabled.
3. Upgrade your Deep Security Agents to 9.6 SP1 (as required)

Note: Deep Security 9.6 SP1 includes improvements to scalability and efficiency. Because of these changes, the upgrade can potentially take quite a long time (up to several hours depending on the size of your database). As usual, backup your database before upgrading and consider performing the upgrade during off-hours. To back up your existing Deep Security data, see "Database Backup and Recovery" in the Deep Security online help or Administrator's Guide. Your Deep Security Agents and Appliances will continue to provide protection during the upgrade process.

Upgrade your 9.0 SP1 Deep Security Manager to version 9.6 SP1

To upgrade Deep Security Manager 9.0 SP1 to Deep Security Manager 9.6 SP1:

2. Run the installer package following the steps as for a new installation, described in *Installing Deep Security Manager (page 22)* except when given the option choose **Upgrade** instead of **Change**.

Upgrading vs. Overwriting an Existing Installation

When the Deep Security Manager installer detects the 9.0 SP1 version of Deep Security Manager on your system, it will give you the option to "upgrade the existing installation", or to "change the existing installation". Upgrading the installation will upgrade the Deep Security Manager to the latest version but will not overwrite your policies, IPS Rules, Firewall Rules, Application Types, etc. or change any of the security settings that were applied to the computers on your network. Changing the existing installation will erase all data associated with the previous installation and then install the new rules, policies, etc.

Deploy a Deep Security 9.6 SP1 Relay-enabled Agent

In Deep Security 9.0 SP1, the Deep Security Relay was a distinct piece of Deep Security software that provided the Security and Software Update distributions in that version. In Deep Security 9.6 SP1, the Relay functionality has been included as a module in every 64-bit Windows and Linux Agent.

Deep Security Manager 9.6 SP1 still supports 9.0 Relays, however:

- 9.6 SP1 Agents cannot be updated by 9.0 Relays (and therefore a 9.6 SP1 Relay-enabled Agent is required)
- 9.0 Relays and 9.6 SP1 Relay-enabled Agents cannot be in the same Relay Group

The recommended procedure is to replace your Deep Security 9.0 Relays with 9.6 SP1 Relay-enabled Agents. Windows Relays can upgraded from the Deep Security Manager. Linux Relays must be manually uninstalled and replaced with a fresh install of a 9.6 SP1 Linux Agent.

To perform a fresh install of a 9.6 SP1 Deep Security Agent and enable it as a Relay, see *Installing the Deep Security Agent (page 29)*.

Note: If you want to test the functionality of the 9.6 SP1 Relay-enabled Agent before replacing all your 9.0 Relays you can install a single 9.6 SP1 Relay-enabled Agent, place it in its own Relay Group (because 9.0 Relays cannot be with 9.6 SP1 Relay-enabled Agents in the same Relay Group), and assign a few VMs to the new Relay Group.
Upgrade existing Deep Security Agents and Relays

Deep Security 9.0 Agents can be upgraded using the Deep Security Manager console (or by manual local upgrade), but the Agent software must first be imported into the Deep Security Manager.

Deep Security 9.0 Windows Relays can be upgraded to 9.6 SP1 Relay-enabled Agents using the Deep Security Manager console (or by manual local upgrade). Deep Security 9.0 Linux Relays cannot be upgraded. They must be uninstalled and replaced with a fresh install of a 9.6 SP1 Linux Agent. (See Upgrade a Relay on Linux, below, for instructions.)

To import Agent software packages to Deep Security:

1. In Deep Security Manager, go to Administration > Updates > Software > Download Center. The Download Center page displays the latest versions all Agent software available from Trend Micro.
2. Select your Agent software package from the list and click Import in the menu bar. Deep Security will begin to download the software from the Trend Micro Download Center to the Deep Security Manager.
3. When the software has finished downloading, a green check mark will appear in the Imported column for that Agent.

1. In the Deep Security Manager, go to the Computers screen.
2. Find the computer on which you want to upgrade the Agent or Relay.
3. Right-click the computer and select Actions > Upgrade Agent software.
4. The new Agent software will be sent to the computer and the Agent or Relay will be upgraded.

You can manually upgrade the any Agents or Relays locally on a computer. To do this, follow the instructions in Installing the Deep Security Agent (page 29).

Upgrade a Relay on Linux

You cannot use the command on the Actions menu to update a Relay from 9.0 to 9.6 SP1 on Linux.
To upgrade a 9.0 Relay to 9.6 SP1 on Linux:

3. Deactivate the Relay that you want to upgrade and then uninstall it.
4. Install `Agent-Core-platform-9.6.build.rpm` on the Agent computer.
5. After re-enabling the computer, enable the Relay.

To convert a 9.0 Relay to a 9.6 SP1 Agent on Linux:

3. Deactivate the Relay that you want to upgrade.
5. Uninstall the Relay.
6. Install `Agent-Core-platform-9.6.build.rpm` on the Agent computer.
Upgrading an Agent-based Installation from 9.5 SP1 or 9.6 to 9.6 SP1

The steps for upgrading a basic Agent-based Deep Security 9.5 SP1 or 9.6 installation to Deep Security 9.6 SP1 are:

1. Upgrade your Deep Security Manager to version 9.6 SP1
2. Upgrade your Deep Security Agents (including Relay-enabled Agents) to 9.6 SP1 (as required)

Upgrade the Deep Security Manager to version 9.6 SP1

Note: Deep Security 9.6 included improvements to scalability and efficiency. Because of these changes, the upgrade from pre-9.6 versions to 9.6 SP1 can potentially take quite a long time (up to several hours depending on the size of your database). As usual, backup your database before upgrading and consider performing the upgrade during off-hours. To back up your 9.5 SP1 Deep Security data, see “Database Backup and Recovery” in the your Deep Security 9.5 SP1 online help or Administrator's Guide. Your Deep Security Agents and Appliances will continue to provide protection during the upgrade process.

To upgrade to Deep Security Manager 9.6 SP1:

1. Download the Deep Security Manager 9.6 SP1 install package from the Trend Micro Download Center web site (http://downloadcenter.trendmicro.com/) to a local directory.
2. Run the installer package following the steps as for a new installation, described in Installing Deep Security Manager (page 22) except when given the option choose Upgrade instead of Change.

Upgrading vs. Overwriting an Existing Installation

When the Deep Security Manager installer detects the 9.5 SP1 or 9.6 version of Deep Security Manager on your system, it will give you the option to "upgrade the existing installation", or to "change the existing installation". Upgrading the installation will upgrade the Deep Security Manager to the latest version but will not overwrite your policies, IPS Rules, Firewall Rules, Application Types, etc. or change any of the security settings that were applied to the computers on your network. Changing the existing installation will erase all data associated with the previous installation and then install the new rules, policies, etc.

Upgrade your Deep Security Agents (including Relay-enabled Agents)

Note: Deep Security Agents must be of the same version or less than the Deep Security Manager being used to manage it. The Deep Security Manager must always be upgraded before the Deep Security Agents and Relays.

Deep Security 9.5 SP1 or 9.6 Agents can be upgraded using the Deep Security Manager console (or by manual local upgrade), but the Agent software must first be imported into the Deep Security Manager.

Note: If your Deep Security Agent has the Anti-Malware module enabled and you are upgrading from Deep Security Agent 9.5, 9.5 SP1, 9.5 SP1 Patch 1, or 9.6 on Windows 8, Windows 8.1, Windows Server 2012 or Windows Server 2012 R2, your system will need to be rebooted at the end up the upgrade process.

To import Agent software packages to Deep Security:

1. In Deep Security Manager, go to Administration > Updates > Software > Download Center. The Download Center page displays the latest versions all Agent software available from Trend Micro.
2. Select your Agent software package from the list and click **Import** in the menu bar. Deep Security will begin to download the software from the Trend Micro Download Center to the Deep Security Manager.

3. When the software has finished downloading, a green check mark will appear in the **Imported** column for that Agent.

To Upgrade Deep Security Agents and Windows Deep Security Relays using the Deep Security Manager:

1. In the Deep Security Manager, go to the **Computers** screen.
2. Find the computer on which you want to upgrade the Agent or Relay.
3. Right-click the computer and select **Actions > Upgrade Agent software**.
4. The new Agent software will be sent to the computer and the Agent or Relay will be upgraded.

Note: You can manually upgrade any Agents or Relays locally on a computer. To do this, follow the instructions in **Installing the Deep Security Agent (page 29)**.
Appendices
Deep Security Manager Memory Usage

Configuring the Installer's Maximum Memory Usage

The installer is configured to use 1GB of contiguous memory by default. If the installer fails to run you can try configuring the installer to use less memory.

To configure the amount of RAM available to the installer:

1. Go to the directory where the installer is located.
2. Create a new text file called "Manager-Windows-9.6.xxxx.x64.vmoptions" or "Manager-Linux-9.6.xxxx.x64.vmoptions", depending on your installation platform (where "xxxx" is the build number of the installer).
3. Edit the file by adding the line: "-Xmx800m" (in this example, 800MB of memory will be made available to the installer.)
4. Save the file and launch the installer.

Configuring the Deep Security Manager's Maximum Memory Usage

The Deep Security Manager default setting for heap memory usage is 4GB. It is possible to change this setting.

To configure the amount of RAM available to the Deep Security Manager:

2. Create a new file. Depending on the platform, give it the following name:
 - Windows: "Deep Security Manager.vmoptions".
 - Linux: "dsm_s.vmoptions".
3. Edit the file by adding the line: "-Xmx10g" (in this example, "10g" will make 10GB memory available to the Deep Security Manager.)
4. Save the file and restart the Deep Security Manager.
5. You can verify the new setting by going to Administration > System Information and in the System Details area, expand Manager Node > Memory. The Maximum Memory value should now indicate the new configuration setting.
Silent Install of Deep Security Manager

To run a silent install of the Deep Security Manager:

1. In a Windows command prompt or Linux command line, go to the same directory as the install package.
2. If you are installing on Linux, grant execution permission to the install package.
3. Run the appropriate command for your platform:

 On Windows:

 On Linux:

See the "Parameters" section, below, for details on each of the command parameters.

Parameters

- **-q** forces install4j to execute in unattended (silent) mode.

- **-console** forces messages to appear in the console (stdout).

- **-Dinstall4j.language=<ISO code>** lets you override the default installation language (English) if other languages are available. Specify a language using standard ISO language identifiers:

 - Japanese: ja
 - Simplified Chinese: zh_CN

- **-varfile <PropertiesFile>**, where <PropertiesFile> is the full path to standard Java properties file with entries for the various settings you can apply during a Deep Security Manager install. Each property is identified by its equivalent GUI screen and setting in the Windows Deep Security Manager installation. For example, the Deep Security Manager address on the "Address and Ports" screen is specified as:

 AddressAndPortsScreen.ManagerAddress=

 Most of the properties in this file have acceptable defaults and may be omitted.

 For a complete description of available settings, see Deep Security Manager Settings Properties File (page 51).

Sample Properties File

This is an example of the content of a typical properties file:

AddressAndPortsScreen.ManagerAddress=10.201.111.91
AddressAndPortsScreen.NewNode=True
UpgradeVerificationScreen.Overwrite=False
LicenseScreen.License.-1=XY-ABCD-ABCDE-ABCDE-ABCDE-ABCDE-ABCDE-ABCDE
DatabaseScreen.DatabaseType=Oracle
DatabaseScreen.Hostname=10.201.xxx.xxx
DatabaseScreen.Transport=TCP
DatabaseScreen.DatabaseName=XE
DatabaseScreen.Username=DSM
DatabaseScreen.Password=xxxxxxxx
AddressAndPortsScreen.ManagerPort=4119
AddressAndPortsScreen.HeartbeatPort=4120
CredentialsScreen.Administrator.Username=masteradmin
CredentialsScreen.Administrator.Password=xxxxxxxx
CredentialsScreen.UseStrongPasswords=False
SecurityUpdateScreen.UpdateComponents=True
SoftwareUpdateScreen.Proxy=False
SoftwareUpdateScreen.ProxyType=""
SoftwareUpdateScreen.ProxyAddress=""
SoftwareUpdateScreen.ProxyPort=""
SoftwareUpdateScreen.ProxyAuthentication="False"
SoftwareUpdateScreen.ProxyUsername=""
SoftwareUpdateScreen.ProxyPassword=""
SoftwareUpdateScreen.UpdateSoftware=True
RelayScreen.Install=True
SmartProtectionNetworkScreen.EnableFeedback=False
Deep Security Manager Settings Properties File

This section contains information about the contents of the properties file that can be used in a command-line installation (silent install) of the Deep Security Manager. (See Silent Install of Deep Security Manager (page 49).)

Settings Properties File

The format of each entry in the settings properties file is:

<Screen Name>.<Property Name>=<Property Value>

The settings properties file has required and optional values.

Note: For optional entries, supplying an invalid value will result in the default value being used.

Required Settings

LicenseScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LicenseScreen.License.1=<value></td>
<td><AC for all modules></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.0=<value></td>
<td><AC for Anti-Malware></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.1=<value></td>
<td><AC for Firewall/DPI></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.2=<value></td>
<td><AC for Integrity Monitoring></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.3=<value></td>
<td><AC for Log Inspection></td>
<td>blank</td>
</tr>
</tbody>
</table>

OR

CredentialsScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CredentialsScreen.Administrator.Username=<value></td>
<td><username for master administrator></td>
<td>blank</td>
</tr>
<tr>
<td>CredentialsScreen.Administrator.Password=<value></td>
<td><password for the master administrator></td>
<td>blank</td>
</tr>
</tbody>
</table>

Optional Settings

LanguageScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
</table>
UpgradeVerificationScreen

Note: This screen/setting is not referenced unless an existing installation is detected.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UpgradeVerificationScreen.Overwrite=<value></td>
<td>True, False</td>
<td>False</td>
<td></td>
</tr>
</tbody>
</table>

Note: Setting this value to True will overwrite any existing data in the database. It will do this without any further prompts.

DatabaseScreen

This screen defines the database type and optionally the parameters needed to access certain database types.

Note: The interactive install provides an "Advanced" dialog to define the instance name and domain of a Microsoft SQL server, but because the unattended install does not support dialogs these arguments are included in the DatabaseScreen settings below.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatabaseScreen.DatabaseType=<value></td>
<td>Embedded, Microsoft SQL Server, Oracle</td>
<td>Embedded</td>
<td>None</td>
</tr>
<tr>
<td>DatabaseScreen.Hostname=<value></td>
<td>The name or IP address of the database server</td>
<td>Current host name</td>
<td>None</td>
</tr>
<tr>
<td>DatabaseScreen.DatabaseName=<value></td>
<td>Any string</td>
<td>dsm</td>
<td>Not required for Embedded</td>
</tr>
<tr>
<td>DatabaseScreen.Transport=<value></td>
<td>Named Pipes, TCP</td>
<td>Named Pipes</td>
<td>Required for SQL Server only</td>
</tr>
<tr>
<td>DatabaseScreen.Username=<value></td>
<td>Any string</td>
<td>blank</td>
<td>Username used by the Manager to authenticate to the database server. Must match an existing database account. Note that the Deep Security Manager database permissions will correspond to this user's permissions. For example, if you choose a database account with read-only privileges, the Deep Security Manager will not be able to write to the database. Not required for Embedded. Mandatory for Microsoft SQL Server and Oracle.</td>
</tr>
<tr>
<td>DatabaseScreen.Password=<value></td>
<td>Any string</td>
<td>blank</td>
<td>Password used by the Manager to authenticate to the database server. Not required for Embedded. Mandatory for Microsoft SQL Server and Oracle.</td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.Instance=<value></td>
<td>Any string</td>
<td>blank</td>
<td>Used only with Microsoft SQL Server, which supports multiple instances on a single server or processor. Only one instance can be the default instance and any others are named instances. If the Deep Security Manager database instance is not the default, enter the name of the instance here. The value must match an existing instance or be left blank to indicate the default instance.</td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.Domain=<value></td>
<td>Any string</td>
<td>blank</td>
<td>Used only with Microsoft SQL Server. This is the Windows domain used when authenticating to the SQL Server. The DatabaseScreen.Username and DatabaseScreen.Password described above are only valid within the appropriate domain.</td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.UseDefaultCollation=<value></td>
<td>True, False</td>
<td>False</td>
<td>Used only with Microsoft SQL Server. Collation determines how strings are sorted and compared. If the value is "False", Deep Security will use Latin1_General_CS_AS for collation on text-type columns. If the value is "True", Deep Security will use the...</td>
</tr>
</tbody>
</table>
AddressAndPortsScreen

This screen defines the hostname, URL, or IP address of this computer and defines ports for the Manager. In the interactive installer this screen also supports the addition of a new Manager to an existing database, but this option is not supported in the unattended install.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddressAndPortsScreen.ManagerAddress=<value></td>
<td><hostname, URL or IP address of the Manager host></td>
<td><current host name></td>
<td>None</td>
</tr>
<tr>
<td>AddressAndPortsScreen.ManagerPort=<value></td>
<td><valid port number></td>
<td>4119</td>
<td>None</td>
</tr>
<tr>
<td>AddressAndPortsScreen.HeartbeatPort=<value></td>
<td><valid port number></td>
<td>4120</td>
<td>None</td>
</tr>
<tr>
<td>AddressAndPortsScreen.NewNode=<value></td>
<td>True, False</td>
<td>False</td>
<td>True indicates that the current install is a new node. If the installer finds existing data in the database, it will add this installation as a new node. (Multi-node setup is always a silent install). Note: The "New Node" installation information about the existing database to be provided via the DatabaseScreen properties.</td>
</tr>
</tbody>
</table>

CredentialsScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CredentialsScreen.UseStrongPasswords=<value></td>
<td>True, False</td>
<td>False</td>
<td>True indicates the DSM should be set up to enforce strong passwords</td>
</tr>
</tbody>
</table>

SecurityUpdateScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecurityUpdateScreen.UpdateComponents=<value></td>
<td>True, False</td>
<td>True</td>
<td>True will instruct the Deep Security Manager to create a Scheduled Task to automatically check for Security Updates. The Scheduled Task will run when installation is complete.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.Proxy=<value></td>
<td>True, False</td>
<td>False</td>
<td>True indicates that the Deep Security Manager uses a proxy to connect to the Internet to download Security Updates from Trend Micro.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyType=<value></td>
<td>HTTP, SOCKS4, SOCKS5</td>
<td>blank</td>
<td>The protocol used by the proxy.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyAddress=<value></td>
<td>valid IPv4 or IPv6 address or hostname</td>
<td>blank</td>
<td>The IP or hostname of the proxy.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyPort=<value></td>
<td>integer</td>
<td>blank</td>
<td>The port number of the proxy.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyAuthentication=<value></td>
<td>True, False</td>
<td>False</td>
<td>True indicates that the proxy requires authentication credentials.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyUserName=<value></td>
<td>any string</td>
<td>blank</td>
<td>The authentication username.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyPassword=<value></td>
<td>any string</td>
<td>blank</td>
<td>The authentication password.</td>
</tr>
</tbody>
</table>
SoftwareUpdateScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoftwareUpdateScreen.UpdateSoftware=<value></td>
<td>True, False</td>
<td>True</td>
<td>True will instruct the Deep Security Manager to create a Scheduled Task to automatically check for Software Updates. The Scheduled Task will run when installation is complete.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.Proxy=<value></td>
<td>True, False</td>
<td>False</td>
<td>True indicates that the Deep Security Manager uses a proxy to connect to the Internet to download Software Updates from Trend Micro.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyType=<value></td>
<td>HTTP, SOCKS4, SOCKS5</td>
<td>blank</td>
<td>The protocol used by the proxy.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyAddress=<value></td>
<td>valid IPv4 or IPv6 address or hostname</td>
<td>blank</td>
<td>The IP or hostname of the proxy.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyPort=<value></td>
<td>integer</td>
<td>blank</td>
<td>The port number of the proxy.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyAuthentication=<value></td>
<td>True, False</td>
<td>False</td>
<td>True indicates that the proxy requires authentication credentials.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyUsername=<value></td>
<td>any string</td>
<td>blank</td>
<td>The authentication username.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyPassword=<value></td>
<td>any string</td>
<td>blank</td>
<td>The authentication password.</td>
</tr>
</tbody>
</table>

SmartProtectionNetworkScreen

This screen defines whether you want to enable Trend Micro Smart Feedback and optionally your industry.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartProtectionNetworkScreen.EnableFeedback=<value></td>
<td>True, False</td>
<td>False</td>
<td>True enables Trend Micro Smart Feedback.</td>
</tr>
<tr>
<td>SmartProtectionNetworkScreen.IndustryType=<value></td>
<td>Not specified, Banking, Communications and media, Education, Energy, Fast-moving consumer goods (FMCG), Financial, Food and beverage, Government, Healthcare, Insurance, Manufacturing, Materials, Media, Oil and gas, Real estate, Retail, Technology, Telecommunications, Transportation, Utilities, Other, blank</td>
<td>blank</td>
<td>blank corresponds to Not specified</td>
</tr>
</tbody>
</table>

Sample Properties Files

The following is an example of the content of a typical properties file:
Installation Output

The following is a sample output from a successful install, followed by an example output from a failed install (invalid license). The [Error] tag in the trace indicates a failure.

Successful Install

```
Stopping Trend Micro Deep Security Manager Service...
Checking for previous versions of Trend Micro Deep Security Manager...
Upgrade Verification Screen settings accepted...
The installation directory has been set to C:\Program Files\Trend Micro\Deep Security Manager.
Database Screen settings accepted...
License Screen settings accepted...
Address And Ports Screen settings accepted...
Credentials Screen settings accepted...
Security Update Screen settings accepted...
Software Update Screen settings accepted...
Smart Protection Network Screen settings accepted...
All settings accepted, ready to execute...
Extracting files...
Setting Up...
Connecting to the Database...
Creating the Database Schema...
Creating MasterAdmin Account...
Recording Settings...
Creating Temporary Directory...
Installing Reports...
Installing Modules and Plug-ins...
Creating Help System...
Validating and Applying Activation Codes...
Configure Localizable Settings...
Setting Default Password Policy...
Creating Scheduled Tasks...
Creating Asset Importance Entries...
Creating Auditor Role...
Optimizing...
Importing Software Packages...
Configuring Relay For Install...
```
Importing Performance Profiles...
Recording Installation...
Clearing Sessions...
Creating Properties File...
Creating Shortcut...
Configuring SSL...
Configuring Service...
Configuring Java Security...
Configuring Java Logging...
Cleaning Up...
Starting Deep Security Manager...
Finishing installation ...

Failed Install

This example shows the output generated when the properties file contained an invalid license string:

Stopping Trend Micro Deep Security Manager Service...
Detecting previous versions of Trend Micro Deep Security Manager...
Upgrade Verification Screen settings accepted...
Database Screen settings accepted...
Database Options Screen settings accepted...
[ERROR] The license code you have entered is invalid.
[ERROR] License Screen settings rejected...
Rolling back changes...
Deep Security Manager Performance Features

Performance Profiles

Deep Security Manager uses an optimized concurrent job scheduler that considers the impacts of each job on CPU, Database and Agent/Appliances. By default, new installations use the “Aggressive” performance profile which is optimized for a dedicated Manager. If the Deep Security Manager is installed on a system with other resource-intensive software it may be preferable to use the “Standard” performance profile. The performance profile can be changed by navigating to Administration > Manager Nodes. From this screen select a Manager node and open the Properties window. From here the Performance Profile can be changed via the drop-down menu.

The Performance Profile also controls the number of Agent/Appliance-initiated connections that the Manager will accept. The default of each of the performance profiles effectively balances the amount of accepted, delayed and rejected heartbeats.

Low Disk Space Alerts

Low Disk Space on the Database Host

If the Deep Security Manager receives a “disk full” error message from the database, it will start to write events to its own hard drive and will send an email message to all Users informing them of the situation. This behavior is not configurable.

If you are running multiple Manager nodes, the Events will be written to whichever node is handling the Event. (For more information on running multiple nodes, see Multi-Node Manager in the Reference section of the online help or the Administrator's Guide.)

Once the disk space issue on the database has been resolved, the Manager will write the locally stored data to the database.

Low Disk Space on the Manager Host

If the available disk space on the Manager falls below 10%, the Manager generates a Low Disk Space Alert. This Alert is part of the normal Alert system and is configurable like any other. (For more information on Alerts, see Alert Configuration in the Configuration and Management section of the online help or the Administrator’s Guide.)

If you are running multiple Manager nodes, the node will be identified in the Alert.

When the Manager’s available disk space falls below 5MB, the Manager will send an email message to all Users and the Manager will shut down. The Manager cannot be restarted until the available disk space is greater than 5MB.

You must restart the Manager manually.

If you are running multiple nodes, only the node that has run out of disk space will shut down. The other Manager nodes will continue operating.
Creating an SSL Authentication Certificate

The Deep Security Manager creates a 10-year self-signed certificate for the connections with Agents/Appliances, Relays, and Users' web browsers. However, for added security, this certificate can be replaced with a certificate from a trusted certificate authority (CA). (Such certificates are maintained after a Deep Security Manager upgrade.)

Once generated, the CA certificate must be imported into the .keystore in the root of the Deep Security Manager installation directory and have an alias of "tomcat". The Deep Security Manager will then use that certificate.

Windows

To create your SSL authentication certificate in a Windows environment:

1. Go to the Deep Security Manager installation directory (for the purpose of these instructions, we will assume it's "C:\Program Files\Trend Micro\Deep Security Manager") and create a new folder called Backupkeystore.
2. Copy .keystore and configuration.properties to the newly created folder Backupkeystore.
3. From a command prompt, go to the following location: C:\Program Files\Trend Micro\Deep Security Manager\jre\bin.
4. Run the following command, which will create a self-signed certificate:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -genkey -alias tomcat -keyalg RSA -dname cn=dsmserver

 Note: -dname is the common name of the certificate your CA will sign. Some CAs require a specific name to sign the Certificate Signing Request (CSR). Please consult your CA Admin to see if you have that particular requirement.

5. When prompted, enter a password.
6. There is a new keystore file created under the user home directory. If you are logged in as "Administrator", You will see the .keystore file under C:\Documents and Settings\Administrator.
7. View the newly generated certificate using the following command:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -list -v

8. Run the following command to create a CSR for your CA to sign:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -certreq -keyalg RSA -alias tomcat -file certrequest.csr

9. Send the certrequest.csr to your CA to sign. In return you will get two files. One is a "certificate reply" (for example, certresponse.txt) and the second is the CA certificate itself (for example, cacert.crt or certnew.cer).
10. Copy the files to C:\Program Files\Trend Micro\Deep Security Manager\jre\bin.
11. Run the following command to import the CA cert in JAVA trusted keystore:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias root -trustcacerts -file cacert.crt -keystore "C:\Program Files\Trend Micro\Deep Security Manager\jre\lib\security\cacerts"

12. Run the following command to import the CA certificate in your keystore:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias root -trustcacerts -file cacert.crt
13. Run the following command to import the certificate reply to your keystore:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias tomcat -file certreply.txt
```

14. Run the following command to view the certificate chain in your keystore:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -list -v
```

15. Copy the .keystore file from your user home directory C:\Documents and Settings\Administrator to C:\Program Files\Trend Micro\Deep Security Manager\.

16. Open the configuration.properties file in folder C:\Program Files\Trend Micro\Deep Security Manager. It will look something like:

```
keystoreFile=C:\Program Files\Trend Micro\Deep Security Manager\.keystore
port=4119
keystorePass=$1$85ef650a5c40bb0f914993ac1ad855f48216fd0664ed2544b90b4de80160b2f
installed=true
serviceName= Trend Micro Deep Security Manager
```

17. Replace the password in the following string:

```
keystorePass=xxxx
```

where "xxxx" is the password you supplied in step five

18. Save and close the file.

20. Connect to the Deep Security Manager with your browser and you will notice that the new SSL certificate is signed by your CA.

Linux

To create your SSL authentication certificate in a Linux environment:

1. Go to the Deep Security Manager installation directory (for the purpose of these instructions, we will assume it’s "opt/dsm") and create a new folder called `Backupkeystore`.

2. Copy `.keystore` and `configuration.properties` to the newly created folder `Backupkeystore`.

3. From a command prompt, go to the following location: `opt/dsm/jre/bin`.

4. Run the following command, which will create a self-signed certificate:

```
opt/dsm/jre/bin# keytool -genkey -alias tomcat -keyalg RSA -dname cn=dsmserver
```

Note: `dname` is the common name of the certificate your CA will sign. Some CAs require a specific name to sign the Certificate Signing Request (CSR). Please consult your CA Admin to see if you have that particular requirement.

5. When prompted, enter a password.

6. There is a new `.keystore` file created under the user home directory. If you are logged in as "Administrator", you will see the `.keystore` file under `/root/"
If the file is hidden, use the following command:

```
find -type f -iname ".keystore" -ls
```

7. View the newly generated certificate using the following command:

```
/opt/dsm/jre/bin# keytool -list -v
```

8. Run the following command to create a CSR for your CA to sign:

```
/opt/dsm/jre/bin# keytool -certreq -keyalg RSA -alias tomcat -file certrequest.csr
```

If you see "Keytool unrecognized option '-keyalg'", use '-sigalg' instead.

9. Send the `certrequest.csr` to your CA to sign. In return you will get two files. One is a "certificate reply" and the second is the CA certificate itself.

10. Run the following command to import the CA cert into the Java trusted keystore:

```
/opt/dsm/jre/bin/keytool -import -alias root -trustcacerts -file cacert.crt -keystore "/opt/dsm/jre/lib/security/cacerts"
```

11. Run the following command to import the CA certificate in your keystore:

```
/opt/dsm/jre/bin/keytool -import -alias root -trustcacerts -file cacert.crt
```

(say yes to warning message)

12. Run the following command to import the certificate reply to your keystore:

```
/opt/dsm/jre/bin/keytool -import -alias tomcat -file certreply.txt
```

13. Run the following command to view the certificate chain in your keystore:

```
/opt/dsm/jre/bin# keytool -list -v
```

14. Copy the `.keystore` file from your home directory to `/opt/dsm/`

```
cp $HOME/.keystore /opt/dsm/.keystore
```

15. Open the `opt/dsm/configuration.properties` file. It will look something like:

```
keystoreFile= opt/dsm/.keystore
port=443
keystorePass=xxxx
installed=true
serviceName= Trend Micro Deep Security Manager
```

16. Replace the password in the following string:

```
keystorePass=xxxx
```

where "xxxx" is the password you supplied in step five

17. Save and close the file.

19. Connect to the Deep Security Manager with your browser and you will notice that the new TLS certificate is signed by your CA.
Protecting a Mobile Laptop

The following describes the steps involved in using Deep Security to protect a mobile laptop. It will involve the following steps:

1. Adding Computers to the Manager
 1. Adding individual computers
 2. Performing a Discovery Operation on your network
 3. Importing computers from a Microsoft Active Directory

2. Create a new Policy for a Windows laptop
 1. Creating and naming the new Policy
 2. Setting which interfaces to monitor
 3. Setting the network engine to Inline Mode
 4. Assigning Firewall Rules (including some with Location Awareness) and enabling Firewall Stateful Configuration
 5. Assigning Intrusion Prevention Rules
 6. Assigning Log Inspection Rules
 7. Assigning Integrity Monitoring Rules

3. Applying the Policy to the computer

4. Monitoring Activity using the Manager

We will assume that you have already installed the Manager on the computer from which you intend to manage the Deep Security Agents throughout your network. We will also assume that you have installed (but not activated) Deep Security Agents on the mobile laptops you wish to protect. If you have not done so, consult the installation instructions for the steps to get to this stage.

Adding computers to the Manager

You can add computers to the Deep Security Computers page by:

1. Adding computers individually by specifying their IP addresses or hostnames
2. Discovering computers by scanning the network
3. Connecting to a Microsoft Active Directory and importing a list of computers
4. Connecting to a VMware vCenter and importing a list of computers (not covered in this section because we are dealing with mobile laptops.)

Adding computers individually by specifying their IP addresses or hostnames

To add an individual computer by specifying its IP address or hostname, go to the Computers page and click New in the toolbar.

Type the hostname or IP address of the new computer in the Hostname text box. The New Computer wizard also lets you specify a Policy which it will apply to the new computer if it finds the computer and determines that an unactivated Agent is present. (For now, don't select a Policy.) When you click Next, the wizard will find the computer and activate the Agent. When Agent activation has completed, the wizard will give you the option of opening the Computer Editor window (the Details window) which lets you configure many of the Agent's settings. Skip the Details window for now.

Adding computers by scanning the network (Discovery)

To discover computers by scanning the network:

We will assume that you have already installed the Manager on the computer from which you intend to manage the Deep Security Agents throughout your network.
1. Go to the Computers page.
2. Click Discover... in the toolbar to display the Discover Computers dialog.
3. Type a range of IP addresses you want to scan for computers. If you wish, you can enter a masked IP address to do the same thing.
4. Select Automatically resolve IPs to hostnames to instruct the Manager to automatically resolve hostnames as it performs the discovery.
5. You have the option to add discovered computers to a computer group you have created. For now, leave the Add Discovered Computers to Group drop-down list choice set to "Computers".
6. Finally, clear the Automatically perform a port scan of discovered computers checkbox. (Port scanning detects which ports are open on the discovered computers.)
7. Click OK. The dialog box will disappear and "Discovery in progress..." will appear in the Manager's status bar at the bottom of your browser. (The discovery process can be cancelled by clicking the "X".)

In a few minutes, all visible computers on the network will have been detected and the Manager will have identified those with Deep Security Agents installed. These Agents now need to be activated.

8. Activate the Agents by right-clicking an Agent (or multiple selected Agents), and select "Activate/Reactivate" from the shortcut menu. Once the Agents are activated, their status light will turn green and "Managed (Online)" will appear in the status column.

Importing Computers from a Microsoft Active Directory

Computers imported from an Active Directory are treated the same as any other computers in the Computers page.

To import computers from a Microsoft Active Directory:

1. Click the down arrow next to "New" in the Computers page toolbar and select Add Directory... to start the Add Directory wizard.

 Note: Synchronization of computers from other LDAP-based directories may be possible but would require some customization. For assistance contact your support provider.

2. Type the Active Directory server name, a name and description for your imported directory as it will appear in the Manager (it doesn't have to match that of theActive Directory), the IP and port of the Active Directory server, and finally your access method and credentials. Click Next.

 Note: You must include your domain name with your username in the User Name field.

3. If you select SSL or TLS as the Access method, the wizard will ask you to accept a security certificate. You can view the certificate accepted by the Deep Security Manager by going to Administration > System Settings > Security and clicking "View Certificate List..." in the Trusted Certificates area. Click Next.
4. The second page of the New Directory wizard asks for schema details. (Leave the default values). Click Finish.
5. The next page will tell you if there were any errors. Click Next.
6. The final page will let you create a Scheduled Task to regularly synchronize the Manager’s Computers page with the Active Directory. Leave option this cleared for now. Click Close.

The directory structure now appears under Computers in the navigation panel.

Additional Active Directory Options

Right-clicking an Active Directory structure gives you the following options that are not available for ordinary computer groups listed under Computers.
1. Remove Directory
2. Synchronize Now

Remove Directory

When you remove a directory from the Deep Security Manager, you have the following options:

• **Remove directory and all subordinate computers/groups from DSM**: removes all traces of the directory.

• **Remove directory, but retain computer data and computer group hierarchy**: turns the imported directory structure into identically organized regular computer groups, no longer linked with the Active Directory server.

• **Remove directory, retain computer data, but flatten hierarchy**: removes links to the Active Directory server, discards directory structure, and places all the computers into the same computer group.

Synchronize Now

Synchronizes the directory structure in the Deep Security Manager with the Active Directory Server. (Remember that you can automate this procedure as a **Scheduled Task**.)

Now that the Agents are active, they can be assigned Firewall Rules and Intrusion Prevention Rules. Although all the individual security objects can be assigned individually to an Agent, it is convenient to group common security objects into a Policy and then assign the Policy to one or more Agents.

Note: More information is available for each page in the Deep Security Manager by clicking the **Help** button in the menu bar.

Activating the Agents on Computers

Agents need to be "activated" by the Manager before Policies and rules can be assigned to them. The activation process includes the exchange of unique fingerprints between the Agent and the Manager. This ensures that only this Deep Security Manager (or one of its nodes) can send instructions to the Agent.

Note: An Agent can be configured to automatically initiate its own activation upon installation. For details, see **Command-Line Utilities** in the Reference section of the online help.

To manually activate an Agent on a computer, right-click one or more selected computers and select **Actions > Activate/Reactivate**.

Create a Policy for a Windows laptop

Now that the Agents are activated, it’s time to assign some rules to protect the computer. Although you can assign rules directly to a computer, it’s more useful to create a Policy which contains these rules and which can then be assigned to multiple computers.

Creating the Policy will involve the following steps:

1. Creating and naming the new Policy
2. Setting which interfaces to monitor
3. Setting the network engine to Inline Mode
4. Assigning Firewall Rules (including some with location awareness) and enable Stateful Inspection
5. Assigning Intrusion Prevention Rules
6. Assigning Integrity Monitoring Rules
7. Assigning Log Inspection Rules
8. Assigning the Policy to the computer

Creating and naming the New Policy

To create and name the new Policy:

1. Go to the Policies section, click on Policies in the navigation panel on the left to go to the Policies page.
2. Click New in the toolbar to display the New Policy wizard.
3. Name the new Policy "My New Laptop Policy" and select Base Policy from the Inherit from: menu. Click Next.
4. The next page asks if you would like to base the Policy on an existing computer's current configuration. If you were to select Yes, you would be asked to pick an existing managed computer and the wizard would take all the configuration information from that computer and create a new Policy based on it. This can be useful if, for instance, you have fine-tuned the security configuration of an existing computer over a period of time and now wish to create a Policy based on it so that you can apply it to other functionally identical computers. For now, select No and click Next.
5. The last page confirms that the new Policy has been created. Select the Open Policy Details on 'Close' option and click Close.

Setting which interfaces to monitor

To set which interfaces to monitor:

1. Because you set the Open Policy Details on 'Close' option, the new Policy editor window is displayed.
2. The laptops to which this Policy will be assigned are equipped with two network interfaces (a local area connection and a wireless connection) and we intend to tune the security configuration to take into account which interface is being used. Click Interface Types in the navigation panel and select the Rules can apply to specific interfaces option. Enter names for the interfaces and strings (with optional wildcards) which the Agent will use to match to interface names on the computer: "LAN Connection" and "Local Area Connection **", and "Wireless" and "Wireless Network Connection **" in the first two Interface Type areas. Click Save at the bottom right of the page.

Setting the network engine to Inline Mode

The Agent's network engine can operate Inline or in Tap Mode. When operating Inline, the live packet stream passes through the network engine. Stateful tables are maintained, Firewall Rules are applied and traffic normalization is carried out so that Intrusion Prevention Rules can be applied to payload content. When operating in Tap Mode, the live packet stream is cloned and diverted from the main stream. In Tap Mode, the live packet stream is not modified; all operations are carried out on the cloned stream.

For now, we will configure our Policy to direct the engine to operate Inline.

To set the network engine to Inline Mode:

1. Still in the My New Laptop Policy editor, go to Settings and click on the Network Engine tab.
2. Set the Network Engine Mode to Inline. By default, the setting should already be set to "Inherited (Inline)” since the Base policy default mode is Inline and your new Policy inherits its settings from there.

Assigning Firewall Rules (including some with location awareness) and turn on Stateful Inspection

To assign Firewall Rules:

1. Click Firewall in the navigation panel and in the Firewall area of the General tab, select On from the Firewall State drop-down menu.
2. Now we will assign some Firewall Rules and Firewall Stateful Configuration rules to this Policy. Click Assign/Unassign to display the list of available predefined Firewall Rules. (You can create your own Firewall Rules, but for this exercise we will select from the list of existing ones.) Select the following set of Firewall Rules to allow basic communication:
 - Allow Solicited ICMP replies
 - Allow solicited TCP/UDP replies
 - Domain Client (UDP)
 - ARP
 - Wireless Authentication
 - Windows File Sharing (This is a force-allow rule to permit incoming Windows File Sharing traffic.)

Notice the gray down-arrow next to the Firewall Rule checkboxes. These appear if you have defined multiple interfaces in the previous step. They allow you to specify whether the Firewall Rule will apply to all interfaces on the computer or just to interfaces that you specify. Leave these at the default setting for now. Click the Save button.

We assigned a Firewall Rule that permitted Windows File Sharing. Windows File Sharing is a very useful feature in Windows but it has had some security issues. It would better to restrict this ability to when the laptop is in a secure office environment and forbid it when the laptop is out of the office. We will apply Location Awareness to the Firewall Rule when used with this Policy to implement this policy.

To implement location awareness:

1. In the My New Laptop Policy Policy editor, go to Firewall > General > Assigned Firewall Rules, right-click the "Windows File Sharing Firewall" Rule and select Properties... This will display the Properties window for the Firewall Rule (but the changes we make to it will only apply to the Firewall Rule when it is applied as part this new Policy).

2. In the Properties window, click the Options tab.

3. In the Rule Context area, select New... from the drop-down list. This displays the New Context Properties window. We will create a Rule Context that will only allow the Firewall Rule to be active when the laptop has local access to its Domain Controller. (That is, when the laptop is in the office.)

4. Name the new Rule Context "In the Office". In the Options area, set the Context applies when connection is: option and select Locally Connected to Domain below it. Then click Ok.

5. Click OK in the Windows File Sharing Firewall Rule Properties window.

Now the Windows File Sharing Firewall Rule will only be in effect when the laptop has local access to its Windows Domain Controller. The Windows File Sharing Firewall Rule is now displayed in bold letters in the Policy Details window. This indicates that the Firewall Rule has had its properties edited for this Policy only.

Note: Location Awareness is also available for Intrusion Prevention Rules.

The final step in the Firewall section is to enable Stateful inspection.

To enable Stateful Inspection:

2. For the Global (All Interfaces) setting, select Enable Stateful Inspection.

3. Click Save to finish.

Assigning Intrusion Prevention Rules

To assign Intrusion Prevention rules to the Policy:
1. Still in the **My New Laptop Policy** editor window, click **Intrusion Prevention** in the navigation panel.

2. On the General tab, in the **Intrusion Prevention** area, set the **Intrusion Prevention State** to **On**.

 Note: Intrusion Prevention can be set to either Prevent or Detect mode when the Network Engine is operating Inline (as opposed to Tap Mode). Detect mode is useful if you are trying out a new set of Intrusion Prevention Rules and do not want to risk dropping traffic before you are sure the new rules are working properly. In Detect Mode, traffic that would normally be dropped will generate events but will be allowed to pass. Set Intrusion Prevention to “On”.

 Note: Note the **Recommendations** area. The Deep Security Agent can be instructed to run a Recommendation Scan. (On the Manager’s **Computers** page, right-click a computer and select **Actions > Scan for Recommendations**.) The Recommendation engine will scan the computer for applications and make Intrusion Prevention Rule recommendations based on what it finds. The results of the Recommendation Scan can be viewed in the computer editor window by going to **Intrusion Prevention > Intrusion Prevention Rules > Assign/Unassign...** and selecting **Recommended for Assignment** from the second drop-down filter menu.

3. For now, leave the **Recommendations > Automatically implement Intrusion Prevention Recommendations (when possible)**: option set to **Inherited (No)**.

4. In the Assigned Intrusion Prevention rules area, click **Assign/Unassign...** to open the rule assignment window.

5. Intrusion Prevention Rules are organized by Application Type. Application Types are a useful way of grouping Intrusion Prevention Rules; they have only three properties: communication direction, protocol, and ports. For our new laptop Policy, assign the following Application Types:
 - Mail Client Outlook
 - Mail Client Windows
 - Malware
 - Malware Web
 - Microsoft Office
 - Web Client Common
 - Web Client Internet Explorer
 - Web Client Mozilla Firefox
 - Windows Services RPC Client
 - Windows Services RPC Server

 Note: Make sure the first two drop-down filter menus are showing **All** and that the third sorting filter menu is sorting **By Application Type**. It’s easier to page through the Application Types if you right-click in the Rules list and select **Collapse All**. There are many Application Types (and Intrusion Prevention Rules), so you will have to have to use the pagination controls at the bottom right of the page to find them all, or use the search feature at the top right of the page. Select an Application Type by putting a check next to the Application Type name.

 Note: Some Intrusion Prevention Rules are dependent on others. If you assign a rule that requires another rule to also be assigned (which has not yet been assigned) a popup window will appear letting you assign the required rule.

 Note: When assigning any kinds of Rules to a computer, do not let yourself be tempted to be “extra secure” and assign all available rules to your computer. The Rules are designed for a variety of operating systems, applications, vulnerabilities and may not be applicable to your computer. The traffic filtering engine would just be wasting CPU time looking for patterns that will never appear. Be selective when securing your computers!

6. Click **OK** and then **Save** to assign the Application Types to the Policy.

Assigning Integrity Monitoring Rules

To assign Integrity Monitoring Rules to the Policy:
1. Still in the **My New Laptop Policy** editor window, click **Integrity Monitoring** in the navigation panel.
2. On the **General** tab, set **Integrity Monitoring State** to **On**.
3. Set **Automatically implement Integrity Monitoring Recommendations (when possible):** to **No**.
4. Now click **Assign/Unassign...** in the **Assigned Integrity Monitoring Rules** area.
5. In the Search box at the top right of the page type the word "Windows" and press Enter. All the rules that apply to Microsoft Windows will be displayed in the rules list. Right-click one of the rules and choose "Select All", then right-click again and choose "Assign Rule(s)". This will assign all the rules that came up in the search result to the Policy.

Assigning Log Inspection Rules

To assign Log Inspection Rules to the Policy:

1. Still in the **My New Laptop Policy** editor window, click **Log Inspection** in the navigation panel.
2. Deselect **Inherit** and set Log Inspection to **On**.
3. Set **Automatically implement Log Inspection Rule Recommendations (when possible):** to **No**.
4. Now click **Assign/Unassign...** in the **Assigned Log Inspection Rules** area.
5. Select the "1002792 - Default Rules Configuration" rule (required for all other Log Inspection Rules to work), and the "1002795 - Microsoft Windows Events" rule. (This will log events any time Windows auditing functionality registers an event on the laptop.)
6. Click **Ok** and then **Save** to apply the rules to the Policy.

We are now finished editing the new Policy. You can now close the My New Policy **Details** window.

Edit the Domain Controller(s) IP List

Finally, since the new Policy includes three Firewall Rules that use the "Domain Controller(s)" IP List, we will have to edit that IP List to include the IP addresses of the local Windows Domain Controller.

To edit the Domain Controllers IP list:

1. In the main window of the Deep Security Manager console, go to the **Policies > Common Objects > Lists > IP Lists**.
2. Double-click the **Domain Controller(s)** IP List to display its **Properties** window.
3. Type the IP(s) of your domain controller(s).
4. Click **OK**.

Apply the Policy to a Computer

Now we can apply the Policy to the computer.

To apply the Policy to the computer:

1. Go to the **Computers** page.
2. Right-click the computer to which you will assign the Policy and select **Actions > Assign Policy...**
3. Choose "My New Laptop Policy" from the drop-down list in the **Assign Policy** dialog box.
4. Click **OK**

After clicking **OK**, the Manager will send the Policy to the Agent. The computer **Status** column and the Manager’s status bar will display messages that the Agent is being updated.

Once the Agent on the computer has been updated, the **Status** column will read "Managed (Online)".
Configure SMTP Settings

Configuring the Deep Security Manager’s SMTP settings allows email Alerts to be sent out to Users.

To configure SMTP settings:

1. Go to Administration > System Settings and click the SMTP tab.
2. Type the configuration information and click the Test SMTP Settings to confirm Deep Security Manager can communicate with the mail server.
3. Go to the Alerts tab.
4. In the Alert Event Forwarding (From the Manager) section, type the default email address to which you want notifications sent.
5. Click Save.

Note: Whether a User gets emailed Alerts can be configured on that User’s Properties window (Administration > User Management > Users). Whether a particular Alert generates emailed notifications can be configured on that Alert’s Properties window.

Monitor Activity Using the Deep Security Manager

The Dashboard

After the computer has been assigned a Policy and has been running for a while, you will want to review the activity on that computer. The first place to go to review activity is the Dashboard. The Dashboard has many information panels (“widgets”) that display different types of information pertaining to the state of the Deep Security Manager and the computers that it is managing.

At the top right of the Dashboard page, click Add/Remove Widgets to view the list of widgets available for display.

For now, we will add the following widgets from the Firewall section:

- Firewall Computer Activity (Prevented)
- Firewall Event History [2x1]
- Firewall IP Activity (Prevented)

Select the checkbox beside each of the three widgets, and click OK. The widgets will appear on the dashboard. (It may take a bit of time to generate the data.)

- The Firewall Computer Activity (Prevented) widget displays a list of the most common reasons for packets to be denied (that is, blocked from reaching a computer by the Agent on that computer) along with the number of packets that were denied. Items in this list will be either types of Packet Rejections or Firewall Rules. Each “reason” is a link to the corresponding logs for that denied packet.
- The Firewall Event History [2x1] widget displays a bar graph indicating how many packets were blocked in the last 24 hour period or seven day period (depending on the view selected). Clicking a bar will display the corresponding logs for the period represented by the bar.
- The Firewall IP Activity (Prevented) widget displays a list of the most common source IPs of denied packets. Similar to the Firewall Activity (Prevented) widget, each source IP is a link to the corresponding logs.

Note: Note the trend indicators next to the numeric values in the Firewall Computer Activity (Prevented) and Firewall IP Activity (Prevented) widgets. An upward or downward pointing triangle indicates an overall increase or decrease over the specified time period, and a flat line indicates no significant change.
Logs of Firewall and Intrusion Prevention Events

Now drill-down to the logs corresponding to the top reason for Denied Packets: in the **Firewall Activity (Prevented)** widget, click the first reason for denied packets. This will take you to the **Firewall Events** page.

The **Firewall Events** page will display all Firewall Events where the **Reason** column entry corresponds to the first reason from the **Firewall Activity (Prevented)** widget ("Out of Allowed Policy"). The logs are filtered to display only those events that occurred during the view period of the Dashboard (Last 24 hours or last seven days). Further information about the **Firewall Events** and **Intrusion Prevention Events** page can be found in the help pages for those pages.

Reports

Often, a higher-level view of the log data is desired, where the information is summarized, and presented in a more easily understood format. The **Reports** fill this Role, allowing you to display detailed summaries on computers, Firewall and Intrusion Prevention Event Logs, Events, Alerts, etc. In the **Reports** page, you can select various options for the report to be generated.

We will generate a **Firewall Report**, which displays a record of Firewall Rule and Firewall Stateful Configuration activity over a configurable date range. Select **Firewall Report** from the Report drop-down. Click **Generate** to launch the report in a new window.

By reviewing scheduled reports that have been emailed by the Deep Security Manager to Users, by logging into the system and consulting the dashboard, by performing detailed investigations by drilling-down to specific logs, and by configuring Alerts to notify Users of critical events, you can remain apprised of the health and status of your network.
Enable Multi-Tenancy

To enable Multi-Tenancy:

1. In the Deep Security Manager, go to Administration > System Settings > Advanced and click Enable Multi-Tenant Mode in the Multi-Tenant Options area to display the Multi-Tenant Configuration wizard.
2. Enter the Activation Code and click Next.
3. Choose a license mode to implement:
 - Inherit Licensing from Primary Tenant: Gives all Tenants the same licenses as the Primary Tenant.
 - Per Tenant Licensing: In this mode, Tenants themselves enter a license when they sign in for the first time.
4. Click Next to finish enabling Multi-Tenancy in your Deep Security Manager.

Managing Tenants

Once Multi-Tenant mode is enabled, Tenants can be managed from the Tenants page that now appears in the Administration section.

Creating Tenants

To create a new Tenant:

1. Go to the Administration > Tenants page and click New to display the New Tenant wizard.
2. Enter a Tenant Account Name. The account name can be any name except "Primary" which is reserved for the Primary Tenant.
3. Enter an Email Address. The email address is required in order to have a contact point per Tenant. It is also used for two of the three different user account generation methods in the next step.
5. Select a Time Zone. All Tenant-related Events will be shown to the Tenant Users in the time zone of the Tenant account.
6. If your Deep Security installation is using more than one database, you will have the option to let Deep Security automatically select a database server on which to store the new Tenant account ("Automatic – No Preference") or you can specify a particular server.

Note: Database servers that are no longer accepting new Tenants will not be included in the drop-down list. The options will not appear if you only have a single database.

When you have made your selection, click Next to continue.
7. Enter a Username for the first User of the new Tenant account.

8. Select one of the three password options:
 - **No Email**: The Tenancy's first User's username and password are defined here and no emails are sent.
 - **Email Confirmation Link**: You set the Tenancy's first User's password. However, the account is not active until the User clicks a confirmation link he will receive by email.
 - **Email Generated Password**: This allows the Tenant creator to generate a Tenant without specifying the password. This is most applicable when manually creating accounts for users where the creator does not need access.

 Note: All three options are available via the REST API. The confirmation option provides a suitable method for developing public registration. A CAPTCHA is recommended to ensure that the Tenant creator is a human not an automated "bot". The email confirmation ensures that the email provided belongs to the user before they can access the account.

9. Click Next to finish with the wizard and create the Tenant. (It may take from 30 seconds to four minutes to create the new Tenant database and populate it with data and sample Policies.)

Examples of messages sent to Tenants

Email Confirmation Link: Account Confirmation Request

Welcome to Deep Security! To begin using your account, click the following confirmation URL. You can then access the console using your chosen password.

Account Name: AnyCo
Username: admin

Click the following URL to activate your account:
https://managername:4119/SignIn.screen?confirmation=1A16EC7A-D84F-D451-05F6-706095B6F646&tenantAccount=AnyCo&username=admin

Email Generated Password: Account and Username Notification

Welcome to Deep Security! A new account has been created for you. Your password will be generated and provided in a separate email.

Account Name: AnyCo
Username: admin

You can access the Deep Security management console using the following URL:
https://managername:4119/SignIn.screen?tenantAccount=AnyCo&username=admin

Email Generated Password: Password Notification

This is the automatically generated password for your Deep Security account. Your Account Name, Username, and a link to access the Deep Security management console will follow in a separate email.

Password: z3IgRUQ0jaFi

Managing Tenants

The Tenants page (Administration > Tenants) displays the list of all Tenants. A Tenant can be in any of the following States:
- **Created:** In the progress of being created but not yet active
- **Confirmation Required:** Created, but the activation link in the confirmation email sent to the Tenant User has not yet been clicked. (You can manually override this state.)
- **Active:** Fully online and managed
- **Suspended:** No longer accepting sign ins.
- **Pending Deletion:** Tenants can be deleted, however the process is not immediate. The Tenant can be in the pending deletion state for up to seven days before the database is removed.
- **Database Upgrade Failure:** For Tenants that failed the upgrade path. The Database Upgrade button can be used to resolve this situation

Tenant Properties

Double-click on a Tenant to view the Tenant’s **Properties** window.

General

The Locale, Time zone and State of the Tenant can be altered. Be aware that changing the time zone and locale does not affect existing Tenant Users. It will only affect new Users in that Tenancy and Events and other parts of the UI that are not User-specific.

The Database Name indicates the name of the database used by this Tenancy. The server the database is running on can be accessed via the hyperlink.
The **Modules** tab provides options for protection module visibility. By default all unlicensed modules are hidden. You can change this by deselecting "Always Hide Unlicensed Modules." Alternatively, selected modules can be shown on a per-Tenant basis.

If you select "Inherit License from Primary Tenant," all features that you as the Primary Tenant are licensed for will be visible to all Tenants. The selected visibility can be used to tune which modules are visible for which Tenants.

If using the "Per Tenant" licensing by default only the licensed modules for each Tenant will be visible.

If you are evaluating Deep Security in a test environment and want to see what a full Multi-Tenancy installation looks like, you can enable Multi-Tenancy Demo Mode.

When in Demo Mode, the Manager populates its database with simulated Tenants, computers, Events, Alerts, and other data. Initially, seven days worth of data is generated but new data is generated on an ongoing basis to keep the Manager’s Dashboard, Reports and Events pages populated with data.

Demo Mode is not intended to be used in a production environment!

Statistics

The statistics tab shows information for the current Tenant including database size, jobs processed, logins, security events and system events. The small graphs show the last 24 hours of activity.
Agent Activation

The Agent Activation tab displays a command-line instruction that can be run from the Agent install directory of this Tenant’s computers which will activate the agent on the computer so that the Tenant can assign Policies and perform other configuration procedures from the Deep Security Manager.

Primary Contact

Relay-enabled Agents

Each Deep Security Manager must have access to at least one Relay-enabled Agent, and this includes the Tenants in a Multi-Tenancy Deep Security installation. By default, the Relay-enabled Agents in the primary Tenant’s "Default Relay Group" are available to the other Tenants. The setting is found in the primary Tenant’s Deep Security Manager in the Administration > System Settings > Tenants > Multi-Tenant Options area. If this option is disabled, Tenants will have to install and manage their own Relay-enabled Agent.

The Tenant Account User’s View of Deep Security

The Tenant "User experience"

When Multi-tenancy is enabled, the sign-in page has an additional Account Name text field:
Tenants are required to enter their account name in addition to their username and password. The account name allows Tenants to have overlapping usernames. (For example, if multiple Tenants synchronize with the same Active Directory server).

Note: When you (as the Primary Tenant) log in, leave the Account name blank or use "Primary".

When Tenants log in, they have a very similar environment to a fresh install of Deep Security Manager. Some features in the UI are not available to Tenant Users. The following areas are hidden for Tenants:

- Manager Nodes Widget
- Multi-Tenant Widgets
- Administration > System Information
- Administration > Licenses (If Inherit option selected)
- Administration > Manager Nodes
- Administration > Tenants
- Administration > System Settings:
 - Tenant Tab
 - Security Tab > Sign In Message
 - Updates Tab > Setting for Allowing Tenants to use Relay-enabled Agents from the Primary Tenant
 - Advanced Tab > Load Balancers
 - Advanced Tab > Pluggable

- Some of the help content not applicable to Tenants
- Some reports not applicable to Tenants
- Other features based on the Multi-Tenant settings you choose on the Administration > System Settings > Tenants tab
- Some Alert Types will also be hidden from Tenants:
 - Heartbeat Server Failed
 - Low Disk Space
 - Manager Offline
 - Manager Time Out Of Sync
 - Newer Version of Deep Security Manager available
 - Number of Computers Exceeds Database Limit
 - And when inherited licensing is enabled any of the license-related alerts

It is also important to note that Tenants cannot see any of the Multi-Tenant features of the primary Tenant or any data from any other Tenant. In addition, certain APIs are restricted since they are only usable with Primary Tenant rights (such as creating other Tenants).

For more information on what is and is not available to Tenant Users, see the online help for the Administration > System Settings > Tenants page in the Deep Security Manager.

All Tenants have the ability to use Role-Based Access Control with multiple user accounts to further sub-divide access. Additionally, they can use Active Directory integration for users to delegate the authentication to the domain. The Tenant Account Name is still required for any Tenant authentications.

Agent-Initiated Activation

Agent-initiated activation is enabled by default for all Tenants.

Note: Unlike Agent-initiated activation for the Primary Tenant, a password and Tenant ID are required to invoke the activation for Tenant Users.
Tenants can see the arguments required for agent-initiated activation by going to Administration > Updates > Software > Local Software, selecting an Agent install package, and selecting Generate Deployment Scripts from the toolbar:

This will display the deployment script generator. If Tenants select their platform from the Platform menu and the select Activate Agent Automatically, the generated deployment script will include the dsa_control with the required parameters.

As an example, the script for Agent-Initiated Activation on a Windows machine might look as follows:

dsa_control -a dsm://manageraddress:4120/"tenantID:7155A-D130-29F4-5FE1-8AFD102"
"tenantPassword:98785384-3966-B9-1418-3E7D0D5"

Tenant Diagnostics

Tenants are not able to access manager diagnostic packages due to the sensitivity of the data contained within the packages. Tenants can still generate agent diagnostics by opening the Computer Editor and choosing Agent Diagnostics on the Actions tab of the Overview page.

Usage Monitoring

Deep Security Manager records data about Tenant usage. This information is displayed in the Tenant Protection Activity widget on the Dashboard, the Tenant Properties window’s Statistics tab, and the Chargeback report. This information can also be accessed through the Status Monitoring REST API which can enabled or disabled by going to Administration > System Settings > Advanced > Status Monitoring API.

This chargeback (or viewback) information can be customized to determine what attributes are included in the record. This configuration is designed to accommodate various charging models that may be required in service provider environments. For enterprises this may be useful to determine the usage by each business unit.
Multi-Tenant Dashboard/Reporting

When Multi-Tenancy is enabled, Primary Tenant Users have access to additional Dashboard widgets for monitoring Tenant activity:

Some examples of Tenant-related widgets:

The same information is available on the Administration > Tenants page (some in optional columns) and on the Statistics tab of a Tenant’s Properties window.

This information provides the ability to monitor the usage of the overall system and look for indicators of abnormal activity. For instance if a single Tenant experiences a spike in Security Event Activity they may be under attack.

More information is available in the Tenant Report (in the Events & Reports section). This report details protection hours, the current database sizes, and the number of computers (activated and non-activated) for each Tenant.
Multi-Tenancy (Advanced)

APIs

Deep Security Manager includes a number of REST APIs for:

1. Enabling Multi-Tenancy
2. Managing Tenants
3. Accessing Monitoring Data
4. Accessing Chargeback (Protection Activity) Data
5. Managing Secondary Database Servers

In addition the legacy SOAP API includes a new authenticate method that accepts the Tenant Account Name as a third parameter.

For additional information on the REST APIs please see the REST API documentation.

Upgrade

Upgrade is unchanged from previous versions. The installer is executed and detects and existing installation. It will offer an upgrade option. If upgrade is selected the installer first informs other nodes to shutdown and then begins the process of upgrading.

The primary Tenant is upgraded first, followed by the Tenants in parallel (five at a time). Once the installer finishes, the same installer package should be executed on the rest of the Manager nodes.

In the event of a problem during the upgrade of a Tenant, the Tenant's State (on the Administration > Tenants page) will appear as Database Upgrade Required (offline). The Tenants interface can be used to force the upgrade process. If forcing the upgrade does not work please contact support.

Supporting Tenants

In certain cases it may be required a Primary Tenant to gain access to a Tenant's user interface. The Tenants list and Tenant properties pages provide an option to "Authenticate As" a given Tenant, granting them immediate read-only access.

Users are logged in as a special account on the Tenant using the prefix "support_". For example if Primary Tenant user jdoe logs on as a Tenant an account is created called "support_jdoe" with the "Full Access" role. The user is deleted when the support user times out or signs out of the account.

The Tenant can see this user account created, sign in, sign out and deleted along with any other actions in the System events.

Users in the primary Tenant also have additional diagnostic tools available to them:

1. The Administration > System Information page contains additional information about Tenant memory usage and the state of threads. This may be used directly or helpful to Trend Micro support.
2. The server0.log on the disk of the Manager nodes contains additional information on the name of the Tenant (and the user if applicable) that caused the log. This can be helpful in determining the source of issues.

In some cases Tenants will require custom adjustments not available in the GUI. This usually comes at the request of Trend Micro support. The command line utility to alter these settings accepts the argument:

-Tenantname "account name"

to direct the setting change or other command line action at a specific Tenant. If omitted the action is on the primary Tenant.
Load Balancers

By default, a multi-node Manager provides the address of all Manager nodes to all agents and virtual appliances. The agents and virtual appliances use the list of addresses to randomly select a node to contact and continue to try the rest of the list until no nodes can be reached (or are all busy). If it can’t reach any nodes it waits until the next heartbeat and tries again. This works very well in environments where the number of Manager nodes is fixed and avoids having to configure a load balancer in front of the Manager nodes for availability and scalability.

In Multi-Tenant environments it may be desirable to add and remove Manager nodes on demand (perhaps using auto-scaling features of cloud environments). In this case adding and removing Managers would cause an update of every agent and virtual appliance in the environment. To avoid this update the load balancer setting can be used.

Load balancers can be configured to use different ports for the different types of traffic, or if the load balancer supports port re-direction it can be used to expose all of the required protocols over port 443 using three load balancers:

In all cases the load balancer should be configured as TCP load balancer (not SSL Terminating) with sticky-sessions. This ensures a given communication exchange will occur directly between Agent/Virtual Appliance and the Manager from start to finish. The next connection may balance to a different node.

Note: Each Tenant database has an overhead of around 100MB of disk space (due to the initial rules, policies and events that populate the system).

Note: Tenant creation takes between 30 seconds and four minutes due to the creation of the schema and the population of the initial data. This ensures each new Tenant has the most up to date configuration and removes the burden of managing database templates (Especially between multiple database servers).
Installing a Database for Deep Security (Multi-Tenancy Requirements)

Configuring Database User Accounts

SQL Server and Oracle Database use different terms for database concepts described below.

<table>
<thead>
<tr>
<th>SQL Server</th>
<th>Oracle Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process where multiple Tenants execute</td>
<td>Database Server</td>
</tr>
<tr>
<td>One Tenant's set of data</td>
<td>Database</td>
</tr>
</tbody>
</table>

The following section uses the SQL Server terms for both SQL Server and Oracle Database.

SQL Server

Note: When using Multi-Tenancy, keeping the main database name short will make it easier to read the database names of your Tenants. (ie. If the main database is "MAINDB", the first Tenant's database name will be "MAINDB_1", the second Tenant's database name will be "MAINDB_2", and so on.)

Since Multi-Tenancy requires the ability for the software to create databases, the dbcreator role is required on SQL Server. For example:

For the user role of the primary Tenant it is important to assign DB owner to the main database:
If desired, rights may be further refined to include only the ability to modify the schema and access the data.

With the `dbcreator` role the databases created by the account will automatically be owned by the same user. For example here are the properties for the user after the first Tenant has been created:
To create the first account on a secondary database server, only the dbcreator server role is required. No user mapping has to be defined.

Oracle Database

Multi-Tenancy in Oracle Database is similar to SQL Server but with a few important differences. Where SQL Server has a single user account per database server, Oracle Database uses one user account per Tenant. The user that Deep Security was installed with maps to the primary Tenant. That user can be granted permission to allocate additional users and tablespaces.

Note: Although Oracle allows special characters in database object names if they are surrounded by quotes, Deep Security does not support special characters in database object names. This page on Oracle's web site describes the allowed characters in non-quoted names: http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements008.htm#SQLRF00223

Note: Deep Security derives Tenant database names from the main (Primary Tenant) Oracle database. For example, if the main database is "MAINDB", the first Tenant's database name will be "MAINDB_1", the second Tenant's database name will be "MAINDB_2", and so on. (Keeping the main database name short will make it easier to read the database names of your Tenants.)

If Multi-Tenancy is enabled, the following Oracle Database permissions must be assigned:

Tenants are created as users with long random passwords and given the following rights:
For secondary Oracle Database servers, the first user account (a bootstrap user account) must be created. This user will have an essentially empty tablespace. The configuration is identical to the primary user account.
Uninstalling Deep Security

When you uninstall an activated Agent or a Relay-enabled Agent from a managed computer, the Deep Security Manager does not know that the software has been uninstalled. The computer will remain listed in the Computers list and its status will be listed as "Managed (Offline)" or something equivalent depending on the context. To avoid this, either deactivate the Agent or Relay-enabled Agent from the Manager before uninstallation, or simply delete the computer from the list.

To uninstall the Relay-enabled Agent

Remember that before uninstalling a Relay-enabled Agent on Windows, you will need to remove the Agent Self Protection. You can do this from the Computer Editor in the Deep Security Manager. Go to Settings > General. In Agent Self Protection, either un-check the setting Prevent local end-users from uninstalling, stopping, or otherwise modifying the Agent or enter a password to be able to override this setting locally.

To uninstall the Relay-enabled Agent (Windows)

From the Windows Control Panel, select Add/Remove Programs. Double-click Trend Micro Deep Security Agent from the list, and click Change/Remove.

To uninstall from the command line:

msiexec /x <package name including extension>

(For a silent uninstall, add "/quiet")

To uninstall the Relay-enabled Agent (Linux)

To completely remove the Relay-enabled Agent and any configuration files it created, use "rpm -e":

```
# rpm -ev ds_agent
Stopping ds_agent: [ OK ]
Unloading dsa_filter module [ OK ]
```

If iptables was enabled prior to the installation of the Relay-enabled Agent, it will be re-enabled when the Relay-enabled Agent is uninstalled.

Note: Remember to remove the Relay-enabled Agent from Deep Security Manager’s list of managed Computers, and to remove it from the Relay Group (see Basic Deep Security Configuration).

To uninstall the Deep Security Agent

Remember that before uninstalling a Deep Security Agent on Windows, you will need to remove the Agent Self Protection. You can do this from the Computer Editor in the Deep Security Manager. Go to Settings > General. In Agent Self Protection, either un-check the setting Prevent local end-users from uninstalling, stopping, or otherwise modifying the Agent or select a password for local override.
To uninstall the Deep Security Agent (Windows)

From the Windows Control Panel, select Add/Remove Programs. Double-click Trend Micro Deep Security Agent from the list, and click Change/Remove.

To uninstall from the command line:

msiexec /x <package name including extension>

(For a silent uninstall, add "/quiet")

To uninstall the Deep Security Agent (Linux)

To completely remove the Agent and any configuration files it created, use "rpm -e":

```
# rpm -ev ds_agent
Stopping ds_agent: [ OK ]
Unloading dsa_filter module [ OK ]
```

If iptables was enabled prior to the installation of the Deep Security Agent, it will be re-enabled when the Agent is uninstalled.

For Ubuntu:

```
$ sudo dpkg -r ds-agent
Removing ds-agent...
Stopping ds_agent: .[OK]
```

To uninstall the Deep Security Agent (Solaris 9 or 10)

Enter the following:

```
pkgrm ds-agent
```

(Note that uninstall may require a reboot.)

To uninstall the Deep Security Agent (Solaris 11)

Enter the following:

```
pkg uninstall ds-agent
```

(Note that uninstall may require a reboot.)

To uninstall the Deep Security Agent (AIX)

Enter the following:

```
installp -u ds_agent
```

To uninstall the Deep Security Agent (HP-UX)

Enter the following:

```
swremove ds_agent
```
To uninstall the Deep Security Notifier

To uninstall the Deep Security Notifier (Windows)

From the Windows Control Panel, select Add/Remove Programs. Double-click Trend Micro Deep Security Notifier from the list, and click Remove.

To uninstall from the command line:

msiexec /x <package name including extension>

(For a silent uninstall, add "/quiet")

To uninstall the Deep Security Manager

To uninstall the Deep Security Manager (Windows)

From the Windows Start Menu, select Trend Micro > Trend Micro Deep Security Manager Uninstaller, and follow the wizard steps to complete the uninstallation.

To initiate the same Windows GUI uninstall procedure from the command line, go to the installation folder and enter:

<installation folder>\Uninstall.exe

For a silent uninstall from the command line (without the Windows GUI prompts), add "-q":

<installation folder>\Uninstall.exe -q

Note: During a silent command line uninstallation, the uninstaller always saves the configuration files so that future installations can offer the repair / upgrade option.

To uninstall the Deep Security Manager (Linux)

To uninstall from the command line, go to the installation folder and enter:

Uninstall

(For a silent uninstall, add "-q")

Note: During a command line uninstallation, the uninstaller always saves the configuration files so that future installations can offer the repair / upgrade option.

If you selected "no" to keeping the configuration files during the uninstallation and want to reinstall the DSM, you should perform a manual clean-up before re-installing. To remove the DSM installation directory enter the command:

```
rm -rf <installation location>
```

(The default installation location is "/opt/dsm").