# Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>1</td>
<td>ASPECTS OF MULTIVARIATE ANALYSIS</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Applications of Multivariate Techniques</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>The Organization of Data</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Arrays, 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descriptive Statistics, 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graphical Techniques, 11</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Data Displays and Pictorial Representations</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Linking Multiple Two-Dimensional Scatter Plots, 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graphs of Growth Curves, 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stars, 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chernoff Faces, 27</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Distance</td>
<td>30</td>
</tr>
<tr>
<td>1.6</td>
<td>Final Comments</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>MATRIX ALGEBRA AND RANDOM VECTORS</td>
<td>49</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>2.2</td>
<td>Some Basics of Matrix and Vector Algebra</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Vectors, 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrices, 54</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Positive Definite Matrices</td>
<td>60</td>
</tr>
<tr>
<td>2.4</td>
<td>A Square-Root Matrix</td>
<td>65</td>
</tr>
<tr>
<td>2.5</td>
<td>Random Vectors and Matrices</td>
<td>66</td>
</tr>
<tr>
<td>2.6</td>
<td>Mean Vectors and Covariance Matrices</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Partitioning the Covariance Matrix, 73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Mean Vector and Covariance Matrix for Linear Combinations of Random Variables, 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partitioning the Sample Mean Vector and Covariance Matrix, 77</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Matrix Inequalities and Maximization</td>
<td>78</td>
</tr>
</tbody>
</table>
3 SAMPLE GEOMETRY AND RANDOM SAMPLING 111

3.1 Introduction 111
3.2 The Geometry of the Sample 111
3.3 Random Samples and the Expected Values of the Sample Mean and Covariance Matrix 119
3.4 Generalized Variance 123
  Situations in which the Generalized Sample Variance Is Zero, 129
  Generalized Variance Determined by $|R|$ and Its Geometrical Interpretation, 134
  Another Generalization of Variance, 137
3.5 Sample Mean, Covariance, and Correlation As Matrix Operations 137
3.6 Sample Values of Linear Combinations of Variables 140
Exercises 144
References 148

4 THE MULTIVARIATE NORMAL DISTRIBUTION 149

4.1 Introduction 149
4.2 The Multivariate Normal Density and Its Properties 149
  Additional Properties of the Multivariate Normal Distribution, 156
4.3 Sampling from a Multivariate Normal Distribution and Maximum Likelihood Estimation 168
  The Multivariate Normal Likelihood, 168
  Maximum Likelihood Estimation of $\mu$ and $\Sigma$, 170
  Sufficient Statistics, 173
4.4 The Sampling Distribution of $\overline{X}$ and $S$ 173
  Properties of the Wishart Distribution, 174
4.5 Large-Sample Behavior of $\overline{X}$ and $S$ 175
4.6 Assessing the Assumption of Normality 177
  Evaluating the Normality of the Univariate Marginal Distributions, 177
  Evaluating Bivariate Normality, 182
4.7 Detecting Outliers and Cleaning Data 187
  Steps for Detecting Outliers, 189
4.8 Transformations to Near Normality 192
  Transforming Multivariate Observations, 195
Exercises 200
References 208
5 **INFERENCES ABOUT A MEAN VECTOR** 210

5.1 Introduction 210
5.2 The Plausibility of \( \mu_0 \) as a Value for a Normal Population Mean 210
5.3 Hotelling's \( T^2 \) and Likelihood Ratio Tests 216
   General Likelihood Ratio Method, 219
5.4 Confidence Regions and Simultaneous Comparisons of Component Means 220
   Simultaneous Confidence Statements, 223
   A Comparison of Simultaneous Confidence Intervals with One-at-a-Time Intervals, 229
   The Bonferroni Method of Multiple Comparisons, 232
5.5 Large Sample Inferences about a Population Mean Vector 234
5.6 Multivariate Quality Control Charts 239
   Charts for Monitoring a Sample of Individual Multivariate Observations for Stability, 241
   Control Regions for Future Individual Observations, 247
   Control Ellipse for Future Observations, 248
   \( T^2 \)-Chart for Future Observations, 248
   Control Charts Based on Subsample Means, 249
   Control Regions for Future Subsample Observations, 251
5.7 Inferences about Mean Vectors when Some Observations Are Missing 251
5.8 Difficulties Due to Time Dependence in Multivariate Observations 256
   Supplement 5A: Simultaneous Confidence Intervals and Ellipses as Shadows of the \( p \)-Dimensional Ellipsoids 258

Exercises 261
References 272

6 **COMPARISONS OF SEVERAL MULTIVARIATE MEANS** 273

6.1 Introduction 273
6.2 Paired Comparisons and a Repeated Measures Design 273
   Paired Comparisons, 273
   A Repeated Measures Design for Comparing Treatments, 279
6.3 Comparing Mean Vectors from Two Populations 284
   Assumptions Concerning the Structure of the Data, 284
   Further Assumptions When \( n_1 \) and \( n_2 \) Are Small, 285
   Simultaneous Confidence Intervals, 288
   The Two-Sample Situation When \( \Sigma_1 \neq \Sigma_2 \), 291
   An Approximation to the Distribution of \( T^2 \) for Normal Populations When Sample Sizes Are Not Large, 294
6.4 Comparing Several Multivariate Population Means (One-Way Manova) 296
   Assumptions about the Structure of the Data for One-Way MANOVA, 296
7 MULTIVARIATE LINEAR REGRESSION MODELS

7.1 Introduction 360
7.2 The Classical Linear Regression Model 360
7.3 Least Squares Estimation 364
   Sum-of-Squares Decomposition, 366
   Geometry of Least Squares, 367
   Sampling Properties of Classical Least Squares Estimators, 369
7.4 Inferences About the Regression Model 370
   Inferences Concerning the Regression Parameters, 370
   Likelihood Ratio Tests for the Regression Parameters, 374
7.5 Inferences from the Estimated Regression Function 378
   Estimating the Regression Function at \( z_0 \), 378
   Forecasting a New Observation at \( z_0 \), 379
7.6 Model Checking and Other Aspects of Regression 381
   Does the Model Fit?, 381
   Leverage and Influence, 384
   Additional Problems in Linear Regression, 384
7.7 Multivariate Multiple Regression 387
   Likelihood Ratio Tests for Regression Parameters, 395
   Other Multivariate Test Statistics, 398
   Predictions from Multivariate Multiple Regressions, 399
7.8 The Concept of Linear Regression 401
   Prediction of Several Variables, 406
   Partial Correlation Coefficient, 409
7.9 Comparing the Two Formulations of the Regression Model 410
   Mean Corrected Form of the Regression Model, 410
   Relating the Formulations, 412
7.10 Multiple Regression Models with Time Dependent Errors 413
    Supplement 7A: The Distribution of the Likelihood Ratio
    for the Multivariate Multiple Regression Model 418

Exercises 420
References 428
8 PRINCIPAL COMPONENTS

8.1 Introduction 430
8.2 Population Principal Components 430

Principal Components Obtained from Standardized Variables, 436
Principal Components for Covariance Matrices with Special Structures, 439

8.3 Summarizing Sample Variation by Principal Components 441
The Number of Principal Components, 444
Interpretation of the Sample Principal Components, 448
Standardizing the Sample Principal Components, 449

8.4 Graphing the Principal Components 454

8.5 Large Sample Inferences 456
Large Sample Properties of \( \hat{\lambda}_i \) and \( \hat{\theta}_i \), 456
Testing for the Equal Correlation Structure, 457

8.6 Monitoring Quality with Principal Components 459
Checking a Given Set of Measurements for Stability, 459
Controlling Future Values, 463

Supplement 8A: The Geometry of the Sample Principal Component Approximation 466
The \( p \)-Dimensional Geometrical Interpretation, 468
The \( n \)-Dimensional Geometrical Interpretation, 469

Exercises 470
References 480

9 FACTOR ANALYSIS AND INFERENCE FOR STRUCTURED COVARIANCE MATRICES

9.1 Introduction 481

9.2 The Orthogonal Factor Model 482

9.3 Methods of Estimation 488
The Principal Component (and Principal Factor) Method, 488
A Modified Approach—the Principal Factor Solution, 494
The Maximum Likelihood Method, 495
A Large Sample Test for the Number of Common Factors, 501

9.4 Factor Rotation 504
Oblique Rotations, 512

9.5 Factor Scores 513
The Weighted Least Squares Method, 514
The Regression Method, 516

9.6 Perspectives and a Strategy for Factor Analysis 519

Supplement 9A: Some Computational Details for Maximum Likelihood Estimation 527
Recommended Computational Scheme, 528
Maximum Likelihood Estimators of \( \rho = L_z L_z' + \psi_z \) 529

Exercises 530
References 538
10 CANONICAL CORRELATION ANALYSIS

10.1 Introduction 539
10.2 Canonical Variates and Canonical Correlations 539
10.3 Interpreting the Population Canonical Variables 545
   Identifying the Canonical Variables, 545
   Canonical Correlations as Generalizations
   of Other Correlation Coefficients, 547
   The First r Canonical Variables as a Summary of Variability, 548
   A Geometrical Interpretation of the Population Canonical
   Correlation Analysis 549
10.4 The Sample Canonical Variates and Sample
   Canonical Correlations 550
10.5 Additional Sample Descriptive Measures 558
   Matrices of Errors of Approximations, 558
   Proportions of Explained Sample Variance, 561
10.6 Large Sample Inferences 563
   Exercises 567
   References 574

11 DISCRIMINATION AND CLASSIFICATION

11.1 Introduction 575
11.2 Separation and Classification for Two Populations 576
11.3 Classification with Two Multivariate Normal Populations 584
   Classification of Normal Populations When \( \Sigma_1 = \Sigma_2 = \Sigma \), 584
   Scaling, 589
   Fisher's Approach to Classification with Two Populations, 590
   Is Classification a Good Idea?, 592
   Classification of Normal Populations When \( \Sigma_1 \neq \Sigma_2 \), 593
11.4 Evaluating Classification Functions 596
11.5 Classification with Several Populations 606
   The Minimum Expected Cost of Misclassification Method, 606
   Classification with Normal Populations, 609
11.6 Fisher's Method for Discriminating
   among Several Populations 621
   Using Fisher's Discriminants to Classify Objects, 628
11.7 Logistic Regression and Classification 634
   Introduction, 634
   The Logit Model, 634
   Logistic Regression Analysis, 636
   Classification, 638
   Logistic Regression with Binomial Responses, 640
11.8 Final Comments 644
   Including Qualitative Variables, 644
   Classification Trees, 644
   Neural Networks, 647
   Selection of Variables, 648
12 CLUSTERING, DISTANCE METHODS, AND ORDINATION 671

12.1 Introduction 671

12.2 Similarity Measures 673
Distances and Similarity Coefficients for Pairs of Items, 673
Similarities and Association Measures
for Pairs of Variables, 677
Concluding Comments on Similarity, 678

12.3 Hierarchical Clustering Methods 680
Single Linkage, 682
Complete Linkage, 685
Average Linkage, 690
Ward's Hierarchical Clustering Method, 692
Final Comments—Hierarchical Procedures, 695

12.4 Nonhierarchical Clustering Methods 696
K-means Method, 696
Final Comments—Nonhierarchical Procedures, 701

12.5 Clustering Based on Statistical Models 703

12.6 Multidimensional Scaling 706
The Basic Algorithm, 708

12.7 Correspondence Analysis 716
Algebraic Development of Correspondence Analysis, 718
Inertia, 725
Interpretation in Two Dimensions, 726
Final Comments, 726

12.8 Biplots for Viewing Sampling Units and Variables 726
Constructing Biplots, 727

12.9 Procrustes Analysis: A Method
for Comparing Configurations 732
Constructing the Procrustes Measure of Agreement, 733
Supplement 12A: Data Mining 740
Introduction, 740
The Data Mining Process, 741
Model Assessment, 742
Exercises 747
References 755

APPENDIX 757

DATA INDEX 764

SUBJECT INDEX 767