DHEA: The Basic Facts Prepared by Andrew Shao, Ph.D., Vice President, Scientific & Regulatory Affairs

Abstract
Dehydroepiandrosterone (DHEA) is a naturally occurring steroid hormone produced by the adrenal glands, whose levels decline rapidly with age. Under normal physiologic conditions, DHEA serves as an indirect precursor to estrogen and testosterone. Contrary to many media reports, DHEA is not an anabolic steroid, and its use is not associated with known side effects resulting from anabolic steroid abuse. Research from randomized, controlled trials has consistently shown that DHEA supplementation does not increase testosterone levels, enhance muscle mass or muscle strength in young, healthy adults. In contrast, a large body of continuously emerging research suggests that DHEA supplementation can restore levels that decline in the body with age, and provide other health benefits in older individuals or those with endocrine deficiencies.

DHEA is a steroid hormone
A steroid is defined as “any of numerous natural or synthetic compounds containing a 17-carbon 4-ring system and including the sterols and various hormones and glycosides” (1). Cholesterol is an example of a steroid, and is the basic structure from which all steroids are produced in the body. A steroid hormone is defined as “any of numerous hormones (as estrogen, testosterone, cortisol, and aldosterone) having the characteristic ring structure of steroids and formed in the body from cholesterol” (1). The active form of vitamin D that circulates in the body, known as calcitriol, is an example of a steroid hormone. DHEA (Figure 1), falls under both of these definitions, and is the most abundant steroid hormone precursor made by the body (2). It is produced by the body’s adrenal glands from cholesterol and levels peak in early adulthood and decline substantially with aging in both men and women (2). DHEA is present in the body in two pools: “free” DHEA and the major circulating form, “sulfated” DHEA, or DHEAS. Because of its distribution in two large pools, it has been described as a “buffer” hormone, serving to prevent excesses or deficits of other important steroid hormones (3). DHEA also affects multiple physiologic systems in the body, including the central nervous system, the vascular system, the immune system and glucose metabolism (4).

Figure 1. Chemical structure of cholesterol (A) and DHEA (B).
DHEA is not an anabolic steroid

DHEA is an adrenal steroid that serves as an indirect building block for other hormones and exerts very weak androgenic (testosterone-producing) and estrogenic (estrogen-producing) activity (Figure 2), depending on the body’s need and hormone balance (5). Unlike androstenedione (“andro”), a direct precursor to testosterone, the fate of DHEA is subject to multiple biochemical pathways, and is not committed solely to testosterone production. This supports the assertion that DHEA serves as an effective buffer against excesses or deficits of estrogens and androgens (3, 6). Under normal physiologic conditions, such as those in young healthy adults, the conversion of DHEA to testosterone is tightly controlled by the body (5). Consistent with this point is the well-established finding that administration of DHEA to young, healthy adults does not influence testosterone levels (7-12).

An anabolic steroid is defined as “any of a group of usually synthetic hormones that increase constructive metabolism and are sometimes abused by athletes in training to increase temporarily the size of their muscles” (1). In contrast to exogenous testosterone, and its various synthetic derivatives, and contrary to countless media reports, DHEA is not an anabolic steroid hormone (13). Controlled clinical trials indicate that its use by young adults does not result in performance related gains (8-11, 14, 15), and is not associated with the myriad of side effects that accompany anabolic steroid abuse. Cardiovascular conditions such as hypertension, atherosclerosis, and blood clotting, liver conditions such as jaundice and hepatic carcinoma, tendon damage, reduced fertility and gynecomastia (in males), and also adverse psychiatric and behavioral effects are all known to result from anabolic steroid abuse (16, 17). DHEA does not exert such effects. Moreover, according to surveys of weightlifters and other athletes conducted by researchers at Harvard University, while andro and other hormone precursors are or have been used by athletes for performance enhancement, DHEA is rarely used for such purposes (18). Therefore, the proposition that DHEA is in any way comparable to illegal anabolic steroids is invalid and unfounded.

Figure 2. Metabolism of DHEA.
DHEA supplementation may benefit older people
DHEA levels start relatively low at birth, and gradually increase until puberty, when levels increase markedly, reaching a peak around 20 to 24 years of age. From there, serum and tissue DHEA levels decline at a rate of 2 to 3% per year, with a steep decline occurring around middle age. By age 75, humans exhibit 10 to 20% of young adult DHEA levels (4, 19, 20) (Figure 3). A number of review articles have summarized the available observational data showing that in older individuals serum DHEA levels are inversely related to incidence and prevalence of disease (21). Low levels of DHEA are associated with aging and cardiovascular disease in men (22), and an increased risk of premenopausal breast and ovarian cancer in women (23), impaired cognitive function (24), and compromised immune function (6). Results from controlled intervention studies indicate that DHEA supplementation may benefit older individuals. More than 50 published human studies show that supplementation in elderly and those with endocrine deficiencies can safely restore DHEA levels to those typical of healthy younger adults. Areas of emerging research showing a potential benefit from DHEA supplementation are shown in Table 1.

![Figure 3. Effect of age on serum concentration of DHEA. Adopted from Hinson 1999 (19).](image-url)
DHEA: The Basic Facts

Table 1. Potential benefits from DHEA supplementation

<table>
<thead>
<tr>
<th>Function</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supporting immune function</td>
<td>(25, 26)</td>
</tr>
<tr>
<td>Maintaining cognitive function, elevating mood</td>
<td>(27-35)</td>
</tr>
<tr>
<td>and sense of well-being</td>
<td></td>
</tr>
<tr>
<td>Improving sleep patterns</td>
<td>(36)</td>
</tr>
<tr>
<td>Peri- and postmenopausal support</td>
<td>(37, 38)</td>
</tr>
<tr>
<td>Reducing fat mass and maintaining lean body mass</td>
<td>(39-42)</td>
</tr>
<tr>
<td>Maintaining bone health</td>
<td>(41, 43-47)</td>
</tr>
<tr>
<td>Maintaining healthy lipid levels and overall</td>
<td>(48-51)</td>
</tr>
<tr>
<td>cardiovascular health</td>
<td></td>
</tr>
<tr>
<td>Normalizing glucose metabolism</td>
<td>(40, 49, 51-53)</td>
</tr>
</tbody>
</table>

Safety of DHEA as a dietary supplement

Controlled studies lasting between six months and a year at doses ranging from 25 to 200 mg daily have shown DHEA to be safe, with only some studies reporting transient and mild side affects (7, 40-42, 45, 51, 54, 55, 56, 57, 58). In randomized, controlled trials conducted in the elderly using 50 mg DHEA per day for six months, only mild facial acne is reported as the lone side effect (41, 57). In two of these studies, there were no changes in renal or liver biochemistry and no changes in prostate specific antigen (PSA) levels in the male subjects assigned to DHEA (40, 41). A recent two year trial conducted in elderly administered 75 mg DHEA/day concluded that there were no adverse effects (44). These findings are consistent with those from a multitude of shorter term trials incorporating a range of doses showing that DHEA supplementation is well tolerated.

Some studies have shown DHEA causes a slight decline in HDL (“good”) cholesterol (49, 59, 60), although the findings are not convincing. In one study, subjects ingested a supplement that in addition to DHEA, also contained many other active ingredients at various levels (59). Therefore, the effects observed over the course of the four week intervention cannot be attributed solely to DHEA. In another more recent study, while DHEA supplementation reduced HDL levels over a twelve week period, the total cholesterol-to-HDL cholesterol ratio, also an important indicator of cardiovascular health, was unchanged (49). Finally, the reduction of HDL does not appear to be consistent, with other studies finding no difference between DHEA compared to placebo (41, 42, 61), or even an increase in HDL associated with DHEA (51, 62). Additional studies are warranted to better define what effect, if any, DHEA supplementation has on HDL levels.

Conclusions

DHEA is a steroid hormone that plays an important role as an indirect intermediate to androgens and estrogens in the body. DHEA is not an anabolic steroid, its use is not associated with the anabolic and side effects that accompany anabolic steroid abuse, and the potential for DHEA abuse by athletes is remote. Emerging research continues to indicate that DHEA supplementation may be beneficial for older individuals or those with endocrine deficiencies.
DHEA: The Basic Facts

References

DHEA: The Basic Facts

