Classification

Generative models

Gaussian models

Hidden Markov models
Outline

1 Classification
2 Generative models
3 Gaussian models
4 Hidden Markov models
Classification and generative models

- **Classification**
 - **discriminative models**
 - discrete, categorical random variable of interest
 - fixed set of categories

- **Generative models**
 - **descriptive models**
 - continuous or discrete random variable(s) of interest
 - can estimate parameters
 - Bayes’ rule makes them useful for classification
Building a classifier

- Define **classes/attributes**
 - could state explicit rules
 - better to define through ‘training’ examples
- Define **feature space**
- Define decision **algorithm**
 - set parameters from examples
- Measure **performance**
 - calculated (weighted) error rate

![Pols vowel formants: "u" (x) vs. "o" (o)](image-url)
Classification system parts

- Sensor
 - signal
 - Pre-processing/segmentation
 - segment
 - Feature extraction
 - feature vector
 - Classification
 - class
 - Post-processing
 - • STFT
 - • Locate vowels
 - • Formant extraction
 - • Context constraints
 - • Costs/risk
Feature extraction

- Right features are critical
 - waveform vs formants vs cepstra
 - invariance under irrelevant modifications
- Theoretically equivalent features may act very differently in a particular classifier
 - representations make important aspects explicit
 - remove irrelevant information
- Feature design incorporates ‘domain knowledge’
 - although more data ⇒ less need for ‘cleverness’
- Smaller ‘feature space’ (fewer dimensions)
 → simpler models (fewer parameters)
 → less training data needed
 → faster training

[inverting MFCCs]
Optimal classification

- Minimize probability of error with Bayes optimal decision

\[
\hat{\theta} = \arg\max_{\theta_i} p(\theta_i | x)
\]

\[
p(\text{error}) = \int p(\text{error} | x)p(x) \, dx
= \sum_i \int_{\Lambda_i} (1 - p(\theta_i | x))p(x) \, dx
\]

- where \(\Lambda_i\) is the region of \(x\) where \(\theta_i\) is chosen
- but \(p(\theta_i | x)\) is largest in that region
- so \(p(\text{error})\) is minimized
Sources of error

- Suboptimal threshold / regions (bias error)
 - use a Bayes classifier
- Incorrect distributions (model error)
 - better distribution models / more training data
- Misleading features (‘Bayes error’)
 - irreducible for given feature set
 - regardless of classification scheme
Two roads to classification

Optimal classifier is

\[\hat{\theta} = \arg\max_{\theta_i} p(\theta_i \mid x) \]

but we don’t know \(p(\theta_i \mid x) \)

- Can model distribution directly
 - \textit{e.g.} Nearest neighbor, SVM, AdaBoost, neural net
 - maps from inputs \(x \) to outputs \(\theta_i \)
 - a discriminative model

- Often easier to model data \textit{likelihood} \(p(x \mid \theta_i) \)
 - use Bayes’ rule to convert to \(p(\theta_i \mid x) \)
 - a generative (descriptive) model
Nearest neighbor classification

Find closest match (Nearest Neighbor)

- Naïve implementation takes $O(N)$ time for N training points
- As $N \to \infty$, error rate approaches twice the Bayes error rate
- With K summarized classes, takes $O(K)$ time
- Locality sensitive hashing gives approximate nearest neighbors in $O(dn^{1/c^2})$ time (Andoni and Indyk, 2006)
Support vector machines

- “Large margin” linear classifier for separable data
 - regularization of margin avoids over-fitting
 - can be adapted to non-separable data (C parameter)
 - made nonlinear using kernels
 $$k(x_1, x_2) = \Phi(x_1) \cdot \Phi(x_2)$$

- Depends only on training points near the decision boundary, the support vectors
- Unique, optimal solution for given Φ and C
Outline

1 Classification

2 Generative models

3 Gaussian models

4 Hidden Markov models
Generative models

- **Describe** the data using structured probabilistic models
- Observations are **random variables** whose **distribution** depends on model parameters
- **Source distributions** $p(x | \theta_i)$
 - reflect variability in features
 - reflect noise in observation
 - generally have to be estimated from data (rather than known in advance)

\[
p(x | \omega_i)
\]
Generative models (2)

Three things to do with generative models

- Evaluate the probability of an observation, possibly under multiple parameter settings
 \[p(x), \ p(x \mid \theta_1), \ p(x \mid \theta_2), \ldots \]

- Estimate model parameters from observed data
 \[\hat{\theta} = \arg\min_{\theta} C(\theta^*, \theta \mid x) \]

- Run the model forward to generate new data
 \[\tilde{x} \sim p(x \mid \hat{\theta}) \]
Random variables review

- Random variables have **joint** distributions, $p(x, y)$
- **Marginal** distribution of y

\[
p(y) = \int p(x, y) \, dx
\]

- Knowing one value in a joint distribution constrains the remainder
- **Conditional** distribution of x given y

\[
p(x \mid y) \equiv \frac{p(x, y)}{p(y)} = \frac{p(x, y)}{\int p(x, y) \, dy}
\]
Bayes’ rule

\[
p(x \mid y)p(y) = p(x, y) = p(y \mid x)p(x)
\]

\[
\therefore p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}
\]

⇒ can reverse conditioning given priors/marginals
- terms can be discrete or continuous
- generalizes to more variables

\[
p(x, y, z) = p(x \mid y, z)p(y, z) = p(x \mid y, z)p(y \mid z)p(z)
\]
- allows conversion between joint, marginals, conditionals
Bayes’ rule for generative models

- Run generative models **backwards** to compare them

\[
p(\theta | x) = \frac{p(x | \theta)}{\int p(x | \theta)p(\theta)} \cdot p(\theta)
\]

Likelihood

Posterior prob
Evidence = \(p(x) \)
Prior prob

- **Posterior** is the classification we’re looking for
 - combination of **prior** belief in each class
 - with **likelihood** under our model
 - normalized by evidence (so \(\int \) posteriors = 1)

- Objection: priors are often unknown
 - but omitting them amounts to assuming they are all equal
Computing probabilities and estimating parameters

- Want probability of the observation under a model, \(p(x) \)
 - regardless of parameter settings
- Full Bayesian integral

\[
p(x) = \int p(x \mid \theta)p(\theta) \, d\theta
\]

- Difficult to compute in general, approximate as \(p(x \mid \hat{\theta}) \)
 - Maximum likelihood (ML)
 \[
 \hat{\theta} = \arg\max_{\theta} p(x \mid \theta)
 \]
 - Maximum a posteriori (MAP): ML + prior
 \[
 \hat{\theta} = \arg\max_{\theta} p(\theta \mid x) = \arg\max_{\theta} p(x \mid \theta)p(\theta)
 \]
Model checking

- After estimating parameters, run the model **forward**
- Check that
 - model is rich enough to capture variation in data
 - parameters are estimated correctly
 - there aren’t any bugs in your code
- Generate data from the model and compare it to observations
 \[\tilde{x} \sim p(x | \theta) \]
 - are they similar under some statistics \(T(x) : \mathbb{R}^d \mapsto \mathbb{R} \)?
 - can you find the real data set in a group of synthetic data sets?
- Then go back and update your model accordingly
- Gelman et al. (2003, ch. 6)
Outline

1 Classification
2 Generative models
3 Gaussian models
4 Hidden Markov models
Gaussian models

- Easiest way to model distributions is via parametric model
 - assume known form, estimate a few parameters
- Gaussian model is simple and useful. In 1D

\[
p(x | \theta_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu_i}{\sigma_i} \right)^2 \right]
\]

- Parameters mean \(\mu_i \) and variance \(\sigma_i \) → fit
Gaussians in d dimensions

\[p(x \mid \theta_i) = \frac{1}{(2\pi)^{d/2} \sqrt{\det{\Sigma_i}}} \exp \left[-\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right] \]

Described by a d-dimensional mean μ_i and a $d \times d$ covariance matrix Σ_i.
Gaussian mixture models

- Single Gaussians cannot model
 - distributions with multiple modes
 - distributions with nonlinear correlations
- What about a weighted sum?

\[
p(x) \approx \sum_{k} c_k p(x \mid \theta_k)
\]

- where \(\{c_k\} \) is a set of weights and \(\{p(x \mid \theta_k)\} \) is a set of Gaussian components
- can fit anything given enough components
- Interpretation: each observation is generated by one of the Gaussians, chosen with probability \(c_k = p(\theta_k) \)
Gaussian mixtures (2)

e.g. nonlinear correlation

Problem: finding c_k and θ_k parameters

- easy if we knew *which* θ_k generated each x
Expectation-maximization (EM)

- General procedure for estimating model parameters when some are unknown
 - e.g. which GMM component generated a point
- Iteratively updated model parameters θ to maximize Q, the expected log-probability of observed data x and hidden data z

\[
Q(\theta, \theta_t) = \int_z p(z \mid x, \theta_t) \log p(z, x \mid \theta)
\]

- E step: calculate $p(z \mid x, \theta_t)$ using θ_t
- M step: find θ that maximizes Q using $p(z \mid x, \theta_t)$
- can prove $p(x \mid \theta)$ non-decreasing
- hence maximum likelihood model
- local optimum—depends on initialization
Want to find
- parameters of the Gaussians $\theta_k = \{\mu_k, \Sigma_k\}$
- weights/priors on Gaussians $c_k = p(\theta_k)$

... that maximize likelihood of training data x

If we could assign each x to a particular θ_k, estimation would be direct

Hence treat mixture indices, z, as hidden
- form $Q = E[p(x, z | \theta)]$
- differentiate wrt model parameters
 - equations for μ_k, Σ_k, c_k to maximize Q
GMM EM updated equations

Parameters that maximize Q

$$\nu_{nk} \equiv p(z_k | x_n, \theta_t)$$

$$\mu_k = \frac{\sum_n \nu_{nk} x_n}{\sum_n \nu_{nk}}$$

$$\Sigma_k = \frac{\sum_n \nu_{nk} (x_n - \mu_k)(x_n - \mu_k)^T}{\sum_n \nu_{nk}}$$

$$c_k = \frac{1}{N} \sum_n \nu_{nk}$$

- Each involves ν_{nk}, ‘fuzzy membership’ of x_n in Gaussian k
- Updated parameter is just sample average, weighted by fuzzy membership
GMM examples

Vowel data fit with different mixture counts

[Example...]
Outline

1. Classification
2. Generative models
3. Gaussian models
4. Hidden Markov models
Markov models

- A (first order) **Markov model** is a finite-state system whose behavior depends **only on the current state**
- “The future is independent of the past, conditioned on the present”

e.g. generative Markov model

$$p(q_{n+1}|q_n)$$

\[
\begin{array}{c|ccccc}
q_{n+1} & S & A & B & C & E \\
\hline
S & 0 & 1 & 0 & 0 & 0 \\
A & 0 & .8 & .1 & .1 & 0 \\
B & 0 & .1 & .8 & .1 & 0 \\
C & 0 & .1 & .7 & .1 & 0 \\
E & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]
Hidden Markov models

- Markov model where state sequence $Q = \{q_n\}$ is not directly observable (‘hidden’)
- But, observations X do depend on Q
 - x_n is RV that depends only on current state $p(x_n | q_n)$

![Graphs showing emission distributions and state sequence]

- can still tell *something* about state sequence...
(Generative) Markov models

HMM is specified by parameters Θ:

- states q^i

- transition probabilities a_{ij}

- emission distributions $b_i(x)$

(+$\,$ initial state probabilities π_i)

$$a_{ij} \equiv p(q_n^i \mid q_{n-1}^i) \quad b_i(x) \equiv p(x \mid q_i) \quad \pi_i \equiv p(q_1^i)$$
Markov models for sequence recognition

- **Independence of observations**
 - observation x_n depends only on current state q_n

 $$p(X \mid Q) = p(x_1, x_2, \ldots x_N \mid q_1, q_2, \ldots q_N)$$
 $$= p(x_1 \mid q_1)p(x_2 \mid q_2) \cdots p(x_N \mid q_N)$$
 $$= \prod_{n=1}^{N} p(x_n \mid q_n) = \prod_{n=1}^{N} b_{q_n}(x_n)$$

- **Markov transitions**
 - transition to next state q_{i+1} depends only on q_i

 $$p(Q \mid M) = p(q_1, q_2, \ldots \mid M)$$
 $$= p(q_N \mid q_{N-1} \ldots q_1)p(q_{N-1} \mid q_{N-2} \ldots q_1)p(q_2 \mid q_1)p(q_1)$$
 $$= p(q_N \mid q_{N-1})p(q_{N-1} \mid q_{N-2})p(q_2 \mid q_1)p(q_1)$$
 $$= p(q_1) \prod_{n=2}^{N} p(q_n \mid q_{n-1}) = \pi_{q_1} \prod_{n=2}^{N} a_{q_{n-1}q_n}$$
Model-fit calculations

- From ‘state-based modeling’:
 \[
p(X \mid \Theta_j) = \sum_{\text{all } Q} p(X \mid Q, \Theta_j)p(Q \mid \Theta_j)
 \]

- For HMMs
 \[
p(X \mid Q) = \prod_{n=1}^{N} b_{q_{n}}(x_{n})
 \]
 \[
p(Q \mid M) = \pi_{q_{1}} \prod_{n=2}^{N} a_{q_{n-1}q_{n}}
 \]

- Hence, solve for \(\hat{\Theta} = \arg\max_{\Theta_j} p(\Theta_j \mid X) \)
 - Using Bayes’ rule to convert from \(p(X \mid \Theta_j) \)

- Sum over all \(Q \)???
Summing over all paths

Model M_1

Observations

Observation likelihoods

All possible 3-emission paths Q_k from S to E

$$p(Q | M) = \prod_n p(q_n | q_{n-1})$$
$$p(X | Q,M) = \prod_n p(x_n | q_n)$$
$$p(X, Q | M)$$

| q_0 | q_1 | q_2 | q_3 | q_4 | $p(Q | M)$ | $p(X | Q,M)$ | $p(X, Q | M)$ |
|------|------|------|------|------|----------|------------|------------|
| S A A A E | .9 x .7 x .7 x .1 | 0.0441 | 2.5 x 0.2 x 0.1 | 0.05 | 0.0022 |
| S A A B E | .9 x .7 x .2 x .2 | 0.0252 | 2.5 x 0.2 x 2.3 | 1.15 | 0.0290 |
| S A B B E | .9 x .2 x .8 x .2 | 0.0288 | 2.5 x 2.2 x 2.3 | 12.65 | 0.3643 |
| S B B B E | .1 x .8 x .8 x .2 | 0.0128 | 0.1 x 2.2 x 2.3 | 0.506 | 0.0065 |

$$\Sigma = 0.1109$$

$$\Sigma = p(X | M) = 0.4020$$
The ‘forward recursion’

- Dynamic-programming-like technique to sum over all Q
- Define $\alpha_n(i)$ as the probability of getting to state q^i at time step n (by any path):

$$\alpha_n(i) = p(x_1, x_2, \ldots, x_n, q_n = q^i) \equiv p(X_1^n, q_n^i)$$

- $\alpha_{n+1}(j)$ can be calculated recursively:

$$\alpha_{n+1}(j) = \left[\sum_{i=1}^{S} \alpha_n(i) \cdot a_{ij} \right] \cdot b_j(x_{n+1})$$
Forward recursion (2)

- Initialize $\alpha_1(i) = \pi_i b_i(x_1)$
- Then total probability $p(X_1^N | \Theta) = \sum_{i=1}^{S} \alpha_N(i)$

\rightarrow Practical way to solve for $p(X | \Theta_j)$ and hence select the most probable model (recognition)

$$p(X | M_1) \cdot p(M_1)$$
$$p(X | M_2) \cdot p(M_2)$$

Choose best
Optimal path

- May be interested in actual q_n assignments
 - which state was ‘active’ at each time frame
 - e.g. phone labeling (for training?)
- Total probability is over all paths
 - ... but can also solve for single best path, “Viterbi” state sequence
- Probability along best path to state q_{n+1}^j:

$$\hat{\alpha}_{n+1}(j) = \max_i \{\hat{\alpha}_n(i)a_{ij}\} b_j(x_{n+1})$$

- backtrack from final state to get best path
 - final probability is product only (no sum)
 - log-domain calculation is just summation
- Best path often dominates total probability

$$p(X \mid \Theta) \approx p(X, \hat{Q} \mid \Theta)$$
Interpreting the Viterbi path

- Viterbi path assigns each x_n to a state q^i
 - performing classification based on $b_i(x)$
 - at the same time applying transition constraints a_{ij}

![Inferred classification diagram]

- Can be used for segmentation
 - train an HMM with ‘garbage’ and ‘target’ states
 - decode on new data to find ‘targets’, boundaries

- Can use for (heuristic) training
 - e.g. forced alignment to bootstrap speech recognizer
 - e.g. train classifiers based on labels...
Aside: Training and test data

- A rich model can learn every training example (overtraining)

- But the goal is to classify new, unseen data
 - sometimes use ‘cross validation’ set to decide when to stop training

- For evaluation results to be meaningful:
 - don’t test with training data!
 - don’t train on test data (even indirectly...)
Aside (2): Model complexity

- More training data allows the use of larger models

- More model parameters create a better fit to the training data
 - more Gaussian mixture components
 - more HMM states

- For fixed training set size, there will be some optimal model size that avoids overtraining
Summary

- **Classification** is making discrete (hard) decisions
- Basis is comparison with known examples
 - explicitly or via a model

Classification models
- discriminative models, like SVMs, neural nets, boosters, directly learn posteriors \(p(\theta_i | x) \)
- generative models, like Gaussians, GMMs, HMMs, model likelihoods \(p(x | \theta) \)
- Bayes’ rule lets us use generative models for classification

- **EM** allows parameter estimation even with some data missing

Parting thought
Is it wise to use generative models for discrimination or vice versa?
References

