GM Banana slips in South Africa: key issues and concerns
The African Centre for Biosafety (ACB) is a non-profit organisation, based in Johannesburg, South Africa. It was established to protect Africa’s biodiversity, traditional knowledge, food production systems, culture and diversity, from the threats posed by genetic engineering in food and agriculture. It has in addition to its work in the field of genetic engineering, also opposed biopiracy, agrofuels and the Green Revolution push in Africa, as it strongly supports social justice, equity and ecological sustainability.

The ACB has a respected record of evidence based work and can play a vital role in the agro-ecological movement by striving towards seed sovereignty, built upon the values of equal access to and use of resources.

Acknowledgements
This work has been made possible through the financial support received from the EED and HIVOS. The ACB is extremely grateful to several esteemed scientists who have assisted us in reviewing the biosafety data provided by the Applicant and providing invaluable comments in relation thereto.
Contents

Introduction 4
Bananas in the world 4
Bananas in South Africa 6
 Marketing channels 6
 The banana trade from SA 8
Banana production in Mozambique 9
Key biosafety concerns and unanswered questions 10
 The role of banana management in disease control; the metabolic profile of the modified plant; and the fusarium resistance 10
 Molecular characterization 10
 Additional Biosafety concerns 11
Conclusion 11
Annexure 1 12
Annexure 2 13
References 14
Introduction

Dr Noelani van den Berg of the University of Pretoria, Forestry and Agricultural Biotechnology Institute (“Applicant”) has made application to the South African GMO authorities for permission to conduct the first ever field trials in South Africa involving GM bananas. At the time of writing, the application was still under review by the South African GMO authorities. The rationale for the genetic modification is to combat Fusarium wilt, caused by a soil born fungi *Fusarium oxysporum f.sp cubense* (Foc). The idea is to genetically engineer bananas with a rice gene (NPRI homolog (NH1)) to confer resistance to the said Foc. The aim of the field trial is thus to evaluate Cavendish bananas that have been transformed to express the NH1 gene for disease tolerance against Foc.

The Applicant wishes to commence trials involving three transgenic banana lines during the growing season, November 2011-December 2012. The trials are to take place on an existing commercial banana plantation in Mpumalanga, situated 30 km from a national park.

The Applicant has not supplied any biosafety data from previous greenhouse trials involving the GM banana. It does appear as if such data is not available because the Applicant has in fact failed to conduct such greenhouse experiments. With this field trial application, the Applicant is attempting to bypass an important and indeed indispensable step involving greenhouse experimentation where basic biosafety data is usually collected and assessed, before proceeding to open field trials. The application for field trials is therefore hopelessly premature. In any event, the application has been reviewed by a number of independent biosafety scientists who have found the data provided to be sorely lacking in several respects and raise numerous critically important questions the Applicant is required to provide answers to.

We have also reviewed the situation with banana production globally with particular emphasis on South Africa. We are baffled as to the real purpose of the GM banana field trials as there is a multitude of reasons for the decline in domestic banana production, of which disease is only one. It is our view that GM disease resistant bananas cannot overcome the current problems being experienced, ranging from land tenure to competition from more ecologically suitable production areas such as those in Mozambique. This shift in the industry will mean that 24 000 on farm jobs will be lost, which is a huge concern and requires urgent government attention and intervention. This problem is massively compounded by the fact that it appears as if these workers are unprotected in terms of access to unions.

Most of the bananas sold in South Africa are in bulk form, without much scope for value adding and thus we must ask the critically important question: is the use of public funds for these trials justified, particularly in the light that banana farmers are increasingly moving towards macadamia cultivation? We remind the regulators of the insurmountable hurdles faced by the Agricultural Research Council (ARC) in its attempts to obtain clearance for the commercialization of its GM potato. How will a GM Banana be any different?

In the light that the banana industry predicts that the bulk of the South African banana production will shift to Mozambique in the medium term, what will become of these trials and the GM banana? Mozambique has already shown itself amenable to South African agribusiness, and to importing GM crops.1 Does Mozambique have the capacity to adequately monitor and enforce robust biosafety measures in that country? What will the effect of growing GM bananas in Mozambique have on its potential export markets in Europe?

Bananas in the world

Bananas are one of the world’s most important food crops, with over 130 million tons produced annually. India is the world’s largest banana producer, with nearly 30 million tons produced in 2009,2 while Latin American countries dominate the international banana trade.3 However, it is arguably in Sub-Saharan Africa where the fruit makes the most important contribution to health and nutrition,
providing more than 25% of the energy requirements for over 100 million people. In Uganda, which produces 10 million tons a year, second only to India, it is a staple food, with many local varieties being grown. Though only 10% of global production is exported annually, the international markets for rice, wheat and maize are more valuable. The international trade in bananas is worth an estimated $5 billion annually, and it is the most traded fruit in the world in terms of volume.

During the 1990s the international trade in bananas grew at a rate of 4% a year, though this has since declined to around 2.5%, with only Eastern Europe and the Middle East seen as potential growth markets. Latin America and the Caribbean is responsible for 70% of global banana exports, with production in these countries dominated by huge multinational corporations, such as the Dole Foods and Chiquita Brands (both off-shoots of the infamous United Fruit Company). The very term ‘Banana Republic’, meant to denote an elite controlled spigot economy, is homage to the omnipotence these companies have enjoyed in their host countries in the global south. In Honduras the United Fruit Company was known as ‘El Pulpo’ (the Octopus). The highly lucrative banana trade is dominated by just three companies: Dole Foods, Chiquita and Fresh Del Monde, who control 65% of world exports. Noboa, an Ecuadorian company, and Fyffes, from Europe, control a further 10% and 7% respectively.

Bananas have been at the centre for the world’s longest running trade dispute, the so called ‘banana wars’ between the world’s largest banana producers in Latin America, and the European Union. In 1993, the EU implemented its banana import regime, which gave duty free access to mostly small producers in former colonies (mostly in the Caribbean). After relentless pressure from the world’s largest banana producers, the European Parliament voted earlier this year to cut EU import tariffs on bananas from Latin America by 35% over 6 years, from the current 176 EUR per ton down to 114 EUR per ton. Critics argue that this will decimate banana production in many Caribbean countries, where banana production is the backbone of many of the island economies in the region.
Bananas in South Africa

For optimal conditions, bananas require a warm, humid and frost-free climate, with temperatures ranging between 22°C and 31°C. As such, production is restricted to the provinces of Mpumalanga, Limpopo and coastal areas of Kwa-Zulu Natal, which account for 58%, 20% and 22% of production respectively. The latest figures from the Department of Agriculture, Forestry and Fisheries (DAFF) put total production at just over 397,000 tons, slightly higher than the average for the proceeding 5 years of 368,000 tons.

Statistics on the number of banana farmers, or the numbers of people employed on banana farms are difficult to come by. When contacted, the Department of Agriculture, Forestry and Fisheries (DAFF) were not aware of any reliable source of information on this. Figures from Limpopo (from 2003) estimated some 4,000 small-scale banana farmers in the major Banana growing region of the province, though how relevant these statistics are now is debatable. The Food and Agricultural Workers Union (FAWU) currently have no numbers relating in Mpumalanga at least, to the amount of farm workers on Banana plantations, as none of their members work in this sector. According to one of FAWUs negotiators in the province, FAWU has problems accessing workers on these remote farms, and claimed that many of the farmers were ‘living in the past.’ The Bureau for Food and Agricultural Policy (BFAP), in its agricultural baseline study for 2011, cited Banana production as a ‘labour intense winner’, and predicted that a 30% increase in the planted area would result in an additional 7,200 on farm jobs, or 2 jobs per additional ha. Using this, admittedly far from methodologically sound formula, would give a very approximate figure of around 24,000 on-farm jobs in the sector.

What is clear, from those in both the retail sectors and industry associations, is that the number of banana farmers in South Africa is declining, and is expected to continue to do so, as production levels in Mozambique have increased by over 200% in the last five years alone. This is expanded upon later.

Marketing channels

During the 1980s, around 40% of all bananas produced in South Africa were sold through the country’s National Fresh Produce Market (NFPM) network, with the remainder generally purchased by independent wholesalers. The precipitous decline in production during the mid 1990s could be attributed to a number of factors, with most of them in some way connected to the profound political changes sweeping the country at the time. According to data from the UN Food and Agricultural Organisation (FAO), the years 1992 to 1995 were characterized by a dramatic fall in yield, which had more of a bearing on the total banana output. The area planted did decline during these years, but the drop in yield in their statistics is more apparent. A word of caution, however, as the FAO’s statistics for the planted banana area vary considerably with figures from the South African Department of Agriculture, Forestry and Fisheries (DAFF), though figures from the latter are only readily available from 2002.
Figure 1. Total Banana production and sales through NFPMs (tons)

Source: Abstract of agricultural statistics 2011, Department of Agriculture, Forestry and Fisheries.

The liberalization of South African agriculture during the period no doubt also had a bearing on this. For example, the Banana Board, which had operated as a single channel pooling scheme and determined banana prices on a weekly basis, was disbanded in 1994, subjecting the banana trade to market forces. After the turmoil of the mid 1990s, production increased again, and from the late 1990s NFPMs have sold roughly 60% of South Africa’s banana crop every year. For the last decade bananas have also accounted for approximately 70% of all sub-tropical fruit sold on the NFPMs.

In South Africa the majority of bananas are eaten for their fruit. There is little in the way of the processing or ‘value’ adding that happens with, for example, oranges or apples, where processors purchase about 25%18 and 31%19 of the entire annual crop.

South Africa’s National Fresh Produce Markets, of which there are 19 nationally, have a combined annual turnover of R10 billion. The Johannesburg Market, the largest of its kind in the Southern hemisphere, accounts for 38% of turn-over, followed by markets in Twsane (17%) and Cape Town (12%). Independent sellers, or agents, operate out of the various markets. Farmers are responsible for the costs of transport to the market, which, in the case of Johannesburg’s Fresh Produce Market (JFPM), is approximately R350 per pallet. Once at the market an agent assigns them a price dependent upon the prevailing market conditions of the day, and sells them on the farmer’s behalf.20 From the final price the agent takes their commission, which is 7.5% in the case of Johannesburg’s markets, while the markets authority takes a further 5% towards the upkeep of the site. ‘Ripening costs’ are also included, which amount to around 26 cents per box.21 At JFPM there are 40 ripening rooms, each with a capacity of 30 pallets. The ripening process typically takes 4 – 7 days.22

The large supermarket chains generally source their bananas directly from farmers, with only ‘ad hoc’23 purchases occurring to make up the occasional shortfall. In recent years retail procurement from NFPMs has declined to as little as 10% of total procurement, ‘relating to lack of cold chain maintenance, inadequate traceability to the farm level and food safety issues.’24 Shoprite Checkers sources virtually all of its fresh fruit and vegetables (96% according to one of its senior buyers25) through a special procurement arm, Freshmark, which is one of the largest single buyers of fresh produce in the country.26 Freshmark also supplies Shoprite stores throughout Africa.

Freshmark buys bananas directly from producers, either collecting them in their own refrigerated trucks or using third party transport companies. The scale of purchases matches the scale of
Shoprite’s operations: A typical load contains about 2.3 tons of bananas (1,350 crates, each weighing approximately 17.5 kg). Shoprite sells anything between 437 and 700 tons of bananas a week, which compares to average weekly sales across all 19 NFPMs of 4,400 tons. Shoprite sources its bananas from KZN, and the Hazyview and Komatiepoort areas of Mpumalanga within South Africa, and from Mozambique, Swaziland and Zimbabwe.

The impact of the major global banana producers on the South African banana market appears to be minimal at present. Dole Foods established itself in South Africa in 1998, expanding its marketing operations into South African supermarket chains through the purchase of Malembo Fresh marketing in 2005. Unlike in Latin America, Dole owns no land in South Africa, preferring instead to source produce from over 200 independent growers in South Africa, Namibia and Swaziland. The focus of the company’s operations in South Africa appears to be for the country’s lucrative export markets, rather than domestic markets. Dole have previously approached the SA Banana Growers Association (SAGBA) about supplying them with Bananas, though Dole’s onerous aesthetic standards, including fruit with ‘no bruises’, has made them reluctant to take the offer up.

The banana trade from SA

Banana exports from South Africa are miniscule, rarely amounting to more than 500 tons in a single year, with virtually all of these destined for countries in the Southern African Development Community (SADC). Imports, on the other hand, have increased markedly in the last five years. Between 1999 and 2005 average imports were around 3,000 tons per year. From 2007, imports are now at least 20,000 tons per year, with over 80% of these coming from Mozambique. South Africa has a small but highly proficient Banana tissue culture industry, with over half of all tissue culture produced each year being exported, chiefly to Latin America, West Africa and Taiwan, though Mozambique has recently been receiving lots of tissue culture from South Africa.
As previously stated, Banana production in Mozambique has increased dramatically in the last five years, and there are plans to double production again with the next 3 – 5 years. A multitude of reasons were given for this, ranging from climatic conditions, land claims, Panama disease, labour issues and transport times for exports. For example, Andre Knipe of the SABGA gave the example of a shipment of bananas, which took 24 days to reach Libya from South Africa, and were rotten by the time they arrived.

Banana producers generally appear to be either relocating to Mozambique, or switching to Macadamia production. For example, Shoprite has been increasing the quantities of its Bananas from South African farmers newly established in the country, while one of the agents operating at JFPM contacted claimed that all of the Bananas they sourced from there were grown by South Africans. Many other farmers are switching to Macadamia nuts, as it has lower costs and higher returns. The Macadamia industry is among the fastest growing fruit tree industries in the world. South Africa is currently the world’s third largest producer, with the gross value of production increasing an astonishing 6 fold between 2005 and 2008. Mpumalanga (51%), KZN (22%), and Limpopo (20%) are the largest growing areas, corresponding with the major Banana growing areas of the country.

Though no concrete figures of the numbers leaving banana production are available, the consistency of responses from a wide variety of industry actors indicates it is a significant number. As both production and planted area do not, from the statistics available at least, seem to have declined, it would seem to suggest that the remaining banana producers have consolidated and expanded their land holdings, with likelihood of an intensification of production amongst these dwindling numbers.

Banana production in Mozambique

In the year 2000, just 24 ha were recorded to have been planted to bananas in Mozambique. By 2009 this had expanded to 1,305 ha, producing just over 33,000 tons. Exports are the primary market, with 73% of production going to this market. The production and trade in bananas in Mozambique is controlled by six companies, with the two largest controlling 61% of the market.

In addition to re-location of numerous South African producers, the global Banana giants are also seeking to establish themselves there. Chiquita, in conjunction with the US industry support group Techno Serve, and ‘local’ company Matanuska, has established plantations there with a view to exporting to Europe and the Middle East. In the long term the company believes it can supply up to 30% of the European Union’s Banana imports from Angola and Mozambique.

Looking to take advantage of the European Union’s (EU) Africa, Caribbean and Pacific (ACP) and Anything But Arms (ABA) programmes, Chiquita, through its local conduits, has acquired a land concession of 6,000 ha in the north of the country, with 3,000ha initially set aside for bananas (this is roughly 25% of the entire area planted to Bananas in South Africa). Chiquita has also been consulting with Technoserve to explore further potential avenues of investment. It is believed that ‘small’ banana growers are included in this, though in the banana industry that means a farm of at least 50 ha, with a focus on specialty bananas and plantains.

Maputo has been chosen as the site of Chiquita’s African headquarters. Unlike its operations in Latin America, Chiquita will not invest directly in land or cultivation, but will provide ‘technical assistance’. Basically Chiquita passes all the risk associated with capital and infrastructure investments onto its local ‘partner’ and then purchases the produce from them.
Key biosafety concerns and unanswered questions

The role of banana management in disease control; the metabolic profile of the modified plant; and the nature of the fusarium resistance

1. The banana has been augmented with an exogenous version of NPR1. From the literature list supplied by the Applicant, it is apparent that she previously showed that there are homologues of this gene in banana already, and varieties such as cavendish are already more tolerant of fusarium than those varieties with lower induction of these homologues.

2. NPR1 is activated by a change in redox state in the cell. This is caused by a signal transduction pathway controlled by salicylic acid (SA). Activated NPR1 binds to transcriptional regulators that then induce pathogen response (PR) genes. The nature of the change in the banana is constitutive induction of the pathogen response. This would be equivalent to a constitutive stress response produced natively by the plant. As such, there may be many different anti-nutrients, or amounts of known anti-nutrients and other potential changes with relevance to insects, wildlife and humans that should be investigated. What is the nature and scope of the assessment for non-target effects and human safety? What are the levels of salicylic acid in the tissues and fruit of the plant? Do these levels have a physiological effect on the microflora? If so, is there an association between the microflora on modified plants and multiple antibiotic resistance?

3. Long term expression of the PR genes might select for pathogens and commensals that are resistant to normal levels of PR. The full range of activities of these proteins need to be known to determine how resistance to PR in bananas might affect the spread of fusarium and other microbes, e.g. those not pathogenic to bananas but which might be pathogenic to other important plants (including food crops), outside of the banana cultivation area. Has the frequency of resistance to PR been measured? Do resistant microbes have extended pathogen ranges? How does this compare to the frequency of resistance arising in unmodified cavendish? Is the frequency of resistance higher than the frequency of disease outbreaks using other management techniques, e.g., rotation with fallow plantations and mixed cropping?

Molecular characterization

1. The molecular characterization is almost completely missing. There are several experiments that can and should be conducted before considering a field trial, or even a trial in a greenhouse. These include the following:
 a. the exact construct has not been described (sequence, restriction sites, size of the individual elements, optimized sequences and so forth) either before or after transformation. The genes and the vector were named, but sequences, accession numbers and the cloning scheme were not identified.
 b. the insertion point(s) of the recombinant DNA in the chromosome of the three lines has not been determined. As a consequence, it is not known if endogenous genes or regulatory sequences were disrupted that alter the transgenic bananas and what the consequences could be.
 c. The Applicant has not demonstrated that the event can be detected by Southern blot or PCR (as claimed). Probes and primers and experimental conditions have not been specified. The statement that the event can be identified with PCR specific primers is only true for complete and not rearranged inserts. The Applicant has not demonstrated that this is the case. No protocols were supplied that confirm that the Applicant is in possession of the necessary information or has done the experiments in the lab. Detection of all possible DNA inserts should be demonstrated, this is a basic requirement for monitoring.
 d. The Applicant has not determined if partial inserts are present in any of the transformed lines. This should be done by Southern blot using small probes of the intended transgenic DNA and the plasmid backbone in a low stringency setting.
 e. Sequencing has not been reported to determine if the inserted DNA is the same as the one used for transformation. Agrobacterium mediated transformation is known to cause
rearrangements, insertions and deletions both of the incoming and of the host DNA.
f. In regard to the genomic neighborhood of the inserted DNA, have endogenous genes be
 disrupted, and if so, which? Are there potential regulatory elements around the insertion site(s)
 that might alter gene expression in the recombinant plants?
g. if new fusion proteins have been created between the recombinant DNA and genomic
 DNA sequences or by rearrangements in the chromosome due to Agrobacterium mediated
 transformation

Additional Biosafety concerns

1. Why have no contained greenhouse trials been performed or reported (i.e. growth in containment
 and challenge with Fusarium)? This should be done before the organism is released into the
 environment? A stepwise process, from greenhouse experimentation and collection of basic
 biosafety data, followed by broader release is a more prudent strategy as recommended by a
 number of national frameworks on GM risk assessment.

2. The Applicant mentions a fence to prevent theft and signs to prevent people eating the bananas.
 Does theft occur at this farm (which belongs to a commercial grower)? If so, how frequent is it?
 How much produce is stolen? What is the literacy level in the area?

3. Are there wild animals around which would eat the bananas (monkeys, birds, insects, bats and
 so forth)? Negative impacts on wild species have not been evaluated other than the simple
 statement by the Applicant that it “should not happen”.

4. The stability of the event over time has not been determined including the:
 • stability of the DNA at the site of insertion
 • stability of overexpression of the transgene
 • stability of the phenotype

5. The trial is proposed to be located on a commercial plantation. While this ensures that the people
 caring for the plants on a day to day basis know what they are doing, it increases the potential
 for the bananas to reach the human food supply by inadvertent mixture with the commercial
 produce.

6. No emergency response plans are in place. Monitoring provisions, and the opportunity to address
 risk management questions raised here is not well elaborated in the field trial plans.

7. In regard to the use of hygromycin as a selectable marker, no information is provided by the
 Applicant as to whether hygromycin is a medically important antibiotic.

8. NPR1 is a regulator of stress response in plants via the salicylic acid pathway. In Arabidopsis, about
 10% of genes are transcriptionally activated upon challenge.
 • What does this do to plant metabolism?
 • Is it possible to maintain this response permanently, or will the cells find a way to degrade or
 inactivate the additional protein given enough time?

Conclusion

The preamble to the GMO Act as amended, indicates that the purpose
of the Act is to provide for the responsible development, production, use
and application of GMOs. The Executive Council (EC), acting in consultation with the Advisory
Committee, as the decision making body has several important obligations to fulfill when
considering an application for field trials involving GMOs. These include ensuring that the Applicant
has provided a full and complete biosafety assessment of the risks to human and animal health,
the environment and to society and has shown that it has taken all the necessary steps to ensure
that trials are necessary and that they do not pose biosafety risks. These obligations stem from the
GMO Act itself, the Constitution of the Republic of South Africa, various environmental laws as well
as the Promotion of Access to Justice Act. Decisions of the EC in approving applications for activities
involving GMOs affect fundamental human rights of the public, including, but not limited to, the
right to fair decision-making. Having regard to the lack of public interest or commercial justification
for the proposed trials as well as the numerous biosafety concerns and unanswered questions
canvassed by us in this briefing, we are of the opinion that the EC is obliged in terms of South
African law and our Constitution, to reject the application.
<table>
<thead>
<tr>
<th>Year</th>
<th>Total production</th>
<th>Planted area</th>
<th>Gross value (000s R)</th>
<th>Volume sold at NFPMs</th>
<th>% of bananas sold at NFPMs</th>
<th>Ave. price R/t</th>
<th>Bananas as % of total sub-tropical sales at NFMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/10</td>
<td>382 337</td>
<td>12 195</td>
<td>217 775</td>
<td>229 096</td>
<td>60</td>
<td>3 648</td>
<td>76.6</td>
</tr>
<tr>
<td>2008/09</td>
<td>404 917</td>
<td>11 600</td>
<td>1 210 011</td>
<td>242 271</td>
<td>60</td>
<td>3 400</td>
<td>76</td>
</tr>
<tr>
<td>2007/08</td>
<td>334 205</td>
<td>11 156</td>
<td>989 405</td>
<td>200 204</td>
<td>60</td>
<td>3 914</td>
<td>71.9</td>
</tr>
<tr>
<td>2006/07</td>
<td>357 191</td>
<td>11 568</td>
<td>877 444</td>
<td>213 904</td>
<td>60</td>
<td>2 814</td>
<td>71.6</td>
</tr>
<tr>
<td>2005/06</td>
<td>365 118</td>
<td>11 568</td>
<td>837 945</td>
<td>218 452</td>
<td>60</td>
<td>2 630</td>
<td>73.7</td>
</tr>
<tr>
<td>2004/05</td>
<td>316 258</td>
<td>11 568</td>
<td>708 433</td>
<td>188 904</td>
<td>60</td>
<td>2 570</td>
<td>69.4</td>
</tr>
<tr>
<td>2003/04</td>
<td>277 034</td>
<td>11 552</td>
<td>642 527</td>
<td>165 411</td>
<td>60</td>
<td>2 662</td>
<td>70</td>
</tr>
<tr>
<td>2002/03</td>
<td>352 025</td>
<td>12 035</td>
<td>625 383</td>
<td>210 099</td>
<td>60</td>
<td>2 085</td>
<td>73.2</td>
</tr>
<tr>
<td>2001/02</td>
<td>392 491</td>
<td>11 856</td>
<td>564 078</td>
<td>249 117</td>
<td>63</td>
<td>1 643</td>
<td>73</td>
</tr>
<tr>
<td>2000/01</td>
<td>372 204</td>
<td>510 849</td>
<td>234 042</td>
<td>63</td>
<td>1 583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999/2000</td>
<td>373 177</td>
<td>515 028</td>
<td>227 505</td>
<td>61</td>
<td>1 580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998/99</td>
<td>343 822</td>
<td>435 177</td>
<td>212 790</td>
<td>62</td>
<td>1 452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997/98</td>
<td>215 655</td>
<td>200 979</td>
<td>202 013</td>
<td>94</td>
<td>1 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996/97</td>
<td>183 343</td>
<td>163 269</td>
<td>180 761</td>
<td>99</td>
<td>1 411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995/96</td>
<td>158 853</td>
<td>139 174</td>
<td>147 329</td>
<td>93</td>
<td>1 501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993/94</td>
<td>126 445</td>
<td>90 153</td>
<td>120 806</td>
<td>96</td>
<td>1 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994/95</td>
<td>111 983</td>
<td>110 816</td>
<td>98 685</td>
<td>88</td>
<td>1 672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992/93</td>
<td>128 357</td>
<td>137 212</td>
<td>67 725</td>
<td>53</td>
<td>1 520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991/92</td>
<td>243 075</td>
<td>152 018</td>
<td>108 643</td>
<td>45</td>
<td>945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990/91</td>
<td>223 413</td>
<td>141 573</td>
<td>99 495</td>
<td>45</td>
<td>937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989/90</td>
<td>230 994</td>
<td>116 367</td>
<td>95 091</td>
<td>41</td>
<td>774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988/89</td>
<td>194 937</td>
<td>98 659</td>
<td>72 175</td>
<td>37</td>
<td>768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987/88</td>
<td>177 859</td>
<td>79 984</td>
<td>65 875</td>
<td>37</td>
<td>694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986/87</td>
<td>177 124</td>
<td>71 768</td>
<td>72 901</td>
<td>41</td>
<td>595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985/86</td>
<td>150 825</td>
<td>58 771</td>
<td>60 386</td>
<td>40</td>
<td>559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984/85</td>
<td>140 823</td>
<td>51 867</td>
<td>57 095</td>
<td>41</td>
<td>539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983/84</td>
<td>116 207</td>
<td>44 069</td>
<td>43 739</td>
<td>38</td>
<td>558</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982/83</td>
<td>135 784</td>
<td>34 647</td>
<td>53 915</td>
<td>40</td>
<td>388</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981/82</td>
<td>113 714</td>
<td>30 031</td>
<td>43 611</td>
<td>38</td>
<td>386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980/81</td>
<td>111 548</td>
<td>25 893</td>
<td>43 441</td>
<td>38</td>
<td>351</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annexure 2 – Global Banana production, 2009 (FAOstat)

<table>
<thead>
<tr>
<th>Area Harvested</th>
<th>Ha</th>
<th>Production</th>
<th>Tones</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>748 100</td>
<td>India</td>
<td>26 996 600</td>
</tr>
<tr>
<td>United Republic of Tanzania</td>
<td>534 354</td>
<td>Philippines</td>
<td>9 013 190</td>
</tr>
<tr>
<td>Brazil</td>
<td>479 614</td>
<td>China</td>
<td>9 006 450</td>
</tr>
<tr>
<td>Philippines</td>
<td>446 400</td>
<td>Ecuador</td>
<td>7 637 320</td>
</tr>
<tr>
<td>China</td>
<td>350 224</td>
<td>Brazil</td>
<td>6 783 480</td>
</tr>
<tr>
<td>Ecuador</td>
<td>216 115</td>
<td>Indonesia</td>
<td>6 273 060</td>
</tr>
<tr>
<td>Burundi</td>
<td>200 000</td>
<td>United Republic of Tanzania</td>
<td>3 219 000</td>
</tr>
<tr>
<td>Cameroon</td>
<td>148 828</td>
<td>Guatemala</td>
<td>2 544 240</td>
</tr>
<tr>
<td>Uganda</td>
<td>142 096</td>
<td>Costa Rica</td>
<td>2 365 470</td>
</tr>
<tr>
<td>Thailand</td>
<td>112 391</td>
<td>Mexico</td>
<td>2 232 360</td>
</tr>
<tr>
<td>Indonesia</td>
<td>105 000</td>
<td>Colombia</td>
<td>2 020 390</td>
</tr>
<tr>
<td>Democratic Republic of the Congo</td>
<td>85 000</td>
<td>Viet Nam</td>
<td>1 532 420</td>
</tr>
<tr>
<td>Madagascar</td>
<td>76 460</td>
<td>Thailand</td>
<td>1 528 080</td>
</tr>
<tr>
<td>Mexico</td>
<td>75 810</td>
<td>Papua New Guinea</td>
<td>1 187 020</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>75 493</td>
<td>Egypt</td>
<td>1 100 000</td>
</tr>
<tr>
<td>Colombia</td>
<td>74 112</td>
<td>Cameroon</td>
<td>1 000 000</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>71 893</td>
<td>Kenya</td>
<td>843 465</td>
</tr>
<tr>
<td>Kenya</td>
<td>68 590</td>
<td>Bangladesh</td>
<td>836 183</td>
</tr>
<tr>
<td>Guatemala</td>
<td>59 391</td>
<td>Honduras</td>
<td>690 625</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>53 585</td>
<td>Malaysia</td>
<td>625 000</td>
</tr>
<tr>
<td>Haiti</td>
<td>51 501</td>
<td>Burundi</td>
<td>620 028</td>
</tr>
</tbody>
</table>
References

15. BFAP. The South African Agricultural Baseline 2011.
23. Ibid.
34. Fourie
35. Fourie
36. Botha
37. Knipe
38. Fourie
41. Matanuska Ltd, as revealed in a recent Wikileaks cable release, is in fact held by Rift Valley Holdings, ‘a primarily Zimbabwean company with some additional European investors.’
43. Ibid.