Contents

NSX Administration Guide 11

1 Overview of NSX 13
 NSX Capabilities 14
 NSX Components 15

2 User Management 19
 Configure Single Sign On 19
 Managing User Rights 20
 Managing the Default User Account 21
 Assign a Role to a vCenter User 21
 Edit a User Account 23
 Change a User Role 24
 Disable or Enable a User Account 24
 Delete a User Account 24

3 Grouping Objects 27
 Working with IP Address Groups 27
 Working with MAC Address Groups 28
 Working with IP Pools 29
 Working with Security Groups 30
 Working with Services and Service Groups 32

4 Logical Switches 35
 Create a Logical Switch 36
 Connect Virtual Machines to a Logical Switch 38
 Test Logical Switch Connectivity 38
 Prevent Spoofing on a Logical Switch 39
 Edit a Logical Switch 39
 Working with Transport Zones 39
 Logical Switch Scenario 42

5 L2 Bridges 47
 Add L2 Bridge 48

6 Logical Router 49
 Specify Global Configuration 49
 Add a Static Route 50
 Configure OSPF Protocol 50
 Configure BGP Protocol 51
 Configure IS-IS Protocol 52
Configure Route Redistribution 53

Logical Firewall 55
- Working with Distributed Firewall 55
- Working with Edge Firewall 67

Virtual Private Networks (VPNs) 75
- SSL VPN-Plus Overview 75
- IPSec VPN Overview 98
- L2 VPN Overview 101

Logical Load Balancer 105
- Set Up Load Balancing 105
- Working with Application Profiles 115
- Working with Service Monitors 116
- Working with Server Pools 116
- Working with Virtual Servers 117
- Working with Application Rules 118

Other Edge Services 119
- Managing DHCP Service 119
- Configure DNS Servers 122

Service Composer 123
- Using Service Composer 124
- Graphical View of Service Composer 130
- Export a Service Composer Configuration 132
- Import a Service Composer Configuration 133
- Working with Security Tags 133
- Viewing Effective Services 135
- Working with Security Policies 136
- Edit a Security Group 138
- Service Composer Scenarios 138

Data Security 143
- NSX Data Security User Roles 143
- Defining a Data Security Policy 143
- Running a Data Security Scan 145
- Viewing and Downloading Reports 146
- Creating Regular Expressions 146

Operations and Management 147
- System Events and Audit Logs 147
- Management System Settings 151
- Working with Active Directory Domains 154
- NSX Edge Operations 156
- Backing Up NSX Manager Data 166
- Flow Monitoring 167
17 Data Security Content Blades 249
ABA Routing Number Content Blade 252
Admittance and Discharge Dates Content Blade 252
Alabama Drivers License Content Blade 252
Alaska Drivers License Content Blade 253
Alberta Drivers Licence Content Blade 253
Alaska Drivers License Content Blade 253
Alberta Drivers Licence Content Blade 253
American Express Content Blade 253
Arizona Drivers License Content Blade 253
Arkansas Drivers License Content Blade 254
Australia Bank Account Number Content Blade 254
Australia Business Number Content Blade 254
Australia Company Number Content Blade 254
Australia Medicare Card Number Content Blade 254
Australia Tax File Number Content Blade 254
The *NSX Administration Guide* describes how to configure, monitor, and maintain the VMware® NSX™ system by using the NSX Manager user interface and the vSphere Web Client. The information includes step-by-step configuration instructions, and suggested best practices.

Intended Audience

This manual is intended for anyone who wants to install or use NSX in a VMware vCenter environment. The information in this manual is written for experienced system administrators who are familiar with virtual machine technology and virtual datacenter operations. This manual assumes familiarity with VMware Infrastructure 5.x, including VMware ESX, vCenter Server, and the vSphere Web Client.
Overview of NSX

VMware NSX® is a software networking and security virtualization platform that delivers the operational model of a virtual machine for the network. Virtual networks reproduce the Layer2 - Layer7 network model in software, allowing complex multi-tier network topologies to be created and provisioned programmatically in seconds. NSX also provides a new model for network security. Security profiles are distributed to and enforced by virtual ports and move with virtual machines.

NSX supports VMware’s software-defined data center strategy. By extending the virtualization capabilities of abstraction, pooling and automation across all data center resources and services, the software-defined data center architecture simplifies and speeds the provisioning and management of compute, storage and networking resources through policy-driven automation. By virtualizing the network, NSX delivers a new operational model for networking that breaks through current physical network barriers and enables data center operators to achieve better speed and agility with reduced costs.

NSX includes a library of logical networking services - logical switches, logical routers, logical firewalls, logical load balancers, logical VPN, and distributed security. You can create custom combinations of these services in isolated software-based virtual networks that support existing applications without modification, or deliver unique requirements for new application workloads. Virtual networks are programmatically provisioned and managed independent of networking hardware. This decoupling from hardware introduces agility, speed, and operational efficiency that can transform datacenter operations.

Examples of NSX use cases include:
- Data center automation
 - Speed up network provisioning
 - Simplify service insertion - virtual and physical
 - Streamline DMZ changes
- Self-Service Enterprise IT
 - Rapid application deployment with automated network and service provisioning for private clouds and test/dev environments
 - Isolated dev, test, and production environments on the same physical infrastructure
- Multi-tenant clouds
 - Automate network provisioning for tenants with customization and complete isolation
 - Maximize hardware sharing across tenants

NSX can be configured through the vSphere Web Client, a command line interface (CLI), and REST API.
This chapter includes the following topics:

- “NSX Capabilities,” on page 14
- “NSX Components,” on page 15

NSX Capabilities

NSX offers a variety of logical networking services.

Logical Switches

A cloud deployment or a virtual data center has a variety of applications across multiple tenants. These applications and tenants require isolation from each other for security, fault isolation, and avoiding overlapping IP addressing issues. The NSX logical switch creates logical broadcast domains or segments to which an application or tenant virtual machine can be logically wired. This allows for flexibility and speed of deployment while still providing all the characteristics of a physical network’s broadcast domains (VLANs) without physical Layer 2 sprawl or spanning tree issues.

A logical switch is distributed and can span arbitrarily large compute clusters. This allows for virtual machine mobility (vMotion) within the datacenter without limitations of the physical Layer 2 (VLAN) boundary. The physical infrastructure does not have to deal with MAC/FIB table limits since the logical switch contains the broadcast domain in software.

Logical Routers

Dynamic routing provides the necessary forwarding information between layer 2 broadcast domains, thereby allowing you to decrease layer 2 broadcast domains and improve network efficiency and scale. NSX extends this intelligence to where the workloads reside for doing East-West routing. This allows more direct virtual machine to virtual machine communication without the costly or timely need to extend hops. At the same time, NSX also provides North-South connectivity, thereby enabling tenants to access public networks.

Logical Firewall

Logical Firewall provides security mechanisms for dynamic virtual data centers. The Distributed Firewall component of Logical Firewall allows you to segment virtual datacenter entities like virtual machines based on VM names and attributes, user identity, vCenter objects like datacenters, and hosts as well as traditional networking attributes like IP addresses, VLANs, etc. The Edge Firewall component helps you achieve key perimeter security needs such as building DMZs based on IP/VLAN constructs, tenant to tenant isolation in multi-tenant virtual data centers, Network Address Translation (NAT), partner (extranet) VPNs, and User based SSL VPNs.

The Flow Monitoring feature displays network activity between virtual machines at the application protocol level. You can use this information to audit network traffic, define and refine firewall policies, and identify threats to your network.

Logical Virtual Private Networks (VPN)s

SSL VPN-Plus allows remote users to access private corporate applications. IPSec VPN offers site-to-site connectivity between an NSX Edge instance and remote sites. L2 VPN allows you to extend your datacenter by allowing virtual machines to retain network connectivity across geographical boundaries.
Logical Load Balancer

The NSX Edge load balancer enables network traffic to follow multiple paths to a specific destination. It distributes incoming service requests evenly among multiple servers in such a way that the load distribution is transparent to users. Load balancing thus helps in achieving optimal resource utilization, maximizing throughput, minimizing response time, and avoiding overload. NSX Edge provides load balancing up to Layer 7.

Service Composer

Service Composer helps you provision and assign network and security services to applications in a virtual infrastructure. You map these services to a security group, and the services are applied to the virtual machines in the security group.

Data Security provides visibility into sensitive data stored within your organization’s virtualized and cloud environments. Based on the violations reported by NSX Data Security, you can ensure that sensitive data is adequately protected and assess compliance with regulations around the world.

NSX Extensibility

VMware partners can integrate their solutions with the NSX platform, which enables customers to have an integrated experience across VMware products and partner solutions. Data center operators can provision complex, multi-tier virtual networks in seconds, independent of the underlying network topology or components.

NSX Components

This section describes NSX components. NSX can be configured through the vSphere Web Client, a command line interface (CLI), and REST API.

Figure 1-1. Interaction between NSX components
NSX Manager

The NSX Manager is the centralized network management component of NSX, and is installed as a virtual appliance on any ESX™ host in your vCenter Server environment. It provides an aggregated system view.

One NSX Manager maps to a single vCenter Server environment and multiple NSX Edge, vShield Endpoint, and NSX Data Security instances.

NSX vSwitch

NSX vSwitch is the software that operates in server hypervisors to form a software abstraction layer between servers and the physical network.

As the demands on datacenters continue to grow and accelerate, requirements related to speed and access to the data itself continue to grow as well. In most infrastructures, virtual machine access and mobility usually depend on physical networking infrastructure and the physical networking environments they reside in. This can force virtual workloads into less than ideal environments due to potential layer 2 or layer 3 boundaries, such as being tied to specific VLANs.

NSX vSwitch allows you to place these virtual workloads on any available infrastructure in the datacenter regardless of the underlying physical network infrastructure. This not only allows increased flexibility and mobility, but increased availability and resilience.

NSX Controller

NSX controller is an advanced distributed state management system that controls virtual networks and overlay transport tunnels.

NSX controller is the central control point for all logical switches within a network and maintains information of all virtual machines, hosts, logical switches, and VXLANs. The controller supports two new logical switch control plane modes, Unicast and Hybrid. These modes decouple NSX from the physical network. VXLANs no longer require the physical network to support multicast in order to handle the Broadcast, Unknown unicast, and Multicast (BUM) traffic within a logical switch. The unicast mode replicates all the BUM traffic locally on the host and requires no physical network configuration. In the hybrid mode, some of the BUM traffic replication is offloaded to the first hop physical switch to achieve better performance.

NSX Edge

NSX Edge provides network edge security and gateway services to isolate a virtualized network. You can install an NSX Edge either as a logical (distributed) router or as a services gateway.

The NSX Edge logical (distributed) router provides East-West distributed routing with tenant IP address space and data path isolation. Virtual machines or workloads that reside on the same host on different subnets can communicate with one another without having to traverse a traditional routing interface.

The NSX Edge gateway connects isolated, stub networks to shared (uplink) networks by providing common gateway services such as DHCP, VPN, NAT, dynamic routing, and Load Balancing. Common deployments of NSX Edge include in the DMZ, VPN Extranets, and multi-tenant Cloud environments where the NSX Edge creates virtual boundaries for each tenant.
NSX Edge Services

Dynamic Routing
Provides the necessary forwarding information between layer 2 broadcast domains, thereby allowing you to decrease layer 2 broadcast domains and improve network efficiency and scale. NSX extends this intelligence to where the workloads reside for doing East-West routing. This allows more direct virtual machine to virtual machine communication without the costly or timely need to extend hops. At the same time, NSX also provides North-South connectivity, thereby enabling tenants to access public networks.

Firewall
Supported rules include IP 5-tuple configuration with IP and port ranges for stateful inspection for all protocols.

Network Address Translation
Separate controls for Source and Destination IP addresses, as well as port translation.

Dynamic Host Configuration Protocol (DHCP)
Configuration of IP pools, gateways, DNS servers, and search domains.

Site-to-Site Virtual Private Network (VPN)
Uses standardized IPsec protocol settings to interoperate with all major VPN vendors.

L2 VPN
Provides the ability to stretch your L2 network.

SSL VPN-Plus
SSL VPN-Plus enables remote users to connect securely to private networks behind a NSX Edge gateway.

Load Balancing
Simple and dynamically configurable virtual IP addresses and server groups.

High Availability
High availability ensures an active NSX Edge on the network in case the primary NSX Edge virtual machine is unavailable.

NSX Edge supports syslog export for all services to remote servers.

Figure 1-2. Multi-Interface Edge
Distributed Firewall

NSX Distributed Firewall is a hypervisor kernel-embedded firewall that provides visibility and control for virtualized workloads and networks. You can create access control policies based on VMware vCenter objects like datacenters and clusters, virtual machine names and tags, network constructs such as IP/VLAN/VXLAN addresses, as well as user group identity from Active Directory. Consistent access control policy is now enforced when a virtual machine gets vMotioned across physical hosts without the need to rewrite firewall rules. Since Distributed Firewall is hypervisor-embedded, it delivers close to line rate throughput to enable higher workload consolidation on physical servers. The distributed nature of the firewall provides a scale-out architecture that automatically extends firewall capacity when additional hosts are added to a datacenter.
User Management

In many organizations, networking and security operations are handled by different teams or members. Such organizations may require a way to limit certain operations to specific users. This topic describes the options provided by NSX to configure such access control.

NSX also supports Single Sign On (SSO), which enables NSX to authenticate users from other identity services such as Active Directory, NIS, and LDAP.

User management in the vSphere Web Client is separate from user management in the CLI of any NSX component.

This chapter includes the following topics:

- “Configure Single Sign On,” on page 19
- “Managing User Rights,” on page 20
- “Managing the Default User Account,” on page 21
- “Assign a Role to a vCenter User,” on page 21
- “Edit a User Account,” on page 23
- “Change a User Role,” on page 24
- “Disable or Enable a User Account,” on page 24
- “Delete a User Account,” on page 24

Configure Single Sign On

Integrating the single sign on (SSO) service with NSX improves the security of user authentication for vCenter users and enables NSX to authenticate users from other identity services such as AD, NIS, and LDAP.

With SSO, NSX supports authentication using authenticated Security Assertion Markup Language (SAML) tokens from a trusted source via REST API calls. NSX Manager can also acquire authentication SAML tokens for use with other VMware solutions.

Prerequisites

- SSO service must be installed on the vCenter Server.
- NTP server must be specified so that the SSO server time and NSX Manager time is in sync. See “Edit the NSX Manager Date and Time,” on page 151.

Procedure

1. Log in to the NSX Manager virtual appliance.
2 Under Appliance Management, click Manage Settings.

3 Click NSX Management Service.

4 Click Edit next to Lookup Service.

5 Type the name or IP address of the host that has the lookup service.

6 Change the port number if required. The default port is 7444.

 The Lookup Service URL is displayed based on the specified host and port.

7 Type the vCenter administrator user name and password (for example, administrator@vsphere.local).

 This enables NSX Manager to register itself with the Security Token Service server.

8 Click OK.

 Confirm that the Lookup Service status is Connected.

What to do next

Assign a role to the SSO user.

Managing User Rights

A user’s role defines the actions the user is allowed to perform on a given resource. The role determine the user’s authorized activities on the given resource, ensuring that a user has access only to the functions necessary to complete applicable operations. This allows domain control over specific resources, or system-wide control if your right has no restrictions.

The following rules are enforced:

- A user can only have one role.
- You cannot add a role to a user, or remove an assigned role from a user. You can, however, change the assigned role for a user.

Table 2-1. NSX Manager User Roles

<table>
<thead>
<tr>
<th>Right</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Administrator</td>
<td>NSX operations and security.</td>
</tr>
<tr>
<td>NSX Administrator</td>
<td>NSX operations only: for example, install virtual appliances, configure port groups.</td>
</tr>
<tr>
<td>Security Administrator</td>
<td>NSX security only: for example, define data security policies, create port groups, create reports for NSX modules.</td>
</tr>
<tr>
<td>Auditor</td>
<td>Read only.</td>
</tr>
</tbody>
</table>

The scope of a role determines what resources a particular user can view. The following scopes are available for NSX users.

Table 2-2. NSX Manager User Scope

<table>
<thead>
<tr>
<th>Scope</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No restriction</td>
<td>Access to entire NSX system.</td>
</tr>
<tr>
<td>Limit access scope</td>
<td>Access to a specified Edge.</td>
</tr>
</tbody>
</table>

The Enterprise Administrator and NSX Administrator roles can only be assigned to vCenter users, and their access scope is global (no restrictions).
Managing the Default User Account

The NSX Manager user interface includes a user account, which has access rights to all resources. You cannot edit the rights of or delete this user. The default user name is admin and the default password is default or the password you specified during NSX Manager installation.

You can manage NSX Manager appliance admin user only through CLI commands.

Assign a Role to a vCenter User

When you assign a role to an SSO user, vCenter authenticates the user with the identity service configured on the SSO server. If the SSO server is not configured or is not available, the user is authenticated either locally or with Active Directory based on vCenter configuration.

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click Users.
5. Click Add.
 The Assign Role window opens.
6. Click Specify a vCenter user or Specify a vCenter group.
7. Type the vCenter User or Group name for the user. Refer to the example below for more information.
 Domain name: corp.vmware.com
 Alias: corp
 Group name: group1@corp.vmware.com
 User name: user1@corp.vmware.com
 When assigning a role to a group, type the group name with the domain name. For example, group1@corp.vmware.com. This allows the default NSX Manager user (admin) as well as the SSO default user (admin) to login to NSX Manager. This user name is for logging in to the NSX Manager user interface, and cannot be used to access NSX Manager CLIs.
 When assigning a role to a user, type the user alias. For example, user1@corp.
8. Click Next.
9. Select the role for the user and click Next. For more information on the available roles, see "Managing User Rights," on page 20.
10. Select the scope for the user and click Finish.
 The user account appears in the Users table.

Understanding Group-Based Role Assignments

Organizations create user groups for proper user management. After integration with SSO, NSX Manager can get the details of groups to which a user belongs. Instead of assigning roles to individual users who may belong to the same group, NSX Manager assigns roles to groups. The following scenarios illustrate how NSX Manager assigns roles.
Example: Role-Based Access Control Scenario

This scenario provides an IT network engineer (Sally Moore) access to NSX components in the following environment.

AD domain: corp.local, vCenter group: neteng@corp.local, user name: smoore@corp.local

Prerequisites: vCenter Server has been registered with NSX Manager, and SSO has been configured.

1 Assign a role to Sally.

a Log in to the vSphere Web Client.

b ClickNetworking & Security and then click NSX Managers.

c Click an NSX Manager in the Name column and then click the Manage tab.

d Click Users and then click Add.

The Assign Role window opens.

e Click Specify a vCenter group and type neteng@corp.local in Group.

f Click Next.

In Select Roles, click NSX Administrator and then click Next.

g In Limit Scope, select No restriction and click Finish.

2 Grant Sally permission to the datacenter.

a Click the Home icon and then click vCenter Home > Datacenters.

b Select a datacenter and click Actions > All vCenter Actions > Add Permission.

c Click Add and select the domain CORP.

d In Users and Groups, select Show Groups First.

e Select NetEng and click OK.

f In Assigned Role, select Read-only and un-select Propagate to children and click OK.

3 Log out of vSphere Web Client and log back in as smoore@corp.local.

Sally can perform NSX operations only. For example, install virtual appliances, create logical switches, and so on..

Example: Inherit Permissions Through a User-Group Membership Scenario

<table>
<thead>
<tr>
<th>Group option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Auditor (Read only)</td>
</tr>
<tr>
<td>Resources</td>
<td>Global root</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>John</td>
</tr>
<tr>
<td>Belongs to group</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>None</td>
</tr>
</tbody>
</table>

John belongs to group G1, which has been assigned the auditor role. John inherits the group role and resource permissions.
Example: User Member of Multiple Groups Scenario

<table>
<thead>
<tr>
<th>Group option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Auditor (Read only)</td>
</tr>
<tr>
<td>Resources</td>
<td>Global root</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>G2</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Security Administrator (Read and Write)</td>
</tr>
<tr>
<td>Resources</td>
<td>Datacenter1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Joseph</td>
</tr>
<tr>
<td>Belongs to group</td>
<td>G1, G2</td>
</tr>
<tr>
<td>Role assigned</td>
<td>None</td>
</tr>
</tbody>
</table>

Joseph belongs to groups G1 and G2 and inherits a combination of the rights and permissions of the Auditor and Security Administrator roles. For example, John has the following permissions:

- Read, write (Security Administrator role) for Datacenter1
- Read only (Auditor) for global root

Example: User Member of Multiple Roles Scenario

<table>
<thead>
<tr>
<th>Group option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Enterprise Administrator</td>
</tr>
<tr>
<td>Resources</td>
<td>Global root</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Bob</td>
</tr>
<tr>
<td>Belongs to group</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Security Administrator (Read and Write)</td>
</tr>
<tr>
<td>Resources</td>
<td>Datacenter1</td>
</tr>
</tbody>
</table>

Bob has been assigned the Security Administrator role, so he does not inherit the group role permissions. Bob has the following permissions:

- Read, write (Security Administrator role) for Datacenter1 and its child resources
- Enterprise Administrator role on Datacenter1

Edit a User Account

You can edit a user account to change the role or scope. You cannot edit the admin account.

Procedure

1. Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click Users.
5 Select the user you want to edit.
6 Click Edit.
7 Make changes as necessary.
8 Click Finish to save your changes.

Change a User Role

You can change the role assignment for all users, except for the admin user.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click Users.
5 Select the user you want to change the role for.
6 Click Change Role.
7 Make changes as necessary.
8 Click Finish to save your changes.

Disable or Enable a User Account

You can disable a user account to prevent that user from logging in to the NSX Manager. You cannot disable the admin user or a user who is currently logged into the NSX Manager.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click Users.
5 Select a user account.
6 Click the Enable or Disable icon.

Delete a User Account

You can delete any created user account. You cannot delete the admin account. Audit records for deleted users are maintained in the database and can be referenced in an Audit Log report.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click Users.
5 Select a user account.
6 Click Delete.
7 Click OK to confirm deletion.

If you delete a vCenter user account, only the role assignment for NSX Manager is deleted. The user account on vCenter is not deleted.
Grouping Objects

The Grouping feature enables you to create custom containers to which you can assign resources, such as virtual machines and network adapters, for Distributed Firewall protection. After a group is defined, you can add the group as source or destination to a firewall rule for protection.

This chapter includes the following topics:

- “Working with IP Address Groups,” on page 27
- “Working with MAC Address Groups,” on page 28
- “Working with IP Pools,” on page 29
- “Working with Security Groups,” on page 30
- “Working with Services and Service Groups,” on page 32

Working with IP Address Groups

Create an IP Address Group

You can create an IP address group and then add this group as the source or destination in a firewall rule. Such a rule can help protect physical machines from virtual machines or vice versa.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click IP Sets.
5. Click the Add (✚) icon and select IP Addresses.
 The Add IP Addresses window opens.
6. Type a name for the address group.
7. (Optional) Type a description for the address group.
8. Type the IP addresses to be included in the group.
9. Click OK.
Edit an IP Address Group

Prerequisites

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Managers**.
3. Click an NSX Manager in the **Name** column and then click the **Manage** tab.
4. Click the **Grouping Objects** tab and then click **IP Sets**.
5. Select the group that you want to edit and click the **Edit** (🚀) icon.
6. In the Edit IP Addresses dialog box, make the appropriate changes.
7. Click **OK**.

Delete an IP Address Group

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Managers**.
3. Click an NSX Manager in the **Name** column and then click the **Manage** tab.
4. Click the **Grouping Objects** tab and then click **IP Sets**.
5. Select the group that you want to delete and click the **Delete** (❌) icon.

Working with MAC Address Groups

Create a MAC Address Group

You can create a MAC address group consisting of a range of MAC addresses and then add this group as the source or destination in a Distributed Firewall rule. Such a rule can help protect physical machines from virtual machines or vice versa.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Managers**.
3. Click an NSX Manager in the **Name** column and then click the **Manage** tab.
4. Click the **Grouping Objects** tab and then click **MAC Sets**.
5. Click the **Add** (➕) icon.
6. Type a name and description for the address group.
7. Type the MAC addresses to be included in the group.
8. Click **OK**.
Edit a MAC Address Group

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click MAC Sets.
5. Select the group that you want to edit and click the Edit (edit) icon.
6. In the Edit MAC Addresses dialog box, make the appropriate changes.
7. Click OK.

Delete a MAC Address Group

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click MAC Sets.
5. Select the group that you want to delete and click the Delete (delete) icon.

Working with IP Pools
You can edit or delete an IP pool. For information on adding an IP pool, see “Configure Network Access SSL VPN-Plus,” on page 76 or “Configure Web Access SSL VPN-Plus,” on page 83.

Create an IP Pool

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click IP Pool.
5. Click the Add New IP Pool icon.
6. Type a name for the IP pool and type the default gateway.
7. Type the primary and secondary DNS and the DNS suffix and the prefix length.
8. Type the IP address ranges to be included in the pool and click OK.
Edit an IP Pool

You can edit an IP pool.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click IP Pool.
5. Select the IP pool that you want to edit.
6. Click the Edit (✏️) icon.
 The Edit IP Pool dialog box opens.
7. Make the required edits.
8. Click OK.

Delete IP Pool

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click IP Pool.
5. Select the IP pool that you want to delete and click the Delete icon.

Working with Security Groups

A security group is a collection of assets or grouping objects from your vSphere inventory.

Create a Security Group

You create a security group at the NSX Manager level.

Prerequisites
If you are creating a security group based on Active Directory group objects, ensure that one or more domains have been registered with NSX Manager. NSX Manager gets group and user information as well as the relationship between them from each domain that it is registered with. See “Register a Windows Domain with NSX Manager,” on page 154.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping tab.
5. Click the Security Group tab and then click the Add Security Group icon.
6. Type a name and description for the security group and click **Next**.

7. On the Dynamic Membership page, define the criteria that an object must meet for it to be added to the security group you are creating. This gives you the ability to include virtual machines by defining a filter criteria with a number of parameters supported to match the search criteria.

For example, you may include a criteria to add all virtual machines tagged with the specified security tag (such as AntiVirus.virusFound) to the security group. Security tags are case sensitive.

Or you can add all virtual machines containing the name W2008 AND virtual machines that are in the logical switch global_wire to the security group.

8. Click **Next**.

9. On the Select objects to include page, select the tab for the resource you want to add and select one or more resource to add to the security group. You can include the following objects in a security group:

 - Other security groups to nest within the security group you are creating.
 - Cluster
 - Logical Switch
 - Network
 - Virtual App
 - Datacenter
 - IP sets
 - Directory groups

 Note The AD configuration for NSX security groups is different from the AD configuration for vSphere SSO. NSX AD group configuration is for end users accessing guest virtual machines while vSphere SSO is for administrators using vSphere and NSX.

 - MAC Sets
 - Security tag
 - vNIC
 - Virtual Machine
 - Resource Pool
 - Distributed Virtual Port Group

The objects selected here are always included in the security group regardless of whether or not they match the criteria in Step 4.

When you add a resource to a security group, all associated resources are automatically added. For example, when you select a virtual machine, the associated vNIC is automatically added to the security group.
10 Click Next and select the objects that you want to exclude from the security group.

The objects selected here are always excluded from the security group regardless of whether or not they match the dynamic criteria.

11 Click Finish.

Membership of a security group is determined as follows:

\[
\text{Expression result (derived from step 4)} + \text{Inclusions (specified in step 6)} - \text{Exclusion (specified in step 7)}
\]

which means that inclusion items are first added to the expression result. Exclusion items are then subtracted from the combined result.

Edit a Security Group

Procedure

1. Log in to the vSphere Web Client.

2. Click Networking & Security and then click NSX Managers.

3. Click an NSX Manager in the Name column and then click the Manage tab.

4. Click the Grouping Objects tab and then click Security Group.

5. Select the group that you want to edit and click the Edit (edit) icon.

6. In the Edit Security Group dialog box, make the appropriate changes.

7. Click OK.

Delete a Security Group

Procedure

1. Log in to the vSphere Web Client.

2. Click Networking & Security and then click NSX Managers.

3. Click an NSX Manager in the Name column and then click the Manage tab.

4. Click the Grouping Objects tab and then click Security Group.

5. Select the group that you want to delete and click the Delete (delete) icon.

Working with Services and Service Groups

A service is a protocol-port combination, and a service group is a group of services or other service groups.

Create a Service

You can create a service and then define rules for that service.

Procedure

1. Log in to the vSphere Web Client.

2. Click Networking & Security and then click NSX Managers.

3. Click an NSX Manager in the Name column and then click the Manage tab.

4. Click the Grouping Objects tab and then click Service.

5. Click the Add icon.
6 Type a **Name** to identify the service.
7 Type a **Description** for the service.
8 Select a **Protocol** to which you want to add a non-standard port.
9 Type the port number(s) in **Ports**.
10 Click **OK**.

The service appears in the Services table.

Create a Service Group

You can create a service group and then define rules for that service group.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Managers**.
3 Click an NSX Manager in the **Name** column and then click the **Manage** tab.
4 Click the **Grouping Objects** tab and then click **Service Groups**.
5 Click **Service Groups**.
6 Click the **Add** icon.
7 Type a **Name** to identify the service group.
8 Type a **Description** for the service.
9 In Members, select the services or service groups that you want to the group.
10 Click **OK**.

Edit a Service or Service Group

You can edit services and service groups.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Managers**.
3 Click an NSX Manager in the **Name** column and then click the **Manage** tab.
4 Click the **Grouping Objects** tab and then click **Service** or **Service Groups**.
5 Select a custom service or service group and click the **Edit** icon.
6 Make the appropriate changes.
7 Click **OK**.

Delete a Service or Service Group

You can delete services or service group.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Managers**.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click the Grouping Objects tab and then click Service or Service Groups.
5 Select a custom service or service group and click the Delete (×) icon.
6 Click Yes.
 The service or service group is deleted.
Logical Switches

A cloud deployment or a virtual data center has a variety of applications across multiple tenants. These applications and tenants require isolation from each other for security, fault isolation, and avoiding overlapping IP addressing issues. The NSX logical switch creates logical broadcast domains or segments to which an application or tenant virtual machine can be logically wired. This allows for flexibility and speed of deployment while still providing all the characteristics of a physical network’s broadcast domains (VLANs) without physical Layer 2 sprawl or spanning tree issues.

A logical switch is distributed and can span arbitrarily large compute clusters. This allows for virtual machine mobility (vMotion) within the datacenter without limitations of the physical Layer 2 (VLAN) boundary. The physical infrastructure does not have to deal with MAC/FIB table limits since the logical switch contains the broadcast domain in software.

A logical switch is mapped to a unique VXLAN, which encapsulates the virtual machine traffic and carries it over the physical IP network.

The NSX controller is the central control point for all logical switches within a network and maintains information of all virtual machines, hosts, logical switches, and VXLANs. The controller supports two new logical switch control plane modes, Unicast and Hybrid. These modes decouple NSX from the physical network. VXLANs no longer require the physical network to support multicast in order to handle the Broadcast, Unknown unicast, and Multicast (BUM) traffic within a logical switch. The unicast mode replicates all the BUM traffic locally on the host and requires no physical network configuration. In the hybrid mode, some of the BUM traffic replication is offloaded to the first hop physical switch to achieve better performance. This mode requires IGMP snooping to be turned on the first hop physical switch.

Virtual machines within a logical switch can use and send any type of traffic including IPv6 and multicast.
You can extend a logical switch to a physical device by adding an L2 bridge. See Chapter 5, “L2 Bridges,” on page 47.

You must have the Super Administrator or Enterprise Administrator role permissions to manage logical switches.

This chapter includes the following topics:

- “Create a Logical Switch,” on page 36
- “Connect Virtual Machines to a Logical Switch,” on page 38
- “Test Logical Switch Connectivity,” on page 38
- “Prevent Spoofing on a Logical Switch,” on page 39
- “Edit a Logical Switch,” on page 39
- “Working with Transport Zones,” on page 39
- “Logical Switch Scenario,” on page 42

Create a Logical Switch

Prerequisites

- You have installed the network virtualization components on the appropriate clusters
- You have configured VXLAN on the appropriate clusters

See NSX Installation and Upgrade Guide.

Add a Transport Zone

A transport zone defines the span of a logical switch.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Installation.
3. Click Logical Network Preparation and then click Transport Zones.
4. Click the New Transport Zone icon.
5. In the New Transport Zone dialog box, type a name and description for the transport zone.
6. Depending on whether you have a controller node in your environment, or you want to use multicast addresses, select the control plane mode.
 - Multicast: Multicast IP addresses on physical network is used for the control plane. This mode is recommended only when you are upgrading from older VXLAN deployments. Requires PIM/IGMP on physical network.
 - Unicast: The control plane is handled by an NSX controller. All unicast traffic leverages headend replication. No multicast IP addresses or special network configuration is required.
 - Hybrid: The optimized unicast mode. Offloads local traffic replication to physical network (L2 multicast). This requires IGMP snooping on the first-hop switch, but does not require PIM. First-hop switch handles traffic replication for the subnet.
7. Select the clusters to be added to the transport zone.
8. Click OK.
Add a Logical Switch

A logical switch reproduces Layer 2 and Layer 3 switching functionality (unicast, multicast, broadcast) in a virtual environment completely decoupled from underlying hardware.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Logical Switches**.
3. Click the **New Logical Switch** icon.
4. Type a name and description for the logical switch.
5. Select the transport zone in which you want to create the virtualized network. The Scope Details panel displays the clusters that are part of the selected transport zone and the services available to be deployed on the scope.
6. By default, the logical switch inherits the control plane mode from the transport zone. You can change it to one of the other available modes:
 - **Unicast**: The control plane is handled by an NSX controller. All traffic replication is handled locally by the hypervisor. No multicast IP addresses or special network configuration is required.
 - **Hybrid**: The optimized unicast mode. Offloads local traffic replication to physical network. This requires IGMP snooping on the first-hop switch, but does not require PIM. First-hop switch handles traffic replication for the subnet.
 - **Multicast**: Multicast IP addresses on physical network is used for the control plane. This mode is recommended only when you are upgrading from older VXLAN deployments. Requires PIM/IGMP on physical network.
7. Click **OK**.

What to do next

Click the logical switch in the Name column to view the logical switch details.

Connect a Logical Switch to an NSX Edge

Connecting a Logical Switch to an NSX Edge services gateway or an NSX Edge logical router provides East-West traffic routing (among the logical switches) or North-South traffic routing to the external world or to provide advanced services.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Logical Switches**.
3. Select the logical switch that you want to connect an NSX Edge.
4. Click the **Add Edge Gateway** icon.
5. Select the NSX Edge to which you want to connect the logical switch and click **Next**.
6. Select the interface that you want to connect to the logical switch and click **Next**.
 - A logical network is typically connected to an internal interface.
7. On the Edit Edge Gateway Interface page, type a name for the NSX Edge interface.
8. Click **Internal** or **External** to indicate whether this is an internal or external interface.
9 Select the connectivity status of the interface.
10 If the NSX Edge to which you are connecting the logical switch has **Manual HA Configuration** selected, specify two management IP addresses in CIDR format.
11 Edit the default MTU if required.
12 Click **Next**.
13 Review the NSX Edge connection details and click **Finish**.

Deploy Services on a Logical Switch

You can deploy third party services on a Logical Switch.

Prerequisites

One or more third party virtual appliances must have been installed in your infrastructure.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **Logical Switches**.
3 Select the logical switch on which you want to deploy services.
4 Click the **Add Service Profile** icon.
5 Select the service and service profile that you want to apply.
6 Click **OK**.

Connect Virtual Machines to a Logical Switch

You can connect virtual machines to a Logical Switch. This makes it easy to identify the port groups that belong to a Logical Switch in your vCenter inventory.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **Logical Switches**.
3 Select the Logical Switch to which you want to add virtual machines.
4 Click the **Add** icon.
5 Select the vNics that you want to connect.
6 Click **Next**.
7 Review the vNics you selected.
8 Click **Finish**.

Test Logical Switch Connectivity

A ping test checks if two hosts in a VXLAN transport network can reach each other.

1 Log in to the vSphere web client.
2 Click **Networking & Security** and then click **Logical Switches**.
3 In the **Name** column, click the logical network that you want to test.
4 Click the Hosts tab.

5 Select a host.

6 Click the More Actions (.enumeration) icon and select Test Connectivity.

The Test Connectivity Between Hosts in the Network dialog box opens. The host you selected in step 7 appears in the Source host field. Select Browse to select a different source host.

7 Select the size of the test packet.

VXLAN standard size is 1550 bytes (should match the physical infrastructure MTU) without fragmentation. This allows NSX to check connectivity and verify that the infrastructure is prepared for VXLAN traffic.

Minimum packet size allows fragmentation. Hence, NSX can check only connectivity but not whether the infrastructure is ready for the larger frame size.

8 In the Destination panel, click Browse Hosts.

9 In the Select Host dialog box, select the destination host.

10 Click Select.

11 Click Start Test.

The host-to-host ping test results are displayed.

Prevent Spoofing on a Logical Switch

After synchronizing with the vCenter Server, NSX Manager collects the IP addresses of all vCenter guest virtual machines from VMware Tools on each virtual machine. NSX does not trust all IP address provided by VMware Tools on a virtual machine. If a virtual machine has been compromised, the IP address can be spoofed and malicious transmissions can bypass firewall policies.

SpoofGuard allows you to authorize the IP addresses reported by VMware Tools, and alter them if necessary to prevent spoofing. SpoofGuard inherently trusts the MAC addresses of virtual machines collected from the VMX files and vSphere SDK. Operating separately from the Firewall rules, you can use SpoofGuard to block traffic determined to be spoofed.

For more information, see “Using SpoofGuard,” on page 64.

Edit a Logical Switch

You can edit the name, description, and control plane mode of a logical switch.

Procedure

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click Logical Switches.

3 Select the logical switch that you want to edit.

4 Click the Edit icon.

5 Make the desired changes.

6 Click OK.

Working with Transport Zones
Add a Transport Zone

A transport zone defines the span of a logical switch.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Installation.
3. Click Logical Network Preparation and then click Transport Zones.
4. Click the New Transport Zone icon.
5. In the New Transport Zone dialog box, type a name and description for the transport zone.
6. Depending on whether you have a controller node in your environment, or you want to use multicast addresses, select the control plane mode.
 - **Multicast**: Multicast IP addresses on physical network is used for the control plane. This mode is recommended only when you are upgrading from older VXLAN deployments. Requires PIM/IGMP on physical network.
 - **Unicast**: The control plane is handled by an NSX controller. All unicast traffic leverages headend replication. No multicast IP addresses or special network configuration is required.
 - **Hybrid**: The optimized unicast mode. Offloads local traffic replication to physical network (L2 multicast). This requires IGMP snooping on the first-hop switch, but does not require PIM. First-hop switch handles traffic replication for the subnet.
7. Select the clusters to be added to the transport zone.
8. Click OK.

View and Edit a Transport Zone

You can view the logical networks in a selected transport zone, the clusters in, and the control plane mode for that transport zone.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Installation.
3. Click Logical Network Preparation and then click Transport Zones.
4. Double-click a transport zone.
 - The Summary tab displays the name and description of the transport zone as well as the number of logical switches associated with it. Transport Zone Details displays the clusters in the transport zone.
5. Click the Edit Settings icon in the Transport Zone Details section to edit the name, description, or control plane mode of the transport zone.
 - If you change the transport zone control plane mode, select Migrate existing Logical Switches to the new control plane mode to change the control plane mode for existing logical switches linked to this transport zone. If you do not select this check box, only the logical switches linked to this transport zone after the edit is done will have the new control plane mode.
6. Click OK.
Expand a Transport Zone

You can add clusters to a transport zone, which stretches all existing transport zones to become available on the newly added clusters.

Prerequisites

The clusters you add to a transport zone have the network infrastructure installed and are configured for VXLAN. See the *NSX Installation and Upgrade Guide*.

Procedure

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *Installation*.
3. Click *Logical Network Preparation* and then click *Transport Zones*.
4. Click a transport zone.
5. In *Transport Zones Details*, click the *Add Cluster* icon.
6. Select the clusters you want to add to the transport zone.
7. Click OK.

Contract a Transport Zone

You can remove clusters from a transport zone. Existing transport zones may be shrunk to accommodate the contracted scope.

Procedure

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *Installation*.
3. Click *Logical Network Preparation* and then click *Transport Zones*.
4. Double-click a transport zone.
5. In *Transport Zones Details*, click the *Remove Clusters* icon.
6. Select the clusters you want to remove.
7. Click OK.
Logical Switch Scenario

This scenario presents a situation where company ACME Enterprise has several ESX hosts on two clusters in a datacenter, ACME_Datacenter. The Engineering (on port group PG-Engineering) and Finance departments (on port group PG-Finance) are on Cluster1. The Marketing department (PG-Marketing) is on Cluster2. Both clusters are managed by a single vCenter Server 5.5.

Figure 4-1. ACME Enterprise network before implementing logical switches

ACME is running out of compute space on Cluster1 while Cluster2 is under-utilized. The ACME network supervisor asks John Admin (ACME's virtualization administrator) to figure out a way to extend the Engineering department to Cluster2 in a way that virtual machines belonging to Engineering on both clusters can communicate with each other. This would enable ACME to utilize the compute capacity of both clusters by stretching ACME's L2 layer.

If John Admin were to do this the traditional way, he would need to connect the separate VLANs in a special way so that the two clusters can be in the same L2 domain. This might require ACME to buy a new physical device to separate traffic, and lead to issues such as VLAN sprawl, network loops, and administration and management overhead.

John Admin remembers seeing a logical network demo at VMworld, and decides to evaluate NSX. He concludes that building a logical switch across dvSwitch1 and dvSwitch2 will allow him to stretch ACME's L2 layer. Since John can leverage the NSX controller, he will not have to touch ACME's physical infrastructure as NSX works on top of existing IP networks.
Figure 4-2. ACME Enterprise implements a logical switch

Once John Admin builds a logical switch across the two clusters, he can vMotion virtual machines within the vDS.

Figure 4-3. vMotion on a logical network

Let us walk through the steps that John Admin follows to build a logical network at ACME Enterprise.
John Admin Assigns Segment ID Pool and Multicast Address Range to NSX Manager

John Admin must specify the segment ID pool he received to isolate Company ABC’s network traffic.

Prerequisites

1. John Admin verifies that dvSwitch1 and dvSwitch2 are VMware distributed switches version 5.5.
2. John Admin sets the Managed IP address for the vCenter Server.
 a. Select **Administration > vCenter Server Settings > Runtime Settings**.
 b. In vCenter Server Managed IP, type **10.115.198.165**.
 c. Click **OK**.
4. John Admin gets a segment ID pool (5000 - 5250) from ACME’s NSX Manager administrator. Since he is leveraging the NSX controller, he does not require multicast in his physical network.
5. John Admin creates an IP pool so that he can assign a static IP address to the VXLAN VTEPs from this IP pool. See “Add an IP Pool,” on page 77.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Installation**.
3. Click the **Logical Network Preparation** tab and then click **Segment ID**.
4. Click **Edit**.
5. In Segment ID pool, type **5000 – 5250**.
6. Do not select **Enable multicast addressing**.
7. Click **OK**.

John Admin Configures VXLAN Transport Parameters

John Admin configures VXLAN on Cluster 1 and Cluster 2, where he maps each cluster to a vDS. When he maps a cluster to a switch, each host in that cluster is enabled for logical switches.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Installation**.
3. Click the **Host Preparation** tab.
4. For Cluster1, select **Configure** in the VXLAN column.
5. In the Configuring VXLAN networking dialog box, select dvSwitch1 as the virtual distributed switch for the cluster.
6. Type **10** for dvSwitch1 to use as the ACME transport VLAN.
7. In Specify Transport Attributes, leave 1600 as the Maximum Transmission Units (MTU) for dvSwitch1. MTU is the maximum amount of data that can be transmitted in one packet before it is divided into smaller packets. John Admin knows that VXLAN virtual wire traffic frames are slightly larger in size because of the encapsulation, so the MTU for each switch must be set to 1550 or higher.
8. In VMKNic IP Addressing, select Use IP Pool and select an IP pool.
9. For VMKNic Teaming Policy, select LACPv2.
10. Click Add.
11. Repeat steps 4 through step 8 to configure VXLAN on Cluster2.

After John admin maps Cluster1 and Cluster2 to the appropriate switch, the hosts on those clusters are prepared for logical switches:

1. A VXLAN kernel module and vmknic is added to each host in Cluster 1 and Cluster 2.
2. A special dvPortGroup is created on the vSwitch associated with the logical switch and the VMKNic is connected to it.

John Admin Adds a Transport Zone

The physical network backing a logical network is called a transport zone. A transport zone is the compute diameter spanned by a virtualized network.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Installation.
3. Click Logical Network Preparation and then click Transport Zones.
4. Click the New Transport Zone icon.
5. In Name, type ACME Zone.
6. In Description, type Zone containing ACME's clusters.
7. Select Cluster 1 and Cluster 2 to add to the transport zone.
8. In Control Plane Mode, select Unicast.
9. Click OK.

John Admin Creates a Logical Switch

After John Admin configures VXLAN transport parameters, he is ready to create a logical switch.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Logical Switches.
3. Click the New Logical Network icon.
4. In Name, type ACME logical network.
5. In Description, type Logical Network for extending ACME Engineering network to Cluster2.
6. In Transport Zone, select ACME Zone.
7. Click OK.

NSX creates a logical switch providing L2 connectivity between dvSwitch1 and dvSwitch2.

What to do next

John Admin can now connect ACME's production virtual machines to the logical switch, and connect the logical switch to an NSX Edge services gateway or Logical Router.
L2 Bridges

You can create an L2 bridge between a logical switch and a VLAN, which enables you to migrate virtual workloads to physical devices with no impact on IP addresses. A logical network can leverage a physical gateway and access existing physical network and security resources by bridging the logical switch broadcast domain to the VLAN broadcast domain.

The L2 bridge runs on the host that has the NSX Edge logical router virtual machine. An L2 bridge instance maps to a single VLAN, but there can be multiple bridge instances. The logical router cannot be used as a gateway for devices connected to a bridge.

If High Availability is enabled on the Logical Router and the primary NSX Edge virtual machine goes down, the bridge is automatically moved over to the host with the secondary virtual machine. For this seamless migration to happen, VLAN must have been configured on the host that has the secondary NSX Edge virtual machine.

Note that you should not use an L2 bridge to connect a logical switch to another logical switch, a VLAN network to another VLAN network, or to interconnect datacenters.
Add L2 Bridge

You can add a bridge from a logical switch to a distributed virtual port group.

Prerequisites

An NSX logical router must be deployed in your environment.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Manage** and then click **Bridging**.
5. Click the **Add** icon.
6. Type a name for the bridge.
7. Select the logical switch that you want to create a bridge for.
8. Select the distributed virtual port group that you want to bridge the logical switch to.
9. Click **OK**.
Logical Router

You can specify static and dynamic routing for each NSX Edge.

Dynamic routing provides the necessary forwarding information between layer 2 broadcast domains, thereby allowing you to decrease layer 2 broadcast domains and improve network efficiency and scale. NSX extends this intelligence to where the workloads reside for doing East-West routing. This allows more direct virtual machine to virtual machine communication without the costly or timely need to extend hops. At the same time, NSX also provides North-South connectivity, thereby enabling tenants to access public networks.

This chapter includes the following topics:

- “Specify Global Configuration,” on page 49
- “Add a Static Route,” on page 50
- “Configure OSPF Protocol,” on page 50
- “Configure BGP Protocol,” on page 51
- “Configure IS-IS Protocol,” on page 52
- “Configure Route Redistribution,” on page 53

Specify Global Configuration

You can configure the default gateway for static routes and dynamic routing details.

You must have a working NSX Edge instance before you can configure routing on it. For information on setting up NSX Edge, see “NSX Edge Operations,” on page 156.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click Routing and then click Global Configuration.
5. To specify the default gateway, click Edit next to Default Gateway.
 a. Select an interface from which the next hop towards the destination network can be reached.
 b. Type the gateway IP if required.
 c. Edit the MTU if required and type a description.
 d. Click Save.
To configure dynamic routing, click **Edit** next to **Dynamic Routing Configuration**.

a. **Router ID** is a unique identifier to identify the peer that is sending routes. Select an external interface whose IP you want to use as the Router ID or select **Custom ID** and type an IP address.

b. Do not enable any protocols here.

c. Select **Enable Logging** to save logging information and select the log level.

Click **Publish Changes**.

Add a Static Route

You can add a static route for a destination subnet or host.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **Routing** tab.
5. Select **Static Routes** from the left panel.
6. Click the **Add** icon.
7. Type a description for the static route.
8. Select the interface on which you want to add a static route.
9. Type the **Network** in CIDR notation.
10. Type the IP address of the **Next Hop**.
11. For **MTU**, edit the maximum transmission value for the data packets if required.

 The MTU cannot be higher than the MTU set on the NSX Edge interface.
12. Click **OK**.

Configure OSPF Protocol

NSX Edge supports OSPF, an interior gateway protocol that routes IP packets only within a single routing domain. It gathers link state information from available routers and constructs a topology map of the network. The topology determines the routing table presented to the Internet Layer, which makes routing decisions based on the destination IP address found in IP packets.

OSPF routing policies provide a dynamic process of traffic load balancing between routes of equal cost.

An OSPF network is divided into routing areas to optimize traffic. An area is a logical collection of OSPF networks, routers, and links that have the same area identification.

Areas are identified by an Area ID.

Prerequisites

Router ID must have been specified. See “Specify Global Configuration,” on page 49.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3 Double-click an NSX Edge.
4 Click Routing and then click OSPF.
5 Do one of the following.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For an Edge services gateway</td>
<td>Click Enable.</td>
</tr>
<tr>
<td>For a logical router</td>
<td>a Click Edit at the top right corner of the window.</td>
</tr>
<tr>
<td></td>
<td>b Click Enable OSPF.</td>
</tr>
<tr>
<td></td>
<td>c In Forwarding Address, type an IP address that is to be used by the router datapath module in the hosts to forward datapath packets.</td>
</tr>
<tr>
<td></td>
<td>d In Protocol Address, type a unique IP address within the same subnet as the Forwarding Address. Protocol address is used by the protocol to form adjacencies with the peers.</td>
</tr>
</tbody>
</table>

6 In Area Definitions, click the Add icon.
7 Type an Area ID. NSX Edge supports an area ID in the form of an IP address or decimal number.
8 Select Stub in the Type field. Typically, there is no hierarchical routing beyond the stub.
9 Select the type of Authentication. OSPF performs authentication at the area level, hence all routers within the area must have the same authentication and corresponding password configured. For MD5 authentication to work, both the receiving and transmitting routers must have the same MD5 key.
 a None: No authentication is required, which is the default value.
 b Password: In this method of authentication, a password is included in the transmitted packet.
 c MD5: This authentication method uses MD5 (Message Digest type 5) encryption. An MD5 checksum is included in the transmitted packet.
10 For Password or MD5 type authentication, type the password or MD5 key.
11 Click OK.
12 In Area to Interface Mapping, click the Add icon to map the interface that belongs to the OSPF area.
13 Select the interface that you want to map and the OSPF area that you want to map it to.
14 Hello Interval displays the default interval between hello packets that are sent on the interface. Edit the default value if required.
15 Dead Interval displays the default interval during which at least one hello packet must be received from a neighbor before the router declares that neighbor down. Edit the default interval if required.
16 Priority displays the default priority of the interface. The interface with the highest priority is the designated router. Edit the default value if required.
17 Cost of an interface displays the default overhead required to send packets across that interface. The cost of an interface is inversely proportional to the bandwidth of that interface. Edit the default value if required.
18 Click OK and then click Publish Changes.

Configure BGP Protocol

Border Gateway Protocol (BGP) makes core routing decisions. It includes a table of IP networks or prefixes which designate network reachability among autonomous systems.

An underlying connection between two BGP speakers is established before any routing information is exchanged. Keep alive messages are sent out by the BGP speakers in order to keep this relationship alive. Once the connection is established, the BGP speakers exchange routes and synchronize their tables.
Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Routing** and then click **BGP**.
5. Click **Edit**.
6. In the Edit BGP Configuration dialog box, click Enable BGP.
7. Type the router ID in **Local AS**. Type the Local AS. This is advertised when BGP peers with routers in other autonomous systems (AS). The path of ASs that a route traverses is used as one metric when selecting the best path to a destination.
8. Click **Save**.
9. In **Neighbors**, click the **Add** icon.
10. Type the IP address of the neighbor.
11. Type the remote AS.
12. Edit the default weight for the neighbor connection if required.
13. **Hold Down Timer** displays interval (180 seconds) after not receiving a keep alive message that the software declares a peer dead. Edit if required.
14. **Keep Alive Timer** displays the default frequency (60 seconds) with which the software sends keep alive messages to its peer. Edit if required.
15. If authentication is required, type the authentication password. Each segment sent on the connection between the neighbors is verified. MD5 authentication must be configured with the same password on both BGP neighbors, otherwise, the connection between them will not be made.
16. To specify route filtering from a neighbor, click the **Add** icon in the **BGP Filters** area.
17. Select the direction to indicate whether you are filtering traffic to or from the neighbor.
18. Select the action to indicate whether you are allowing or denying traffic.
19. Type the network in CIDR format that you want to filter to/from the neighbor.
20. Type the IP prefixes that are to be filtered and click **OK**.
21. Click **Publish Changes**.

Configure IS-IS Protocol

Intermediate System to Intermediate System (IS-IS) is a routing protocol designed to move information by determining the best route for datagrams through a packet-switched network.

A two-level hierarchy is used to support large routing domains. A large domain may be divided into areas. Routing within an area is referred to as Level 1 routing. Routing between areas is referred to as Level 2 routing. A Level 2 Intermediate System (IS) keeps track of the paths to destination areas. A Level 1 IS keeps track of the routing within its own area. For a packet going to another area, a Level 1 IS sends the packet to the nearest Level 2 IS in its own area, regardless of what the destination area is. Then the packet travels via Level 2 routing to the destination area, where it may travel via Level 1 routing to the destination. This is referred to as Level-1-2.

Note The IS-IS protocol is currently experimental.
Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Routing** and then click **IS-IS**.
5. Click **Edit** and then click **Enable IS-IS**.
6. Type the System ID and select the IS-IS type.
 - Level 1 is intra-area, Level 2 is inter-area, and Level 1-2 is both. Level 2 routers are inter-area routers that can only form relationships with other Level 2 routers. Routing information is exchanged between Level 1 routers and other Level 1 routers, and Level 2 routers only exchange information with other Level 2 routers. Level 1-2 routers exchange information with both levels and are used to connect the inter-area routers with the intra-area routers.
7. Type the **Domain Password** and **Area Password**. The area password is inserted and checked for Level 1 link state packets, and the domain password for Level 2 link state packets.
8. Define the IS-IS areas.
 - Click the **Add** icon in **Areas**.
 - Type up to three area IP addresses.
 - Click **Save**.
9. Configure interface mapping.
 - Click the **Add** icon in **Interface Mapping**.
 - Choose the Circuit Type to indicate whether you are configuring the interface for Level-1, Level-2, or Level-1-2 adjacency.
 - **Hello Interval** displays the default interval in milliseconds between hello packets that are sent on the interface. Edit the default value if required.
 - **Hello Multiplier** displays the default number of IS-IS hello packets a neighbor must miss before it is declared down. Edit the default value if required.
 - **LSP Interval** displays the time delay in milliseconds between successive IS-IS link-state packet (LSP) transmissions. Edit the default value if required.
 - **Metric** displays default metric for the interface. This is used to calculate the cost from each interface via the links in the network to other destinations. Edit the default value if required.
 - **Priority** displays the priority of the interface. The interface with the highest priority becomes the designated router. Edit the default value if required.
 - In Mesh Group, type the number identifying the mesh group to which this interface belongs. Edit the default value if required.
 - Type the authentication password for the interface and click OK. Edit the default value if required.
10. Click **Publish Changes**.

Configure Route Redistribution

By default, routers share routes with other routers running the same protocol. In a multi-protocol environment, you must configure route redistribution for cross-protocol route sharing.
Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click Routing and then click Route Redistribution.
5. Click Change next to Route Redistribution Status.
6. Select the protocols for which you enable route redistribution and click OK.
7. Add an IP prefix.
 Entries in the IP Prefix list are processed sequentially.
 a. Click the Add icon in IP Prefixes.
 b. Type a name and IP address of the network.
 c. Click OK.
8. Specify redistribution criteria for the IP prefix.
 a. Click the Add icon in Route Redistribution table.
 b. In Learner Protocol, select the protocol that is to learn routes from other protocols.
 c. In Allow Learning from, select the protocols from which routes should be learned.
 d. Click OK.
9. Click Publish Changes.
Logical Firewall provides security mechanisms for dynamic virtual data centers, and consists of two components to address different deployment use cases. Distributed Firewall focuses on East-West access controls, and Edge Firewall focuses on the North-South traffic enforcement at the tenant or datacenter perimeter. Together, these components address the end-to-end firewall needs of virtual datacenters. You can choose to deploy either of these technologies independently, or deploy both of them.

This chapter includes the following topics:

- “Working with Distributed Firewall,” on page 55
- “Working with Edge Firewall,” on page 67

Working with Distributed Firewall

Distributed Firewall offers multiple sets of configurable rules: Layer 3 (L3) rules (General tab) and Layer 2 (L2) rules (Ethernet tab). Layer 2 firewall rules are processed before Layer 3 rules.

The default firewall rule allows all L3 and L2 traffic to pass through all clusters in your infrastructure. The default rule is always at the bottom of the rules table and cannot be deleted or added to. However, you can change the Action element of the rule from Allow to Block, add comments for the rule, and indicate whether traffic for that rule should be logged.

User defined firewall rules are enforced in top-to-bottom ordering, with a per-virtual NIC level precedence. Each traffic session is checked against the top rule in the Firewall table before moving down the subsequent rules in the table. The first rule in the table that matches the traffic parameters is enforced.

A firewall rule can have one or more of the following entities as the source or destination:

- Datacenter
- Cluster
- Network
- Virtual app
- Resource pool
- Virtual machine
- vNIC
- Logical switch
- IPSet. Both IPv4 and IPv6 addresses are supported. For information on creating an IPSet, see “Create an IP Address Group,” on page 27.
Security group. For information on creating a security group, see “Create a Security Group,” on page 30.

Running open VMware Tools on guest or workload virtual machines has not been validated with Distributed Firewall.

Edit the Default Distributed Firewall Rule

Default firewall settings apply to traffic that does not match any of the user-defined firewall rules.

The default firewall rule allows all L3 and L2 traffic to pass through all clusters in your infrastructure. The default rule is always at the bottom of the rules table and cannot be deleted or added to. However, you can change the Action element of the rule from Allow to Block, add comments for the rule, and indicate whether traffic for that rule should be logged.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Firewall.
3. Expand the Default Section and make the required changes.

You can only edit **Action** and **Log**, or add comments to the default rule.

Working with Firewall Rules

You can configure and publish L3 and L2 firewall rules before or after installing an application. Once an application is installed, the last published firewall rules are applied.

IMPORTANT

Firewall rules are enforced only on clusters on which the network virtualization hardware has been installed. See the vShield Installation and Upgrade Guide.

Add a Distributed Firewall Rule

You add firewall rules at the global scope. You can then narrow down the scope (datacenter, cluster, distributed virtual port group, network, virtual machine, vNIC, or virtual wire) at which you want to apply the rule. Firewall allows you to add multiple objects at the source and destination levels for each rule, which helps reduce the total number of firewall rules to be added.

Prerequisites

If you are adding an identity based firewall rule, ensure that:

- One or more domains have been registered with NSX Manager. NSX Manager gets group and user information as well as the relationship between them from each domain that it is registered with. See “Register a Windows Domain with NSX Manager,” on page 154.
- A security group based on Active Directory objects has been created which can be used as the source or destination of the rule. See “Create a Security Group,” on page 30.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Firewall.
3. Ensure that you are in the **General** tab to add an L3 rule. Click the **Ethernet** tab to add an L2 rule.
4 In the section that you add a rule, click **Add rule** icon.

A new any any allow rule is added at the top of the section. If the system defined rule is the only rule in the section, the new rule is added above the default rule.

If you want to add a rule at a specific place in a section, select a rule. In the No. column, click + and select **Add Above** or **Add Below**.

5 Point to the **Name** cell of the new rule and click +.

6 Type a name for the new rule.
7 Point to the **Source** cell of the new rule.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click IP</td>
<td>To specify source as an IP address.</td>
</tr>
<tr>
<td>a</td>
<td>Select the IP address format.</td>
</tr>
<tr>
<td>b</td>
<td>Type the IP address.</td>
</tr>
<tr>
<td>Click</td>
<td>To specify source as an object other than a specific IP address.</td>
</tr>
<tr>
<td>a</td>
<td>In View, select a container from which the communication originated.</td>
</tr>
<tr>
<td>b</td>
<td>Objects for the selected container are displayed.</td>
</tr>
<tr>
<td>c</td>
<td>You can create a new security group or IPSet. Once you create the new object, it is added to the source column by default. For information on creating a new security group or IPSet, see Chapter 3, “Grouping Objects,” on page 27.</td>
</tr>
<tr>
<td>d</td>
<td>To specify a source port, click Advance options and type the port number or range.</td>
</tr>
<tr>
<td>e</td>
<td>Select Negate Source to exclude this source port from the rule.</td>
</tr>
<tr>
<td>f</td>
<td>If Negate Source is selected, the rule applied to traffic coming from all sources except for the source you specified in the previous step.</td>
</tr>
<tr>
<td>g</td>
<td>If Negate Source is not selected, the rule applies to traffic coming from the source you specified in the previous step.</td>
</tr>
<tr>
<td>h</td>
<td>Click OK.</td>
</tr>
</tbody>
</table>

8 Point to the **Destination** cell of the new rule.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click IP</td>
<td>To specify destination as an IP address.</td>
</tr>
<tr>
<td>a</td>
<td>Select the IP address format.</td>
</tr>
<tr>
<td>b</td>
<td>Type the IP address.</td>
</tr>
<tr>
<td>Click</td>
<td>To specify destination as an object other than a specific IP address.</td>
</tr>
<tr>
<td>a</td>
<td>In View, select a container which the communication is targeting.</td>
</tr>
<tr>
<td>b</td>
<td>Objects for the selected container are displayed.</td>
</tr>
<tr>
<td>c</td>
<td>You can create a new security group or IPSet. Once you create the new object, it is added to the Destination column by default. For information on creating a new security group or IPSet, see Chapter 3, “Grouping Objects,” on page 27.</td>
</tr>
<tr>
<td>d</td>
<td>To specify a destination port, click Advance options and type the port number or range.</td>
</tr>
<tr>
<td>e</td>
<td>Select Negate Destination to exclude this source port from the rule.</td>
</tr>
<tr>
<td>f</td>
<td>If Negate Destination is selected, the rule applied to traffic going to all destinations except for the destination you specified in the previous step.</td>
</tr>
<tr>
<td>g</td>
<td>If Negate Destination is not selected, the rule applies to traffic going to the destination you specified in the previous step.</td>
</tr>
<tr>
<td>h</td>
<td>Click OK.</td>
</tr>
</tbody>
</table>
9 Point to the **Service** cell of the new rule.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Click | To specify service as a port protocol combination.
 a Select the service protocol.
 Distributed Firewall supports ALG (Application Level Gateway) for the following protocols: FTP, CIFS, ORACLE TNS, MS-RPC, and SUN-RPC.
 b Type the port number and click **OK**. |
| Click | To select a pre-defined service/service group or define a new one.
 a Select one or more objects and click .
 You can create a new service or service group. Once you create the new object, it is added to the Destination column by default.
 b Click **OK**. |

In order to protect your network from ACK or SYN floods, you can set Service to TCP-all_ports or UDP-all_ports and set Action to Block for the default rule. For information on modifying the default rule, see “Edit the Default Distributed Firewall Rule,” on page 56.

10 Point to the **Action** cell of the new rule and click .

 a Click **Block** to block traffic from or to the specified source and destination.
 b Click **Log** to log all sessions matching this rule.
 Enabling logging can affect performance.
 c Type comments if required.
 d Click **OK**.

11 To define the scope at which this rule is applicable, click and select **Applied To**.

 a Point to the **Applied To** cell of the new rule and click .
 b In **View**, select a container. The containers you can select in this field are: datacenter, cluster, distributed virtual port group, network, virtual machine, vNIC, and virtual wire.
 c Select one or more objects and click .
 d Click **OK**.

If the rule contains virtual machines/vNICS in the source and destination fields, you must add both the source and destination virtual machines/vNICS to **Applied To** for the rule to work correctly.

12 Click **Publish Changes** to push the new rule.

What to do next

- Disable a rule by clicking ✗ or enable a rule by clicking .
- Display additional columns in the rule table by clicking and selecting the appropriate columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Information Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule ID</td>
<td>Unique system generated ID for each rule</td>
</tr>
<tr>
<td>Log</td>
<td>Traffic for this rule is being logged or not</td>
</tr>
</tbody>
</table>
Column Name | Information Displayed
--- | ---
Stats | Clicking shows the traffic related to this rule (traffic packets and size)
Comments | Comments for the rule

- Search for rules by typing text in the Search field.
- Merge sections by clicking the **Merge section** icon and selecting **Merge with above section** or **Merge with below section**.

Add a Rule and Publish it at a Later Time
You can add a rule and save the configuration without publishing it. You can then load and publish the saved configuration at a later time.

Procedure

1. Add a firewall rule. See “Add a Distributed Firewall Rule,” on page 56.
2. Click **Save Changes**.
3. Type a name and description for the configuration and click **OK**.
4. Click **Preserve Configuration** to preserve this change.
 - NSX can save up to 100 configurations. After this limit is exceeded, saved configurations marked with **Preserve Configuration** are preserved while older non-preserved configurations are deleted to make room for preserved configurations.
5. Do one of the following.
 - Click **Revert Changes** to go back to the configuration that existed before you added the rule. When you want to publish the rule you just added, click the **Load Configuration** icon, select the rule that you saved in step 3 and click **OK**.
 - Click **Update Changes** to continue adding rules.

Change the Order of a Rule
Firewall rules are applied in the order in which they exist in the rule table. You can move a custom rule up or down in the table - the default rule is always at the bottom of the table and cannot be moved.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Firewall**.
3. Select the rule that you want to move.
4. Click the **Move rule up** (↑) or **Move rule down** (↓) icon.
5. Click **Publish Changes**.

Delete a Firewall Rule
You can delete firewall rules that you created. You cannot delete the default rule or rules managed by Service Composer.

Procedure

1. Log in to the vSphere Web Client.
2 Click Networking & Security and then click Firewall.
3 Select a rule.
4 Click Delete selected rule (×) icon above the Firewall table.
5 Click Publish Changes.

Working with Distributed Firewall Rule Sections
You can add a section to segregate firewall rules. For example, you may like to have the rules for sales and engineering departments in separate sections.

Add a Distributed Firewall Rule Section
You can add a new section in the firewall table.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click Firewall.
3 Ensure that you are in the General tab to add a section for L3 rules. Click the Ethernet tab to add a section for L2 rules.
4 Click the Add Section (+) icon.
5 Type a name for the section and specify the position for the new section. Section names must be unique within NSX Manager.
6 Click OK.

What to do next
Add rules to the section. You can edit the name of a section by clicking the Edit icon for that section.

Merge Distributed Firewall Rule Sections
You can merge sections and consolidate the rules within those sections. Note that you cannot merge a Service Composer section or the Default section.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click Firewall.
3 For the section you want to merge, click the Merge (+) icon and specify whether you want to merge this section with the section above or below.
 Rules from both sections are merged. The new section keeps the name of the section with which the other section is merged.
4 Click Publish Changes.
Delete a Distributed Firewall Rule Section

You can delete a firewall rule section. All rules in that section are deleted.

You cannot delete a section and add it again at a different place in the firewall table. To do so, you must delete the section and publish the configuration. Then add the deleted section to the firewall table and republish the configuration.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Firewall.
3. Ensure that you are in the General tab to delete a section for L3 rules. Click the Ethernet tab to delete a section for L2 rules.
4. Click the Delete section (x) icon for the section you want to delete.
5. Click OK and then click Publish Changes.

The section as well as all rules in that section are deleted.

Working with Distributed Firewall Configurations

You can export your current firewall configuration and import this configuration in another NSX Manager.

Export Distributed Firewall Configuration

You can export your firewall configuration.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Firewall.
3. Click the Export configuration () icon.
4. To save the firewall configuration as an XML file, click Download.
5. Select the directory where you want to save the file and click Save.

Your firewall configuration (both L2 and L3) is saved in the specified directory.

Import Distributed Firewall Configuration

You can import a saved configuration and then load it in the Firewall table.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Firewall.
3. Click the Firewall tab.
4. Click the Saved Configurations tab.
5. Click the Import configuration () icon.
6 Click **Browse** and select the file containing the configuration that you want to import.

Rules are imported based on the rule names. During the import, Firewall ensures that each object referenced in the rule exists in your environment. If an object is not found, the rule is marked as invalid. If a rule referenced a dynamic security group, the dynamic security group is created in NSX Manager during the import.

Load Distributed Firewall Configuration

You can load an autosaved or imported firewall configuration. If your current configuration contains rules managed by Service Composer, these are over-ridden after the import.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Firewall**.
3. Ensure that you are in the **General** tab to load an L3 firewall configuration. Click the **Ethernet** tab to load an L2 firewall configuration.
4. Click the **Load configuration** icon.
5. Select the configuration to load and click **OK**.
 - The current configuration is replaced by the selected configuration.

What to do next

If Service Composer rules in your configuration were over-ridden by the loaded configuration, click **Actions > Synchronize Firewall Rules** in the Security Policies tab within Service Composer.

Excluding Virtual Machines from Distributed Firewall Protection

You can exclude a set of virtual machines from firewall protection. If a virtual machine has multiple vNICs, all of them are excluded from protection.

NSX Manager and service virtual machines are automatically excluded from firewall protection. In addition, you should exclude the vCenter server and partner service virtual machines to allow traffic to flow freely.

Excluding virtual machines from firewall protection is useful for instances where vCenter Server resides in the same cluster where firewall is being utilized. After enabling this feature, no traffic from excluded virtual machines will go through the Firewall.

Note vCenter Server can be moved to a cluster that is protected by firewall, but it must already exist in the exclusion list to avoid any connection issues.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Firewall**.
3. Click **NSX Managers**.
4. In the **Name** column, click an NSX Manager.
5. Click the **Manage** tab and then click the **Exclusion List** tab.
6. Click the **Add** icon.
7. Type the name of the virtual machine you want to exclude and click **Add**.
8. Click **OK**.
Using SpoofGuard

After synchronizing with the vCenter Server, NSX Manager collects the IP addresses of all vCenter guest virtual machines from VMware Tools on each virtual machine. If a virtual machine has been compromised, the IP address can be spoofed and malicious transmissions can bypass firewall policies.

You create a SpoofGuard policy for specific networks that allows you to authorize the IP addresses reported by VMware Tools and alter them if necessary to prevent spoofing. SpoofGuard inherently trusts the MAC addresses of virtual machines collected from the VMX files and vSphere SDK. Operating separately from Firewall rules, you can use SpoofGuard to block traffic determined to be spoofed.

SpoofGuard supports both IPv4 and IPv6 addresses. When using IPv4, the SpoofGuard policy supports a single IP address assigned to a vNIC. IPv6 supports multiple IP addresses assigned to a vNIC. The SpoofGuard policy monitors and manages the IP addresses reported by your virtual machines in one of the following modes.

Automatically Trust IP Assignments On Their First Use

This mode allows all traffic from your virtual machines to pass while building a table of vNIC-to-IP address assignments. You can review this table at your convenience and make IP address changes. This mode automatically approves all ipv4 and ipv6 address on a vNIC.

Manually Inspect and Approve All IP Assignments Before Use

This mode blocks all traffic until you approve each vNIC-to-IP address assignment.

Note SpoofGuard inherently allows DHCP requests regardless of enabled mode. However, if in manual inspection mode, traffic does not pass until the DHCP-assigned IP address has been approved.

SpoofGuard includes a system-generated default policy that applies to port groups and logical networks not covered by the other SpoofGuard policies. A newly added network is automatically added to the default policy until you add the network to an existing policy or create a new policy for it.

Create a SpoofGuard Policy

You can create a SpoofGuard policy to specify the operation mode for specific networks. The system generated policy applies to port groups and logical switches not covered by existing SpoofGuard policies.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **SpoofGuard**.
3. Click the **Add** icon.
4. Type a name for the policy.
5. Select **Enabled** or **Disabled** to indicate whether the policy is enabled.
6. For **Operation Mode**, select one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatically Trust IP Assignments On Their First Use</td>
<td>Select this option to trust all IP assignments upon initial registration with the NSX Manager.</td>
</tr>
<tr>
<td>Manually Inspect and Approve All IP Assignments Before Use</td>
<td>Select this option to require manual approval of all IP addresses. All traffic to and from unapproved IP addresses is blocked.</td>
</tr>
</tbody>
</table>
Click **Allow local address as valid address in this namespace** to allow local IP addresses in your setup. When you power on a virtual machine but it is unable to connect to the DHCP server, a local IP address is assigned to it. This local IP address is considered valid only if the SpoofGuard mode is set to **Allow local address as valid address in this namespace**. Otherwise, the local IP address is ignored.

Click Next.

To specify the scope for the policy, click **Add** and select the networks, distributed port groups, or logical switches that this policy should apply to.

A port group or logical switch can belong to only one SpoofGuard policy.

Click **OK** and then click **Finish**.

What to do next

You can edit a policy by clicking the **Edit** icon and delete a policy by clicking the **Delete** icon.

Approve IP Addresses

If you set SpoofGuard to require manual approval of all IP address assignments, you must approve IP address assignments to allow traffic from those virtual machines to pass.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **SpoofGuard**.
3. Select a policy.
 Policy details are displayed below the policy table.
4. In **View**, click one of the option links.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Virtual NICs</td>
<td>List of all validated IP addresses</td>
</tr>
<tr>
<td>Active Virtual NICs Since Last Published</td>
<td>List of IP addresses that have been validated since the policy was last updated</td>
</tr>
<tr>
<td>Virtual NICs IP Required Approval</td>
<td>IP address changes that require approval before traffic can flow to or from these virtual machines</td>
</tr>
<tr>
<td>Virtual NICs with Duplicate IP</td>
<td>IP addresses that are duplicates of an existing assigned IP address within the selected datacenter</td>
</tr>
<tr>
<td>Inactive Virtual NICs</td>
<td>List of IP addresses where the current IP address does not match the published IP address</td>
</tr>
<tr>
<td>Unpublished Virtual NICs IP</td>
<td>List of virtual machines for which you have edited the IP address assignment but have not yet published</td>
</tr>
</tbody>
</table>

5. Do one of the following.
 - To approve a single IP address, click **Approve** next to the IP address.
 - To approve multiple IP addresses, select the appropriate vNICs and then click **Approve Detected IP(s)**.
Edit an IP Address

You can edit the IP address assigned to a MAC address to correct the assigned IP address.

Note SpoofGuard accepts a unique IP address from virtual machines. However, you can assign an IP address only once. An approved IP address is unique across NSX. Duplicate approved IP addresses are not allowed.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **SpoofGuard**.
3. Select a policy.

 Policy details are displayed below the policy table.
4. In **View**, click one of the option links.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Virtual NICs</td>
<td>List of all validated IP addresses</td>
</tr>
<tr>
<td>Active Virtual NICs Since Last Published</td>
<td>List of IP addresses that have been validated since the policy was last updated</td>
</tr>
<tr>
<td>Virtual NICs IP Required Approval</td>
<td>IP address changes that require approval before traffic can flow to or from these virtual machines</td>
</tr>
<tr>
<td>Virtual NICs with Duplicate IP</td>
<td>IP address changes that require approval before traffic can flow to or from these virtual machines</td>
</tr>
<tr>
<td>Inactive Virtual NICs</td>
<td>List of IP addresses where the current IP address does not match the published IP address</td>
</tr>
<tr>
<td>Unpublished Virtual NICs IP</td>
<td>List of virtual machines for which you have edited the IP address assignment but have not yet published</td>
</tr>
</tbody>
</table>

5. For the appropriate vNIC, click the **Edit** icon and make appropriate changes.

6. Click **OK**.

Clear an IP Address

You clear an approved IP address assignment from a SpoofGuard policy.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **SpoofGuard**.
3. Select a policy.

 Policy details are displayed below the policy table.
4. In **View**, click one of the option links.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Virtual NICs</td>
<td>List of all validated IP addresses</td>
</tr>
<tr>
<td>Active Virtual NICs Since Last Published</td>
<td>List of IP addresses that have been validated since the policy was last updated</td>
</tr>
<tr>
<td>Virtual NICs IP Required Approval</td>
<td>IP address changes that require approval before traffic can flow to or from these virtual machines</td>
</tr>
</tbody>
</table>

66 VMware, Inc.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual NICs with Duplicate IP</td>
<td>IP addresses that are duplicates of an existing assigned IP address within the selected datacenter</td>
</tr>
<tr>
<td>Inactive Virtual NICs</td>
<td>List of IP addresses where the current IP address does not match the published IP address</td>
</tr>
<tr>
<td>Unpublished Virtual NICs IP</td>
<td>List of virtual machines for which you have edited the IP address assignment but have not yet published</td>
</tr>
</tbody>
</table>

5 Do one of the following.

- To clear a single IP address, click **Clear** next to the IP address.
- To clear multiple IP addresses, select the appropriate vNICs and then click **Clear Approved IP(s)**.

Distributed Firewall Logs

Distributed Firewall generates three types of logs:

- **Distributed Firewall logs** includes all access decisions such as permitted or denied traffic for each rule if logging was enabled for that rule.
- **Audit logs** include audit records for situations like admin login, configuration change, etc. Audit records provide granular details of all changes.
- **System event logs** include firewall configuration changes.

See “System Events and Audit Logs,” on page 147.

Working with Edge Firewall

The default Edge firewall rule blocks all incoming traffic.

Edit the Default Edge Firewall Rule

Default firewall settings apply to traffic that does not match any of the user-defined firewall rules. The default Edge firewall policy blocks all incoming traffic. You can change the default action and logging settings.

Procedure

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click NSX Edges.

3 Double-click an NSX Edge.

4 Click the Manage tab and then click Firewall.

5 Select the Default Rule, which is the last rule in the firewall table.

6 Point to the Action cell of the new rule and click .

 a Click Accept to allow traffic from or to the specified source and destination.
 b Click Log to log all sessions matching this rule.
 c Type comments if required.
 d Click OK.
7 Click Publish Changes.

Working with Edge Firewall Rules

Add an Edge Firewall Rule

You can add an NSX Edge firewall rule for traffic flowing from or to an NSX Edge interface or IP address group.

You can add multiple NSX Edge interfaces and/or IP address groups as the source and destination for firewall rules.

Figure 7-1. Firewall rule for traffic to flow from an NSX Edge interface to an HTTP server

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>traffic</td>
<td>Internal</td>
<td>vee</td>
<td>any</td>
<td>HTTP server</td>
<td>Accept</td>
</tr>
<tr>
<td>2</td>
<td>Traffic to HTTP server</td>
<td>User</td>
<td>vee-index-8080</td>
<td>HTTP Address Group</td>
<td>For HTTP server</td>
<td>Accept</td>
</tr>
<tr>
<td>3</td>
<td>Default Rule</td>
<td>Default</td>
<td>any</td>
<td>any</td>
<td>HTTP server</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Figure 7-2. Firewall rule for traffic to flow from all internal interfaces (subnets on portgroups connected to internal interfaces) of a NSX Edge to an HTTP Server

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>firewall</td>
<td>Internal</td>
<td>vee</td>
<td>any</td>
<td>HTTP server</td>
<td>Accept</td>
</tr>
<tr>
<td>2</td>
<td>Traffic to HTTP server</td>
<td>User</td>
<td>internal</td>
<td>HTTP Address Group</td>
<td>For HTTP server</td>
<td>Accept</td>
</tr>
<tr>
<td>3</td>
<td>Default Rule</td>
<td>Default</td>
<td>any</td>
<td>any</td>
<td>HTTP server</td>
<td>Deny</td>
</tr>
</tbody>
</table>

NOTE If you select *internal* as the source, the rule is automatically updated when you configure additional internal interfaces.

Figure 7-3. Firewall rule for traffic to allow SSH into a m/c in internal network

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>firewall</td>
<td>Internal</td>
<td>vee</td>
<td>any</td>
<td>VM in internal network</td>
<td>Accept</td>
</tr>
<tr>
<td>2</td>
<td>Traffic to internal network</td>
<td>User</td>
<td>any</td>
<td>Internal VM</td>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Default Rule</td>
<td>Default</td>
<td>any</td>
<td>any</td>
<td>VM in internal network</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the Firewall tab.
5 Do one of the following.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| To add a rule at a specific place in the firewall table | a Select a rule.
b In the No. column, click ⬆️ and select Add Above or Add Below.
A new any any allow rule is added below the selected rule. If the system defined rule is the only rule in the firewall table, the new rule is added above the default rule. |
| To add a rule by copying a rule | a Select a rule.
b Click the Copy (_copy_ icon.
c Select a rule.
d In the No. column, click ⬆️ and select Paste Above or Paste Below. |
| To add a rule anywhere in the firewall table | a Click the Add (_add_) icon.
A new any any allow rule is added below the selected rule. If the system defined rule is the only rule in the firewall table, the new rule is added above the default rule. |

6 Point to the Name cell of the new rule and click ©.
7 Type a name for the new rule.
8 Point to the Source cell of the new rule and click ☐ or ip.
 If you clicked ip, type an IP address.
 a Select an object from the drop-down and then make the appropriate selections.
 If you select vNIC Group, and then select vse, the rule applies to traffic generated by the NSX Edge. If you select internal or external, the rule applies to traffic coming from any internal or uplink interface of the selected NSX Edge instance. The rule is automatically updated when you configure additional interfaces.
 If you select IP Sets, you can create a new IP address group. Once you create the new group, it is automatically added to the source column. For information on creating an IP Set, see “Create an IP Address Group,” on page 27.
 b Click OK.
9 Point to the Destination cell of the new rule and click ☐ or ip.
 a Select an object from the drop-down and then make the appropriate selections.
 If you select vNIC Group, and then select vse, the rule applies to traffic generated by the NSX Edge. If you select internal or external, the rule applies to traffic going to any internal or uplink interface of the selected NSX Edge instance. The rule is automatically updated when you configure additional interfaces.
 If you select IP Sets, you can create a new IP address group. Once you create the new group, it is automatically added to the source column. For information on creating an IP Set, see “Create an IP Address Group,” on page 27.
 b Click OK.
10 Point to the **Service** cell of the new rule and click ![icon] or ![icon].
 - If you clicked ![icon], select a service. To create a new service or service group, click **New**. Once you create the new service, it is automatically added to the Service column. For more information on creating a new service, see “Create a Service,” on page 32.
 - If you clicked ![icon], select a protocol. You can specify the source port by clicking the arrow next to **Advance options**. VMware recommends that you avoid specifying the source port from release 5.1 onwards. Instead, you can create a service for a protocol-port combination.

NOTE NSX Edge only supports services defined with L3 protocols.

11 Point to the **Action** cell of the new rule and click ![icon].
 a Click **Deny** to block traffic from or to the specified source and destination.
 b Click **Log** to log all sessions matching this rule. Enabling logging can affect performance.
 c Type comments if required.
 d Click ![icon] next to **Advance options**.
 e To apply the rule to the translated IP address and services for a NAT rule, select **Translated IP** for **Match on**.
 f Click **Enable Rule Direction** and select **Incoming** or **Outgoing**. VMware does not recommend specifying the direction for firewall rules.
 g Click **OK**.

12 Click **Publish Changes** to push the new rule to the NSX Edge instance.

What to do next

- Disable a rule by clicking ![icon] next to the rule number in the **No.** column.
- Display additional columns in the rule table by clicking ![icon] and selecting the appropriate columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Information Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Tag</td>
<td>Unique system generated ID for each rule</td>
</tr>
<tr>
<td>Log</td>
<td>Traffic for this rule is being logged or not</td>
</tr>
<tr>
<td>Stats</td>
<td>Clicking ![icon] shows the traffic affected by this rule (number of sessions, traffic packets, and size)</td>
</tr>
<tr>
<td>Comments</td>
<td>Comments for the rule</td>
</tr>
</tbody>
</table>

- Search for rules by typing text in the Search field.

Edit an NSX Edge Firewall Rule

You can edit user-defined firewall rules.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click an NSX Edge.
Click the **Monitor** tab and then click the **Firewall** tab.

5. Select the rule to edit

NOTE You cannot change an auto-generated rule or the default rule.

6. Make the desired changes and click **OK**.

7. Click **Publish Changes**.

Change the Priority of an NSX Edge Firewall Rule

You can change the order of user-defined firewall rules to customize traffic flowing through the NSX Edge. For example, suppose you have a rule to allow load balancer traffic. You can now add a rule to deny load balancer traffic from a specific IP address group, and position this rule above the LB allow traffic rule.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Monitor** tab and then click the **Firewall** tab.
5. Select the rule for which you want to change the priority.

NOTE You cannot change the priority of auto-generated rules or the default rule.

6. Click the **Move Up** (↑) or **Move Down** (↓) icon.

7. Click **OK**.

8. Click **Publish Changes**.

Delete an NSX Edge Firewall Rule

You can delete a user-defined firewall rule.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Monitor** tab and then click the **Firewall** tab.
5. Select the rule to delete.

NOTE You cannot delete an auto-generated rule or the default rule.

6. Click the **Delete** (×) icon.

Managing NAT Rules

NSX Edge provides network address translation (NAT) service to assign a public address to a computer or group of computers in a private network. Using this technology limits the number of public IP addresses that an organization or company must use, for economy and security purposes. You must configure NAT rules to provide access to services running on privately addressed virtual machines.

The NAT service configuration is separated into source NAT (SNAT) and destination NAT (DNAT) rules.
Add an SNAT Rule
You create a source NAT (SNAT) rule to change the source IP address from a public to private IP address or vice versa.

Prerequisites
The translated (public) IP address must have been added to the NSX Edge interface on which you want to add the rule.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the NAT tab.
5. Click the Add (➕) icon and select Add SNAT Rule.
6. Select the interface on which to add the rule.
7. Type the original source IP address in one of the following formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>192.0.2.0</td>
</tr>
<tr>
<td>IP address range</td>
<td>192.0.2.0-192.0.2.24</td>
</tr>
<tr>
<td>IP address/subnet</td>
<td>192.0.2.0/24</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

8. Type the translated (public) source IP address in one of the following formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>192.0.2.0</td>
</tr>
<tr>
<td>IP address range</td>
<td>192.0.2.0-192.0.2.24</td>
</tr>
<tr>
<td>IP address/subnet</td>
<td>192.0.2.0/24</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

9. Select Enabled to enable the rule.
10. Click Enable logging to log the address translation.
11. Click OK to add the rule.
12. Click Publish Changes.

Add a DNAT Rule
You create a destination NAT (DNAT) rule to change the destination IP address from a public to private IP address or vice versa.

Prerequisites
The original (public) IP address must have been added to the NSX Edge interface on which you want to add the rule.
Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the NAT tab.
5. Click the Add (➕) icon and select Add DNAT Rule.
6. Select the interface on which to apply the DNAT rule.
7. Type the original (public) IP address in one of the following formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>192.0.2.0</td>
</tr>
<tr>
<td>IP address range</td>
<td>192.0.2.0 -192.0.2.24</td>
</tr>
<tr>
<td>IP address/subnet</td>
<td>192.0.2.0 /24</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

8. Type the protocol.
9. Type the original port or port range.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port number</td>
<td>80</td>
</tr>
<tr>
<td>Port range</td>
<td>80-85</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

10. Type the translated IP address in one of the following formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>192.0.2.0</td>
</tr>
<tr>
<td>IP address range</td>
<td>192.0.2.0 -192.0.2.24</td>
</tr>
<tr>
<td>IP address/subnet</td>
<td>192.0.2.0 /24</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

11. Type the translated port or port range.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port number</td>
<td>80</td>
</tr>
<tr>
<td>Port range</td>
<td>80-85</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

12. Select Enabled to enable the rule.
13. Select Enable logging to log the address translation.
14. Click Add to save the rule.
Virtual Private Networks (VPN)s

NSX Edge supports several types of VPNs. SSL VPN-Plus allows remote users to access private corporate applications. IPSec VPN offers site-to-site connectivity between an NSX Edge instance and remote sites. L2 VPN allows you to extend your datacenter by allowing virtual machines to retain network connectivity across geographical boundaries.

You must have a working NSX Edge instance before you can use VPN. For information on setting up NSX Edge, see “NSX Edge Operations,” on page 156.

This chapter includes the following topics:

- “SSL VPN-Plus Overview,” on page 75
- “IPSec VPN Overview,” on page 98
- “L2 VPN Overview,” on page 101

SSL VPN-Plus Overview

With SSL VPN-Plus, remote users can connect securely to private networks behind a NSX Edge gateway. Remote users can access servers and applications in the private networks.

The following client operating systems are supported:

- Windows XP and above (Windows 8 is supported).
Mac OS X Tiger, Leopard, Snow Leopard, Lion, Mountain Lion, and Maverick. These can be installed either manually or using the Java installer.

Linux - TCL-TK is required for UI to work. If not present, Linux client can be used using CLI.

Configure Network Access SSL VPN-Plus

In network access mode, a remote user can access private networks after downloading and installing an SSL client.

Prerequisites

The SSL VPN gateway requires port 443 to be accessible from external networks and the SSL VPN client requires the NSX Edge gateway IP and port 443 to be reachable from client system.

Procedure

1. **Add SSL VPN-Plus Server Settings** on page 76
 - You must add SSL VPN server settings to enable SSL on a NSX Edge interface.

2. **Add an IP Pool** on page 77
 - The remote user is assigned a virtual IP address from the IP pool that you add.

3. **Add a Private Network** on page 77
 - Add the network that you want the remote user to be able to access.

4. **Add Authentication** on page 78
 - Instead of a local user, you can add an external authentication server (AD, LDAP, Radius, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.

5. **Add Installation Package** on page 81
 - Create an installation package of the SSL VPN-Plus client for the remote user.

6. **Add a User** on page 82
 - Add a remote user to the local database.

7. **Enable the SSL VPN-Plus Service** on page 82
 - After configuring the SSL VPN-Plus service, enable the service for remote users to begin accessing private networks.

8. **Add a Script** on page 83
 - You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com. When the remote user logs in to the SSL client, Internet Explorer opens up gmail.com.

Add SSL VPN-Plus Server Settings

You must add SSL VPN server settings to enable SSL on a NSX Edge interface.

Procedure

1. In the **SSL Vpn-Plus** tab, select **Server Settings** from the left panel.

2. Click **Change**.

3. Select the IPv4 or IPv6 address.

4. Edit the port number if required. This port number is required to configure the installation package.

5. Select the encryption method.
6 (Optional) From the Server Certificates table, select the server certificate that you want to add.

7 Click OK.

Add an IP Pool

The remote user is assigned a virtual IP address from the IP pool that you add.

Procedure

1 In the **SSL Vpn-Plus** tab, select **IP Pools** from the left panel.

2 Click the **Add** icon.

3 Type the begin and end IP address for the IP pool.

4 Type the netmask of the IP pool.

5 Type the IP address which is to add the routing interface in the NSX Edge gateway.

6 (Optional) Type a description for the IP pool.

7 Select whether to enable or disable the IP pool.

8 (Optional) In the **Advanced** panel, type the DNS name.

9 (Optional) Type the secondary DNS name.

10 Type the connection-specific DNS suffix for domain based host name resolution.

11 Type the WINS server address.

12 Click **OK**.

Add a Private Network

Add the network that you want the remote user to be able to access.

Procedure

1 In the **SSL Vpn-Plus** tab, select **Private Networks** from the left panel.

2 Click the **Add** icon.

3 Type the private network IP address.

4 Type the netmask of the private network.

5 (Optional) Type a description for the network.

6 (Optional) Type a description for the network.

7 Specify whether you want to send private network and internet traffic over the SSL VPN-Plus enabled NSX Edge or directly to the private server by bypassing the NSX Edge.

8 If you selected **Send traffic over the tunnel**, select **Enable TCP Optimization** to optimize the internet speed.

Conventional full-access SSL VPNs tunnel sends TCP/IP data in a second TCP/IP stack for encryption over the internet. This results in application layer data being encapsulated twice in two separate TCP streams. When packet loss occurs (which happens even under optimal internet conditions), a performance degradation effect called TCP-over-TCP meltdown occurs. In essence, two TCP instruments are correcting a single packet of IP data, undermining network throughput and causing connection timeouts. TCP Optimization eliminates this TCP-over-TCP problem, ensuring optimal performance.

8 Type the port numbers that you want to open for the remote user to access the corporate internal servers/machines like 3389 for RDP, 20/21 for FTP, and 80 for http. If you want to give unrestricted access to the user, you can leave the **Ports** field blank.
Specify whether you want to enable or disable the private network.

Click OK.

What to do next

Add a corresponding firewall rule to allow the private network traffic.

Add Authentication

Instead of a local user, you can add an external authentication server (AD, LDAP, Radius, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.

The maximum time to authenticate over SSL VPN is 3 minutes. This is because non-authentication timeout is 3 minutes and is not a configurable property. So in scenarios where AD authentication timeout is set to more than 3 minutes or there are multiple authentication servers in chain authorization and the time taken for user authentication is more than 3 minutes, you will not be authenticated.

Procedure

1. In the SSL Vpn-Plus tab, select Authentication from the left panel.
2. Click the Add (➕) icon.
3. Select the type of authentication server.
4. Depending on the type of authentication server you selected, complete the following fields.
 - AD authentication server

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL</td>
<td>Enabling SSL establishes an encrypted link between a web server and a browser.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the authentication server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Search base</td>
<td>Part of the external directory tree to search. The search base may be something equivalent to the organization, group, or domain name (AD) of external directory.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>User on the external AD server permitted to search the AD directory within the defined search base. Most of the time, the bind DN is permitted to search the entire directory. The role of the bind DN is to query the directory using the query filter and search base for the DN (distinguished name) for authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.</td>
</tr>
<tr>
<td>Bind Password</td>
<td>Password to authenticate the AD user.</td>
</tr>
<tr>
<td>Retype Bind Password</td>
<td>Retype the password.</td>
</tr>
<tr>
<td>Login Attribute Name</td>
<td>Name against which the user ID entered by the remote user is matched with. For Active Directory, the login attribute name is sAMAccountName.</td>
</tr>
<tr>
<td>Search Filter</td>
<td>Filter values by which the search is to be limited. The search filter format is attribute operator value.</td>
</tr>
</tbody>
</table>
Table 8-1. AD Authentication Server Options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this AD server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ LDAP authentication server

Table 8-2. LDAP Authentication Server Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL</td>
<td>Enabling SSL establishes an encrypted link between a web server and a browser.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Search base</td>
<td>Part of the external directory tree to search. The search base may be something equivalent to the organization, group, or domain name (AD) of external directory.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>User on the external server permitted to search the AD directory within the defined search base. Most of the time, the bind DN is permitted to search the entire directory. The role of the bind DN is to query the directory using the query filter and search base for the DN (distinguished name) for authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.</td>
</tr>
<tr>
<td>Bind Password</td>
<td>Password to authenticate the AD user.</td>
</tr>
<tr>
<td>Retype Bind Password</td>
<td>Retype the password.</td>
</tr>
<tr>
<td>Login Attribute Name</td>
<td>Name against which the user ID entered by the remote user is matched with. For Active Directory, the login attribute name is sAMAccountName.</td>
</tr>
<tr>
<td>Search Filter</td>
<td>Filter values by which the search is to be limited. The search filter format is attribute operator value.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ RADIUS authentication server

Table 8-3. RADIUS authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Secret</td>
<td>Shared secret specified while adding the authentication agent in the RSA security console.</td>
</tr>
<tr>
<td>Retype secret</td>
<td>Retype the shared secret.</td>
</tr>
</tbody>
</table>
Table 8-3. RADIUS authentication server options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS IP Address</td>
<td>IP address to be configured and used as RADIUS attribute 4, NAS-IP-Address, without changing the source IP address in the IP header of the RADIUS packets.</td>
</tr>
<tr>
<td>Retry Count</td>
<td>Number of times the RADIUS server is to be contacted if it does not respond before the authentication fails.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

- RSA-ACE authentication server

Table 8-4. RSA-ACE authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Configuration File</td>
<td>Click Browse to select the sdconf.rec file that you downloaded from the RSA Authentication Manager.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>IP address of the NSX Edge interface through which the RSA server is accessible.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

- Local authentication server

Table 8-5. Local authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password policy</td>
<td>If selected, defines a password policy. Specify the required values.</td>
</tr>
<tr>
<td>Enable password policy</td>
<td>If selected, defines an account lockout policy. Specify the required values.</td>
</tr>
<tr>
<td>1 In Retry Count, type the number of times a remote user can try to access his or her account after entering an incorrect password.</td>
<td></td>
</tr>
<tr>
<td>2 In Retry Duration, type the time period in which the remote user’s account gets locked on unsuccessful login attempts.</td>
<td>For example, if you specify Retry Count as 5 and Retry Duration as 1 minute, the remote user’s account will be locked if he makes 5 unsuccessful login attempts within 1 minute.</td>
</tr>
<tr>
<td>3 In Lockout Duration, type the time period for which the user account remains locked. After this time, the account is automatically unlocked.</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
</tbody>
</table>
Table 8-5. Local authentication server options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

Add Installation Package

Create an installation package of the SSL VPN-Plus client for the remote user.

Procedure

1. In the SSL Vpn-Plus tab, select Installation Package from the left panel.
2. Click the Add (✚) icon.
3. Type a profile name for the installation package.
4. In Gateway, type the IP address or FQDN of the public interface of NSX Edge.
 This IP address or FQDN is binded to the SSL client. When the client is installed, this IP address or FQDN is displayed on the SSL client.
5. Type the port number that you specified in the server settings for SSL VPN-Plus. See “Add SSL VPN-Plus Server Settings,” on page 76.
6. (Optional) To bind additional NSX Edge uplink interfaces to the SSL client,
 a. Click the Add (✚) icon.
 b. Type the IP address and port number.
 c. Click OK.
7. The installation package is created for Windows operating system by default. Select Linux or Mac to create an installation package for Linux or Mac operating systems as well.
8. (Optional) Enter a description for the installation package.
9. Select Enable to display the installation package on the Installation Package page.
10. Select the following options as appropriate.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start client on logon</td>
<td>The SSL VPN client is started when the remote user logs on to his system.</td>
</tr>
<tr>
<td>Allow remember password</td>
<td>Enables the option.</td>
</tr>
<tr>
<td>Enable silent mode installation</td>
<td>Hides installation commands from remote user.</td>
</tr>
<tr>
<td>Hide SSL client network adapter</td>
<td>Hides the VMware SSL VPN-Plus Adapter, which is installed on the remote user’s computer along with the SSL VPN installation package.</td>
</tr>
<tr>
<td>Hide client system tray icon</td>
<td>Hides the SSL VPN tray icon which indicates whether the VPN connection is active or not.</td>
</tr>
<tr>
<td>Create desktop icon</td>
<td>Creates an icon to invoke the SSL client on the user’s desktop.</td>
</tr>
<tr>
<td>Enable silent mode operation</td>
<td>Hides the pop-up that indicates that installation is complete.</td>
</tr>
<tr>
<td>Server security certificate validation</td>
<td>The SSL VPN client validates the SSL VPN server certificate before establishing the secure connection.</td>
</tr>
</tbody>
</table>
11 Click OK.

Add a User

Add a remote user to the local database.

Procedure

1. In the **SSL Vpn-Plus** tab, select **Users** from the left panel.
2. Click the **Add** icon.
3. Type the user ID.
4. Type the password.
5. Retype the password.
6. (Optional) Type the first and last name of the user.
7. (Optional) Type a description for the user.
8. In Password Details, select **Password never expires** to always keep the same password for the user.
9. Select **Allow change password** to let the user change the password.
10. Select **Change password on next login** if you want the user to change the password the next time he logs in.
11. Set the user status.
12. Click OK.

Enable the SSL VPN-Plus Service

After configuring the SSL VPN-Plus service, enable the service for remote users to begin accessing private networks.

Procedure

1. In the **SSL Vpn-Plus** tab, select **Dashboard** from the left panel.
2. Click the **Enable** icon.

 The dashboard displays the status of the service, number of active SSL VPN sessions, and session statistics and data flow details. Click **Details** next to **Number of Active Sessions** to view information about the concurrent connections to private networks behind the NSX Edge gateway.

What to do next

1. Add an SNAT rule to translate the IP address of the NSX Edge appliance to the VPN Edge IP address.
2. Using a web browser, navigate to the IP address of the NSX Edge interface by typing `https://NSXEdgeIPAddress`.
3. Login using the user name and password that you created in the “Add a User,” on page 82 section and download the installation package.
4. Enable port forwarding on your router for the port number used in “Add SSL VPN-Plus Server Settings,” on page 76.
5. Launch the VN client, select your VPN server, and login. You can now navigate to the services on your network. SSL VPN-Plus gateway logs are sent to the syslog server configured on the NSX Edge appliance. SSL VPN-Plus client logs are stored in the following directory on the remote user’s computer: `%PROGRAMFILES%/VMWARE/SSLVPN Client/`.
Add a Script
You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com. When the remote user logs in to the SSL client, Internet Explorer opens up gmail.com.

Procedure
1. In the SSL Vpn-Plus tab, select Login/Logoff Scripts from the left panel.
2. Click the Add (➕) icon.
3. In Script, click Browse and select the script you want to bind to the NSX Edge gateway.
4. Select the Type of script.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Performs the script action when remote user logs in to SSL VPN.</td>
</tr>
<tr>
<td>Logoff</td>
<td>Performs the script action when remote user logs out of SSL VPN.</td>
</tr>
<tr>
<td>Both</td>
<td>Performs the script action both when remote user logs in and logs out of SSL VPN.</td>
</tr>
</tbody>
</table>
5. Type a description for the script.
6. Select Enabled to enable the script.
7. Click OK.

Configure Web Access SSL VPN-Plus
In web access mode, a remote user can access private networks without a hardware or software SSL client.

Procedure
1. Create a Web Resource on page 84
 Add a server that the remote user can connect to via a web browser.
2. Add a User on page 84
 Add a remote user to the local database.
3. Add Authentication on page 85
 Instead of a local user, you can add an external authentication server (AD, LDAP, Radius, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.
4. Add SSL VPN-Plus Server Settings on page 88
 You must add SSL VPN server settings to enable SSL on a NSX Edge interface.
5. Enable the SSL VPN-Plus Service on page 88
 After configuring the SSL VPN-Plus service, enable the service for remote users to begin accessing private networks.
6. Add a Script on page 89
 You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com. When the remote user logs in to the SSL client, Internet Explorer opens up gmail.com.
Create a Web Resource

Add a server that the remote user can connect to via a web browser.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **SSL VPN-Plus** tab.
5. Select **Web Resource** from the left panel.
6. Click the **Add** icon.
7. Type a name for the web resource.
8. Type the URL of the web resource that you want the remote user to access.
9. Depending on whether the remote user wants to read from or write to the web resource, select the **HTTPMethod** and type the GET or POST call.
10. Type the description for the web resource. This description is displayed on the web portal when the remote user accesses the web resource.
11. Select **Enable** to enable the web resource. The web resource must be enabled for the remote user to access it.

Add a User

Add a remote user to the local database.

Procedure

1. In the **SSL Vpn-Plus** tab, select **Users** from the left panel.
2. Click the **Add** icon.
3. Type the user ID.
4. Type the password.
5. Retype the password.
6. (Optional) Type the first and last name of the user.
7. (Optional) Type a description for the user.
8. In Password Details, select **Password never expires** to always keep the same password for the user.
9. Select **Allow change password** to let the user change the password.
10. Select **Change password on next login** if you want the user to change the password the next time he logs in.
11. Set the user status.
12. Click **OK**.
Add Authentication

Instead of a local user, you can add an external authentication server (AD, LDAP, Radius, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.

The maximum time to authenticate over SSL VPN is 3 minutes. This is because non-authentication timeout is 3 minutes and is not a configurable property. So in scenarios where AD authentication timeout is set to more than 3 minutes or there are multiple authentication servers in chain authorization and the time taken for user authentication is more than 3 minutes, you will not be authenticated.

Procedure

1. In the SSL Vpn-Plus tab, select Authentication from the left panel.
2. Click the Add (✚) icon.
3. Select the type of authentication server.
4. Depending on the type of authentication server you selected, complete the following fields.
 - AD authentication server

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL</td>
<td>Enabling SSL establishes an encrypted link between a web server and a browser.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the authentication server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Search base</td>
<td>Part of the external directory tree to search. The search base may be something equivalent to the organization, group, or domain name (AD) of external directory.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>User on the external AD server permitted to search the AD directory within the defined search base. Most of the time, the bind DN is permitted to search the entire directory. The role of the bind DN is to query the directory using the query filter and search base for the DN (distinguished name) for authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.</td>
</tr>
<tr>
<td>Bind Password</td>
<td>Password to authenticate the AD user.</td>
</tr>
<tr>
<td>Retype Bind Password</td>
<td>Retype the password.</td>
</tr>
<tr>
<td>Login Attribute Name</td>
<td>Name against which the user ID entered by the remote user is matched with. For Active Directory, the login attribute name is sAMAccountName.</td>
</tr>
<tr>
<td>Search Filter</td>
<td>Filter values by which the search is to be limited. The search filter format is attribute operator value.</td>
</tr>
</tbody>
</table>
Table 8-6. AD Authentication Server Options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this AD server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ LDAP authentication server

Table 8-7. LDAP Authentication Server Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL</td>
<td>Enabling SSL establishes an encrypted link between a web server and a browser.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Search base</td>
<td>Part of the external directory tree to search. The search base may be something equivalent to the organization, group, or domain name (AD) of external directory.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>User on the external server permitted to search the AD directory within the defined search base. Most of the time, the bind DN is permitted to search the entire directory. The role of the bind DN is to query the directory using the query filter and search base for the DN (distinguished name) for authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.</td>
</tr>
<tr>
<td>Bind Password</td>
<td>Password to authenticate the AD user.</td>
</tr>
<tr>
<td>Retype Bind Password</td>
<td>Retype the password.</td>
</tr>
<tr>
<td>Login Attribute Name</td>
<td>Name against which the user ID entered by the remote user is matched with. For Active Directory, the login attribute name is sAMAccountName.</td>
</tr>
<tr>
<td>Search Filter</td>
<td>Filter values by which the search is to be limited. The search filter format is attribute operator value.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ RADIUS authentication server

Table 8-8. RADIUS authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Secret</td>
<td>Shared secret specified while adding the authentication agent in the RSA security console.</td>
</tr>
<tr>
<td>Retype secret</td>
<td>Retype the shared secret.</td>
</tr>
</tbody>
</table>
Table 8-8. RADIUS authentication server options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS IP Address</td>
<td>IP address to be configured and used as RADIUS attribute 4, NAS-IP-Address, without changing the source IP address in the IP header of the RADIUS packets.</td>
</tr>
<tr>
<td>Retry Count</td>
<td>Number of times the RADIUS server is to be contacted if it does not respond before the authentication fails.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

RSA-ACE authentication server

Table 8-9. RSA-ACE authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Configuration File</td>
<td>Click Browse to select the sdconff.rec file that you downloaded from the RSA Authentication Manager.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>IP address of the NSX Edge interface through which the RSA server is accessible.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

Local authentication server

Table 8-10. Local authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password policy</td>
<td>If selected, defines a password policy. Specify the required values.</td>
</tr>
<tr>
<td>Enable password policy</td>
<td>If selected, defines an account lockout policy. Specify the required values.</td>
</tr>
<tr>
<td>1 In Retry Count</td>
<td>Type the number of times a remote user can try to access his or her account after entering an incorrect password.</td>
</tr>
<tr>
<td>2 In Retry Duration</td>
<td>Type the time period in which the remote user's account gets locked on unsuccessful login attempts.</td>
</tr>
<tr>
<td>For example, if you specify</td>
<td>For example, if you specify Retry Count as 5 and Retry Duration as 1 minute, the remote user's account will be locked if he makes 5 unsuccessful login attempts within 1 minute.</td>
</tr>
<tr>
<td>3 In Lockout Duration</td>
<td>Type the time period for which the user account remains locked. After this time, the account is automatically unlocked.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
</tbody>
</table>
Table 8-10. Local authentication server options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

Add SSL VPN-Plus Server Settings

You must add SSL VPN server settings to enable SSL on a NSX Edge interface.

Procedure

1. In the **SSL Vpn-Plus** tab, select **Server Settings** from the left panel.
2. Click **Change**.
3. Select the IPv4 or IPv6 address.
4. Edit the port number if required. This port number is required to configure the installation package.
5. Select the encryption method.
6. (Optional) From the Server Certificates table, select the server certificate that you want to add.
7. Click **OK**.

Enable the SSL VPN-Plus Service

After configuring the SSL VPN-Plus service, enable the service for remote users to begin accessing private networks.

Procedure

1. In the **SSL Vpn-Plus** tab, select **Dashboard** from the left panel.
2. Click the **Enable** icon.

 The dashboard displays the status of the service, number of active SSL VPN sessions, and session statistics and data flow details. Click **Details** next to Number of Active Sessions to view information about the concurrent connections to private networks behind the NSX Edge gateway.

What to do next

1. Add an SNAT rule to translate the IP address of the NSX Edge appliance to the VPN Edge IP address.
2. Using a web browser, navigate to the IP address of the NSX Edge interface by typing `https://NSXEdgeIPAddress`.
3. Login using the user name and password that you created in the “Add a User,” on page 82 section and download the installation package.
4. Enable port forwarding on your router for the port number used in “Add SSL VPN-Plus Server Settings,” on page 76.
5. Launch the VN client, select your VPN server, and login. You can now navigate to the services on your network. SSL VPN-Plus gateway logs are sent to the syslog server configured on the NSX Edge appliance. SSL VPN-Plus client logs are stored in the following directory on the remote user’s computer: `%PROGRAMFILES%/VMware/SSLVPN Client/`.
Add a Script

You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com. When the remote user logs in to the SSL client, Internet Explorer opens up gmail.com.

Procedure

1. In the SSL Vpn-Plus tab, select Login/Logoff Scripts from the left panel.
2. Click the Add (➕) icon.
3. In Script, click Browse and select the script you want to bind to the NSX Edge gateway.
4. Select the Type of script.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Performs the script action when remote user logs in to SSL VPN.</td>
</tr>
<tr>
<td>Logoff</td>
<td>Performs the script action when remote user logs out of SSL VPN.</td>
</tr>
<tr>
<td>Both</td>
<td>Performs the script action both when remote user logs in and logs out of SSL VPN.</td>
</tr>
</tbody>
</table>

5. Type a description for the script.
6. Select Enabled to enable the script.
7. Click OK.

SSL VPN-Plus Logs

SSL VPN-Plus gateway logs are sent to the syslog server configured on the NSX Edge appliance. SSL VPN-Plus client logs are stored in the following directory on the remote user's computer: %PROGRAMFILES%/VMWARE/SSL VPN Client/.

Edit Client Configuration

You can change the way the SSL VPN client tunnel responds when the remote user logs in to SSL VPN.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select Client Configuration from the left panel.
6. Select the Tunneling Mode.

 In split tunnel mode, only the VPN flows through the NSX Edge gateway. In full tunnel, the NSX Edge gateway becomes the remote user's default gateway and all traffic (VPN, local, and internet) flows through this gateway.

7. If you selected the full tunnel mode:
 a. Select Exclude local subnets to exclude local traffic from flowing through the VPN tunnel.
 b. Type the IP address for the default gateway of the remote user's system.
8 Select **Enable auto reconnect** if you would like the remote user to automatically reconnect to the SSL VPN client after getting disconnected.
9 Select **Client upgrade notification** for the remote user to get a notification when an upgrade for the client is available. The remote user can then choose to install the upgrade.
10 Click **OK**.

Edit General Settings

You can edit the default VPN settings.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click an NSX Edge.
4 Click the **Monitor** tab and then click the **SSL VPN-Plus** tab.
5 Select **General Settings** from the left panel.
6 Make required selections.

<table>
<thead>
<tr>
<th>Select</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevent multiple logon using same username</td>
<td>Allow a remote user to login only once with a username.</td>
</tr>
<tr>
<td>Enable compression</td>
<td>Enable TCP based intelligent data compression and improve data transfer speed.</td>
</tr>
<tr>
<td>Enable logging</td>
<td>Maintain a log of the traffic passing through the SSL VPN gateway.</td>
</tr>
<tr>
<td>Force virtual keyboard</td>
<td>Allow remote users to enter web or client login information only via the virtual keyboard.</td>
</tr>
<tr>
<td>Randomize keys of virtual keyboard</td>
<td>Make the virtual keyboard keys random.</td>
</tr>
<tr>
<td>Enable forced timeout</td>
<td>Disconnect the remote user after the specified timeout period is over. Type the timeout period in minutes.</td>
</tr>
<tr>
<td>Session idle timeout</td>
<td>If there is no activity on the user session for the specified period, end the user session after that period is over.</td>
</tr>
<tr>
<td>User notification</td>
<td>Type a message to be displayed to the remote user after he logs in.</td>
</tr>
<tr>
<td>Enable public URL access</td>
<td>Allow remote user to access any site which is not configured (and not listed on web portal) by administrator.</td>
</tr>
</tbody>
</table>

7 Click **OK**.

Edit Web Portal Design

You can edit the client banner bound to the SSL VPN client.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click a vShield Edge.
4 Click the **Monitor** tab and then click the **SSL VPN-Plus** tab.
5 Select **Portal Customization** from the left panel.
6 Type the portal title.
7 Type the remote user’s company name.
8 In Logo, click Change and select the image file for the remote user’s logo.
9 In Colors, click the color box next to numbered item for which you want to change the color, and select the desired color.
10 If desired, change the client banner.
11 Click OK.

Working with IP Pools
You can edit or delete an IP pool.
For information on adding an IP pool, see “Configure Network Access SSL VPN-Plus,” on page 76 or “Configure Web Access SSL VPN-Plus,” on page 83.

Edit an IP Pool
You can edit an IP pool.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click the Grouping Objects tab and then click IP Pool.
5 Select the IP pool that you want to edit.
6 Click the Edit () icon.
 The Edit IP Pool dialog box opens.
7 Make the required edits.
8 Click OK.

Delete an IP Pool
You can delete an IP pool.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the SSL VPN-Plus tab.
5 Select IP Pool from the left panel.
6 Select the IP pool that you want to delete.
7 Click the Delete () icon.
 The selected IP pool is deleted.
Enable an IP Pool
You can enable an IP pool if you want an IP address from that pool to be assigned to the remote user.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select IP Pool from the left panel.
6. Select the IP pool that you want to enable.
7. Click the Enable (✓) icon.

Disable an IP Pool
You can disable an IP pool if you do not want the remote user to be assigned an IP address from that pool.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select IP Pool from the left panel.
6. Select the IP pool that you want to disable.
7. Click the Disable (🚫) icon.

Change the Order of an IP Pool
SSL VPN assigns an IP address to a remote user from an IP pool based on its order in the IP pool table.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select IP Pool from the left panel.
6. Select the IP pool that you want to change the order for.
7. Click the Move Up (↑) or Move Down (↓) icon.
Working with Private Networks

You can edit or delete a private network that a remote user can access.

For information on adding a private network, see “Configure Network Access SSL VPN-Plus,” on page 76 or “Configure Web Access SSL VPN-Plus,” on page 83.

Delete a Private Network

You can delete a private network

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select Private Networks from the left panel.
6. Select the network that you want to delete and click the Delete (×) icon.

Enable a Private Network

When you enable a private network, the remote user can access it through SSL VPN-Plus.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select Private Networks from the left panel.
6. Click the network that you want to enable.
7. Click the Enable icon (✔).

The selected network is enabled.

Disable a Private Network

When you disable a private network, the remote user cannot access it through SSL VPN-Plus.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select Private Networks from the left panel.
6. Click the network that you want to disable.
Click the Disable (✗) icon.

The selected network is disabled.

Change the Sequence of a Private Network

SSL VPN-Plus allows remote users to access private networks in the sequence in which they are displayed on the Private Networks panel.

If you select **Enable TCP Optimization** for a private network, some applications such as FTP in Active mode may not work within that subnet. To add an FTP server configured in Active mode, you must add another private network for that FTP server with TCP Optimization disabled. Also, the active TCP private network must be enabled, and must be placed above the subnet private network.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Monitor** tab and then click the **SSL VPN-Plus** tab.
5. Select **Private Networks** from the left panel.
6. Click the **Change Order ($)** icon.
7. Select the network that you want to change the order of.
8. Click the **Move Up (↑)** or **Move Down (↓)** icon.
9. Click **OK**.

Working with Installation Packages

You can delete or edit an installation package for the SSL client.

For information on creating an installation package, see “Configure Network Access SSL VPN-Plus,” on page 76 or “Configure Web Access SSL VPN-Plus,” on page 83.

Edit an Installation Package

You can edit an installation package.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Monitor** tab and then click the **SSL VPN-Plus** tab.
5. Select **Installation Package** from the left panel.
6. Select the installation package that you want to edit.
7. Click the Edit (✍️) icon.
 The Edit Installation Package dialog box opens.
8. Make the required edits.
Delete an Installation Package
You can delete an installation package.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select Installation Package from the left panel.
6. Select the installation package that you want to delete.
7. Click the Delete (X) icon.

Working with Users
You can edit or delete users from the local database.

For information on adding a user, see “Configure Network Access SSL VPN-Plus,” on page 76 or “Configure Web Access SSL VPN-Plus,” on page 83.

Edit a User
You can edit the details for a user except for the user ID.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select Users from the left panel.
6. Click the Edit (pencil) icon.
7. Make the required edits.
8. Click OK.

Delete a User
You can delete a user.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the SSL VPN-Plus tab.
5. Select Users from the left panel.
6 Users In the Configure panel, click Users.

7 Select the user that you want to delete and click the Delete (✗) icon.

Change the Password for a User

You can change the password for a user.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the SSL VPN-Plus tab.
5 Select Users from the left panel.
6 Click the Change Password icon.
7 Type and re-type the new password.
8 Click Change password on next login to change the password when the user logs in to his system next time.
9 Click OK.

Working with Login and Logoff Scripts

You can bind a login or logoff script to the vShield Edge gateway.

Edit a Script

You can edit the type, description, and status of a login or logoff script that is bound to the NSX Edge gateway.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the SSL VPN-Plus tab.
5 Select Login/Logoff Scripts from the left panel.
6 Select a script and click the Edit (✍️) icon.
7 Make the appropriate changes.
8 Click OK.

Delete a Script

You can delete a login or logoff script.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the SSL VPN-Plus tab.
5 Select Login/Logoff Scripts from the left panel.
6 Select a script and click the Delete (🗑️) icon.

Enable a Script
You must enable a script for it to work.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the SSL VPN-Plus tab.
5 Select Login/Logoff Scripts from the left panel.
6 Select a script and click the Enable (✔️) icon.

Disable a Script
You can disable a login/logoff script.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the SSL VPN-Plus tab.
5 Select Login/Logoff Scripts from the left panel.
6 Select a script and click the Disable (🚫) icon.

Change the Order of a Script
You can change the order of a script. For example, suppose you have a login script for opening gmail.com in Internet Explorer placed above a login script for opening yahoo.com. When the remote user logs in to SSL VPN, gmail.com is displayed before yahoo.com. If you now reverse the order of the login scripts, yahoo.com is displayed before gmail.com.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the SSL VPN-Plus tab.
5 Select Login/Logoff Scripts from the left panel.
6 Select the script that you want to change the order of and click the Move Up (⬆️) or Move Down (⬇️) icon.
NSS Administration Guide

1. Click OK.

IPSec VPN Overview

IPSec VPN Overview

NSX Edge supports site-to-site IPSec VPN between an NSX Edge instance and remote sites.

NSX Edge supports certificate authentication, preshared key mode, IP unicast traffic, and no dynamic routing protocol between the NSX Edge instance and remote VPN routers. Behind each remote VPN router, you can configure multiple subnets to connect to the internal network behind an NSX Edge through IPSec tunnels. These subnets and the internal network behind an NSX Edge must have address ranges that do not overlap.

You can deploy an NSX Edge agent behind a NAT device. In this deployment, the NAT device translates the VPN address of an NSX Edge instance to a publicly accessible address facing the Internet. Remote VPN routers use this public address to access the NSX Edge instance.

You can place remote VPN routers behind a NAT device as well. You must provide the VPN native address and the VPN Gateway ID to set up the tunnel. On both ends, static one-to-one NAT is required for the VPN address.

You can have a maximum of 64 tunnels across a maximum of 10 sites.

For IPSec VPN configuration examples, see Chapter 15, “NSX Edge VPN Configuration Examples,” on page 191.

Configuring IPSec VPN Service

Configuring IPSec VPN Service

You can set up an NSX Edge tunnel between a local subnet and a peer subnet.

1. Enable IPSec VPN Service on page 98
 You must enable the IPSec VPN service for traffic to flow from the local subnet to the peer subnet.

2. Specify Global IPSec VPN Configuration on page 99
 This enables IPSec VPN on the NSX Edge instance.

3. Enable Logging for IPSec VPN on page 99
 You can enable logging of all IPSec VPN traffic.

4. Configure IPSec VPN Parameters on page 99
 You must configure at least one external IP address on the NSX Edge to provide IPSec VPN service.

Enable IPSec VPN Service

Enable IPSec VPN Service

You must enable the IPSec VPN service for traffic to flow from the local subnet to the peer subnet.

Procedure

1. Log in to the vSphere Web Client.

2. Click Networking & Security and then click NSX Edges.

3. Double-click an NSX Edge.

4. Click the Manage tab and then click the VPN tab.

5. Click IPSec VPN.

6. Click Enable.
Specify Global IPSec VPN Configuration

This enables IPSec VPN on the NSX Edge instance.

Prerequisites

If you want to enable certificate authentication, server certificates, CA certificates, or CRLs must have been imported.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the VPN tab.
5. Click IPSec VPN.
6. Click Change next to Global configuration status.
7. [Type a global pre-shared key for those sites whose peer endpoint is set to any and select Display shared key to display the key.]
8. Select Enable certificate authentication and select the appropriate certificate.
9. Click OK.

Enable Logging for IPSec VPN

You can enable logging of all IPSec VPN traffic.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the VPN tab.
5. Click IPSec VPN.
6. Click next to Logging Policy and click Enable logging to log the traffic flow between the local subnet and peer subnet and select the logging level.
7. Select the log level and click Publish Changes.

Configure IPSec VPN Parameters

You must configure at least one external IP address on the NSX Edge to provide IPSec VPN service.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the VPN tab.
5. Click IPSec VPN.
6. Click the **Add (➕)** icon.

7. Type a name for the IPSec VPN.

8. Type the IP address of the NSX Edge instance in **Local Id**. This will be the peer ID on the remote site.

9. Type the IP address of the local endpoint.
 - If you are adding an IP to IP tunnel using a pre-shared key, the local ID and local endpoint IP can be the same.

10. Type the subnets to share between the sites in CIDR format. Use a comma separator to type multiple subnets.

11. Type the Peer Id to uniquely identify the peer site. For peers using certificate authentication, this ID must be the common name in the peer's certificate. For PSK peers, this ID can be any string. VMware recommends that you use the public IP address of the VPN or a FQDN for the VPN service as the peer ID.

12. Type the IP address of the peer site in Peer Endpoint. If you leave this blank, NSX Edge waits for the peer device to request a connection.

13. Type the internal IP address of the peer subnet in CIDR format. Use a comma separator to type multiple subnets.

15. In **Authentication Method**, select one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSK (Pre Shared Key)</td>
<td>Indicates that the secret key shared between NSX Edge and the peer site is to be used for authentication. The secret key can be a string with a maximum length of 128 bytes.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Indicates that the certificate defined at the global level is to be used for authentication.</td>
</tr>
</tbody>
</table>

16. Type the shared key in if anonymous sites are to connect to the VPN service.

17. Click **Display Shared Key** to display the key on the peer site.

18. In Diffie-Hellman (DH) Group, select the cryptography scheme that will allow the peer site and the NSX Edge to establish a shared secret over an insecure communications channel.

19. Edit the default MTU if required.

20. Select whether to enable or disable the Perfect Forward Secrecy (PFS) threshold. In IPsec negotiations, Perfect Forward Secrecy (PFS) ensures that each new cryptographic key is unrelated to any previous key.

21. Click **OK**.
 - NSX Edge creates a tunnel from the local subnet to the peer subnet.

What to do next

Enable the IPSec VPN service.

Edit IPSec VPN Service

You can edit an IPSec VPN service.

Procedure

1. Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click VPN tab.
5 Click IPSec VPN.
6 Select the IPSec service that you want to edit.
7 Click the Edit () icon.
8 Make the appropriate edits.
9 Click OK.

Disable IPSec Service
You can disable an IPSec service.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click VPN tab.
5 Click IPSec VPN.
6 Select the IPSec service that you want to disable.
7 Click the Disable () icon.

Delete IPSec Service
You can delete an IPSec service.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click VPN tab.
5 Click IPSec VPN.
6 Select the IPSec service that you want to delete.
7 Click the Delete () icon.

L2 VPN Overview
L2 VPN allows you to configure a tunnel between two sites. Virtual machines remain on the same subnet in spite of being moved between these sites, which enables you to extend your datacenter. An NSX Edge at one site can provide all services to virtual machines on the other site.

In order to create the L2 VPN tunnel, you configure an L2 VPN server and L2 VPN client.
Configuring L2 VPN

You first enable the L2 VPN service on the NSX Edge instance and then configure a server and a client.

1. **Enable L2 VPN** on page 102

 You must enable L2 VPN before configuring a tunnel.

2. **Add L2 VPN Server** on page 102

 The L2 VPN server is the source NSX Edge to which the L2 VPN is to be connected.

3. **Add L2 VPN Client** on page 103

 The L2 VPN client is the destination NSX Edge.

Enable L2 VPN

You must enable L2 VPN before configuring a tunnel.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **VPN** tab.
5. Click **L2 VPN**.
6. Click **Enable**.

Add L2 VPN Server

The L2 VPN server is the source NSX Edge to which the L2 VPN is to be connected.

Prerequisites

The internal IP address assigned to the L2 VPN server and client must be different. They can be on the same subnet.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **VPN** tab.
5. Click **L2 VPN**, select **Server**, and click **Change**.
6. Expand **Server Details**.
7. In **Listener IP**, type the primary or secondary IP address of an external interface of the NSX Edge.
8. The default port for the L2 VPN service is 443. Edit this if required.
9. Select the encryption method.
10. Select the internal interface of the NSX Edge which is being stretched. This interface must be connected to a dv port group or logical switch.
11. Type a description.
12. Expand **User Details** and type the user name and password.
13 In Server Certificates, do one of the following.
 - Select Use System Generated Certificate to use a self signed certificate for authentication.
 - Select the signed certificate to be used for authentication.

14 Click OK.

Add L2 VPN Client

The L2 VPN client is the destination NSX Edge.

Prerequisites

The internal IP address assigned to the L2 VPN server and client must be different. They can be on the same subnet.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the VPN tab.
5. Click L2 VPN, select Client, and click Change.
6. Expand Client Details and type the server address to which the VPN is to be connected. The address can be the host name or IP address.
7. If required, edit the default port to which the VPN is to be connected.
8. Select the internal interface on the NSX Edge to be stretched. The interface must be connected to a dv port group or logical switch.
9. Type a description.
10. Expand User Details and type the same user credentials as specified on the L2 VPN server.
11. If the client NSX Edge does not have direct access to the internet and needs to reach the source (server) NSX Edge via a proxy server, expand Proxy Settings.
12. To enable only secure proxy connections, select Enable Secure Proxy.
13. Type the proxy server address, port, user name, and password.
14. Do one of the following.
 - To enable server certificate validation, select Validate Server Certificate and select the appropriate certificate.
 - To disable server certificate validation, un-select Validate Server Certificate.
15. Click OK.

View L2 VPN Statistics

You can view L2 VPN statistics such as tunnel status, bytes sent and received etc. for the NSX Edge.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4 Click the **Manage** tab and then click the **VPN** tab.

5 Click **L2 VPN**.

6 Click **Fetch Status** and expand **Tunnel Status**.
Logical Load Balancer

The NSX Edge load balancer enables network traffic to follow multiple paths to a specific destination. It distributes incoming service requests evenly among multiple servers in such a way that the load distribution is transparent to users. Load balancing thus helps in achieving optimal resource utilization, maximizing throughput, minimizing response time, and avoiding overload. NSX Edge provides load balancing up to Layer 7.

You map an external, or public, IP address to a set of internal servers for load balancing. The load balancer accepts TCP, HTTP, or HTTPS requests on the external IP address and decides which internal server to use. Port 8090 is the default listening port for TCP, port 80 is the default port for HTTP, and port 443 is the default port for HTTPs.

You must have a working NSX Edge instance before you can load balancing. For information on setting up NSX Edge, see “NSX Edge Operations,” on page 156.

For information on configuring an NSX Edge certificate, see “Working with Certificates,” on page 156.

This chapter includes the following topics:

- “Set Up Load Balancing,” on page 105
- “Working with Application Profiles,” on page 115
- “Working with Service Monitors,” on page 116
- “Working with Server Pools,” on page 116
- “Working with Virtual Servers,” on page 117
- “Working with Application Rules,” on page 118

Set Up Load Balancing

The NSX Edge load balancer distributes network traffic across multiple servers to achieve optimal resource utilization.

You begin by setting global options for the load balancer. You then create an application profile to define the behavior of a particular type of network traffic. Next, you create a service monitor to define health check parameters for the load balancer.

You now create a server pool consisting of backend server members and associate a service monitor with the pool to manage and share the backend servers flexibly and efficiently.

When the virtual server receives a request, it chooses the appropriate pool to distribute the traffic comprising one or more members based on the associated algorithm.

Each pool is monitored by the associated service monitor. When the load balancer detects a problem with a pool member, it is marked as down.
Configure Load Balancer Service

You can specify global load balancer configuration parameters.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Manage** and then click the **Load Balancer** tab.
5. Click **Edit**.
6. Select the check boxes next to the options you want to enable.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Loadbalancer</td>
<td>Allows the NSX Edge load balancer to distribute traffic to internal servers for load balancing.</td>
</tr>
<tr>
<td>Enable Service Insertion</td>
<td>allows the load balancer to work with third party vendor appliances.</td>
</tr>
<tr>
<td>Acceleration Enabled</td>
<td>When enabled, the NSX Edge load balancer uses the faster L4 LB engine rather than L7 LB engine.</td>
</tr>
<tr>
<td>Logging</td>
<td>NSX Edge load balancer collects traffic logs. You can also choose the log level.</td>
</tr>
</tbody>
</table>

7. Click **OK**.

Create a Service Monitor

You create a service monitor to define health check parameters for a particular type of network traffic. When you associate a service monitor with a pool, the pool members are monitored according to the service monitor parameters.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Manage** and then click the **Load Balancer** tab.
5. In the left navigation panel, click **Service Monitoring**.
6. Click the **Add** icon.
7. Type a name for the service monitor.
8. Type the interval at which a server is to be pinged.
9. Type the maximum time in seconds within which a response from the server must be received.
10. Type the number of times the server must be pinged before it is declared down.
11. Select the way in which you want to send the health check request to the server.
12 For HTTP and HTTPS traffic, perform the steps below.

a In **Expect**, type the string that the monitor expects to match in the status line of HTTP response (for example, HTTP/1.1).

b Select the method to be used to detect server status.

c Type the URL to be used in the sample request.

d If you selected the POST method, type the data to be sent.
In **Receive**, type the string to be matched in the response content.

If **Expect** is not matched, the monitor does not try to match the **Receive** content.

(Optional) In **Extension**, type advanced monitor parameters as key=value pairs. For example, `warning=10` indicates that if a server does not respond within 10 seconds, its status is set as warning. All extension items should be separated with a carriage return character. For example:

```
<extension>delay=2
critical=3
escape</extension>
```

Refer to the table below for extensions supported for each protocol.

Table 9-1. Extensions for TCP Protocol

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>escape</td>
<td>Can use <code>\n</code>, <code>\r</code>, <code>\t</code>, or <code>\</code> in send or quit string. Must come before send or quit option. Default: nothing added to send, <code>\r\n</code> added to end of quit.</td>
</tr>
<tr>
<td>all</td>
<td>All expect strings need to occur in server response. Default is any.</td>
</tr>
<tr>
<td>quit=STRING</td>
<td>String to send to server to initiate a clean close of the connection.</td>
</tr>
<tr>
<td>refuse=ok</td>
<td>warn</td>
</tr>
<tr>
<td>mismatch=ok</td>
<td>warn</td>
</tr>
<tr>
<td>jail</td>
<td>Hide output from TCP socket.</td>
</tr>
<tr>
<td>maxbytes=INTEGER</td>
<td>Close connection once more than the specified number of bytes are received.</td>
</tr>
<tr>
<td>delay=INTEGER</td>
<td>Seconds to wait between sending string and polling for response.</td>
</tr>
<tr>
<td>certificate=INTEGER[,INTEGER]</td>
<td>Minimum number of days a certificate has to be valid. The first value is #days for warning and the second value is critical (if not specified - 0).</td>
</tr>
<tr>
<td>ssl</td>
<td>Use SSL for the connection.</td>
</tr>
<tr>
<td>warning=DOUBLE</td>
<td>Response time in seconds to result in warning status.</td>
</tr>
<tr>
<td>critical=DOUBLE</td>
<td>Response time in seconds to result in critical status.</td>
</tr>
</tbody>
</table>

Table 9-2. Extensions for HTTP/HTTPS Protocol

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-body</td>
<td>Do not wait for document body: stop reading after headers. Note that this still does an HTTP GET or POST, not a HEAD.</td>
</tr>
<tr>
<td>max-age=SECONDS</td>
<td>Warn if document is more than SECONDS old. The number can also be in the form 10m for minutes, 10h for hours, or 10d for days.</td>
</tr>
<tr>
<td>content-type=STRING</td>
<td>specify Content-Type header media type in POST calls.</td>
</tr>
<tr>
<td>linespan</td>
<td>Allow regex to span newlines (must precede -r or -R).</td>
</tr>
<tr>
<td>regex=STRING or ereg=STRING</td>
<td>Search page for regex STRING.</td>
</tr>
<tr>
<td>eregi=STRING</td>
<td>Search page for case-insensitive regex STRING.</td>
</tr>
</tbody>
</table>
Table 9-2. Extensions for HTTP/HTTPS Protocol (Continued)

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>invert-regex</td>
<td>Return CRITICAL if found, OK if not.</td>
</tr>
<tr>
<td>proxy-authorization=AUTH_PAIR</td>
<td>Username:password on proxy-servers with basic authentication.</td>
</tr>
<tr>
<td>useragent=STRING</td>
<td>String to be sent in HTTP header as User Agent.</td>
</tr>
<tr>
<td>header=STRING</td>
<td>Any other tags to be sent in HTTP header. Use multiple times for additional headers.</td>
</tr>
<tr>
<td>onredirect=ok</td>
<td>warning</td>
</tr>
<tr>
<td>pagesize=INTEGER:INTEGER</td>
<td>Minimum page size required (bytes) : Maximum page size required (bytes).</td>
</tr>
<tr>
<td>warning=DOUBLE</td>
<td>Response time in seconds to result in warning status.</td>
</tr>
<tr>
<td>critical=DOUBLE</td>
<td>Response time in seconds to result in critical status.</td>
</tr>
</tbody>
</table>

Table 9-3. Extensions for HTTPS Protocol

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sni</td>
<td>Enable SSL/TLS hostname extension support (SNI).</td>
</tr>
<tr>
<td>certificate=INTEGER</td>
<td>Minimum number of days a certificate has to be valid. Port defaults to 443. When this option is used the URL is not checked.</td>
</tr>
<tr>
<td>authorization=AUTHPAIR</td>
<td>Username:password on sites with basic authentication.</td>
</tr>
</tbody>
</table>

13 Click OK.

What to do next

Associate a service monitor with a pool.

Add a Server Pool

You can add a server pool to manage and share backend servers flexibly and efficiently. A pool manages load balancer distribution methods and has a service monitor attached to it for health check parameters.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click an NSX Edge.
4 Click **Manage** and then click the **Load Balancer** tab.
5 In the left navigation panel, click **Pools**.
6 Type a name and description for the load balancer pool.
Select a balancing method for each enabled service.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP_HASH</td>
<td>Selects a server based on a hash of the source and destination IP address of each packet.</td>
</tr>
<tr>
<td>LEAST_CONN</td>
<td>Distributes client requests to multiple servers based on the number of connections already on the server. New connections are sent to the server with the fewest connections.</td>
</tr>
<tr>
<td>ROUND_ROBIN</td>
<td>Each server is used in turn according to the weight assigned to it. This is the smoothest and fairest algorithm when the server’s processing time remains equally distributed.</td>
</tr>
<tr>
<td>URI</td>
<td>The left part of the URI (before the question mark) is hashed and divided by the total weight of the running servers. The result designates which server will receive the request. This ensures that a URI is always directed to the same server as long as no server goes up or down.</td>
</tr>
</tbody>
</table>

Add members to the pool.

a Click the Add icon.
b Type the name and IP address of the server member.
c Type the port where the member is to receive traffic on and the monitor port where the member is to receive health monitor pings.
d In Weight, type the proportion of traffic this member is to handle.
e Type the maximum number of connections the member can handle.
f Type the minimum number of connections a member should handle before traffic is redirected to the next member.
g Click OK.

Transparent indicates whether client IP addresses are visible to the backend servers. If Transparent is not selected (default value), backend servers see the traffic source IP as a Load balancer internal IP. If Transparent is selected, source IP is the real client IP and NSX Edge must be set as the default gateway to ensure that return packets go through the NSX Edge device.

Click OK.

Create an Application Profile

You create an application profile to define the behavior of a particular type of network traffic. After configuring a profile, you associate the profile with a virtual server. The virtual server then processes traffic according to the values specified in the profile. Using profiles enhances your control over managing network traffic, and makes traffic-management tasks easier and more efficient.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Application Profiles.
6 Click the Add icon.
7 Type a name for the profile and select the traffic type for which you are creating the profile.
8. Type the URL to which you want to re-direct HTTP traffic. For example, you can direct traffic from http://myweb.com to https://myweb.com.

9. Specify persistence for the profile. Persistence tracks and stores session data, such as the specific pool member that serviced a client request. This ensures that client requests are directed to the same pool member throughout the life of a session or during subsequent sessions.

 Cookie persistence inserts a cookie to uniquely identify the session the first time a client accessed the site and then refers to that cookie in subsequent requests to persist the connection to the appropriate server. Type the cookie name and select the mode by which the cookie should be inserted. The following cookie insertion modes are supported:

 - **Insert**
 NSX Edge sends a cookie. If the server sends one or more cookie, the client will receive one extra cookie (the server cookie(s) + the Edge cookie). If the server does not send any cookie, the client will receive the Edge cookie.

 - **Prefix**
 This option is selected if your client does not support more than one cookie.

 __Note__ All browsers accept multiple cookies. But you may have a proprietary application using a proprietary client that supports only one cookie. The web servers sends its cookie as usual. NSX Edge injects (as a prefix) its cookie information in the server cookie value. This cookie added information is removed when Edge sends it to the server.

 - **App Session**
 In this option, the server does not send a cookie; instead, it sends the user session information as a URL. For example, http://mysite.com/admin/UpdateUserServlet;jsessionid=O124B9ASD78SS, where jsessionid is the user session information and is used for the persistence. It is not possible to see the App Session persistence table for troubleshooting.

SOURCEIP persistence tracks sessions based on the source IP address. When a client requests a connection to a virtual server that supports source address affinity persistence, the load balancer checks to see if that client previously connected, and if so, returns the client to the same pool member.

Microsoft Remote Desktop Protocol (MSRDP) persistence maintains persistent sessions between Windows clients and servers that are running the Microsoft Remote Desktop Protocol (RDP) service. The recommended scenario for enabling MSRDP persistence is to create a load balancing pool that consists of members running Windows Server 2003 or Windows Server 2008, where all members belong to a Windows cluster and participate in a Windows session directory.

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Persistence Method Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>SOURCEIP, MSRDP</td>
</tr>
<tr>
<td>HTTP</td>
<td>Cookie, SOURCEIP</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Cookie, ssl_session_id (SSL Passthrough enabled), SOURCEIP</td>
</tr>
<tr>
<td>UDP</td>
<td>SOURCEIP</td>
</tr>
</tbody>
</table>

10. If you are creating a profile for HTTPS traffic, complete the steps below. The following HTTPS traffic pattern are allowed.

 Client -> HTTPS -> LB (terminate SSL) -> HTTP -> servers

 Client -> HTTPS -> LB (terminate SSL) -> HTTPS -> servers
Client -> HTTPS -> LB (SSL passthrough) -> HTTPS -> servers
Client -> HTTP -> LB -> HTTP -> servers

a Select **Insert X-Forwarded-For HTTP** header for identifying the originating IP address of a client connecting to a web server through the load balancer.

b Select the certificate/CAs/CRLs used to decrypt HTTPS traffic in **Virtual Server Certificates**.

c Define the certificate/CAs/CRLs used to authenticate the load balancer from the server side in **Pool Certificates**.

11 In **Cipher**, select the cipher algorithms (or cipher suite) negotiated during the SSL/TLS handshake.

12 Specify whether client authentication is to be ignored or required. If set to required, the client must provide a certificate after the request or the handshake is aborted.

13 Click **OK**.

Add an Application Rule

You can write an application rule to directly manipulate and manage IP application traffic. For application rule examples, see .

“**Application Rule Examples,”** on page 112.

Procedure

1 Log in to the vSphere Web Client.

2 Click **Networking & Security** and then click **NSX Edges**.

3 Double-click an NSX Edge.

4 Click **Manage** and then click the **Load Balancer** tab.

5 In the left navigation panel, click **Application Rules** and click the **Add** icon.

6 Type the name and script for the rule.

 For information on the application rule syntax, see http://cbonte.github.io/haproxy-dconv/configuration-1.5.html.

7 Click **OK**.

Application Rule Examples

HTTP/HTTPS redirection based on condition

An application profile allows you to specify HTTP/HTTPS redirection, which always redirects traffic regardless of the request URLs. You also have the flexibility to specify the conditions in which HTTP/HTTPS traffic should be redirected.

move the login URL only to HTTPS.

block clear dst_port 80
acl secure dst_port 8080
acl login_page url_beg /login
acl logout url_beg /logout
acl uid_given url_reg /login?userid=[^&]+?

set-cookie SEEN=1
redirect prefix https://mysite.com set-cookie SEEN=1 if !cookie_set
redirect prefix https://mysite.com if login_page !=secure
redirect prefix http://mysite.com drop-query if login_page !uid_given
redirect location http://mysite.com/ if !login_page secure
 redirect location/ clear-cookie USERID= if logout

Routing by domain name
You can create an application rule to direct requests to a specific load balancer pool according to domain name. The following rule direct requests to foo.com to pool_1, and requests to bar.com to pool_2.

acl is_foo hdr_dom(host) -i foo
 acl is_bar hdr_dom(host) -i bar
 use_backend pool_1 if is_foo
 use backend pool_2 if is_bar

Microsoft RDP load balancing and protection
In the following sample scenario, the load balancer balances a new user to the less loaded server and also resumes a broken session. The NSX Edge internal interface IP for this scenario is 10.0.0.18, internal interface IP is 192.168.1.1, and the virtual servers are 192.168.1.100, 192.168.1.101, and 192.168.1.102.

1) Create a application profile for TCP traffic with MSRDP persistence.
2) Create a TCP health monitor (tcp_monitor).
3) Create a pool (named rdp-pool) with 192.168.1.100:3389, 192.168.1.101:3389 and 192.168.1.102:3389 as members. Associate tcp_monitor to this pool.
4) Create the following application rule.
 tcp-request content track-sc1 rdp_cookie(mstshash) table rdp-pool
e tcp-request content track-sc2 src table ipv4_ip_table
 # each single IP can have up to 2 connections on the VDI infrastructure
e tcp-request content reject if { sc2_conn_cur ge 2 }
 # each single IP can try up to 5 connections in a single minute
e tcp-request content reject if { sc2_conn_rate ge 10 }
 # Each user is supposed to get a single active connection at a time, block the second one
 tcp-request content reject if { sc1_conn_cur ge 2 }
 # if a user tried to get connected at least 10 times over the last minute,
 # it could be a brute force
 tcp-request content reject if { sc1_conn_rate ge 10 }

5) Create a virtual server (named rdp-vs). Associate the application profile to this virtual server and add the application rule created in step 4.

Advanced Logging
By default, NSX load balancer supports basical logging. You can create an application rule as follows to view more detailed logging messages for troubleshooting.

log the name of the virtual server
capture request header Host len 32

log the amount of data uploaded during a POST
capture request header Content-Length len 10
log the beginning of the referrer
capture request header Referer len 20

server name (useful for outgoing proxies only)
capture response header Server len 20

logging the content-length is useful with "option logasap"
capture response header Content-Length len 10

log the expected cache behaviour on the response
capture response header Cache-Control len 8

the Via header will report the next proxy's name
capture response header Via len 20

log the URL location during a redirection
capture response header Location len 20

After you associate the application rule to the virtual server, logs include detailed messages such as the following example.

```
2013-04-25T09:18:17+00:00 edge-187 loadbalancer[18498]: [org1]: 10.117.7.117 - -
[25/Apr/2013:09:18:16 +0000] "GET /favicon.ico HTTP/1.1" 404 1440 "" "" 51656 856 "vip-http-complete"
"pool-http-complete" "m2" 145 0 1 26 172 --NI 1 1 0 0 0 0 "" "" 10.117.35.187" "Mozilla/5.0
(Windows NT 6.1; WOW64) AppleWebKit/537.31
(KHTML, like Gecko) Chrome/26.0.1410.64 Safari/537.31"
"Apache/2.2.15 (Linux)"
```

To troubleshoot the HTTPS traffic, you may need to add more rules. Most web application use 301/302 responses with a location header to redirect the client to a page (most of the time after a login or a POST call) and also require an application cookie. So your application server may have difficulty in getting to know client connection information and may not be able to provide the correct responses: it may even stop the application from working.

To allow the web application to support SSL offloading, add the following rule.

```
# See clearly in the log if the application is setting up response for HTTP or HTTPS
capture response header Location len 32
capture response header Set-Cookie len 32

# Provide client side connection info to application server over HTTP header
http-request set-header X-Forwarded-Proto https if { ssl_fc }
http-request set-header X-Forwarded-Proto http if !{ ssl_}
```

The load balancer inserts the following header when the connection is made over SSL.

```
X-Forwarded-Proto: https
```

The load balancer inserts the following header when the connection is made over HTTP.

```
X-Forwarded-Proto: http
```
Add Virtual Servers

Add an NSX Edge internal or uplink interface as a virtual server.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Virtual Servers.
6 Click the Add icon.
7 Type a name for the virtual server.
8 (Optional) Type a description for the virtual server.
9 Type the IP address that the load balancer is listening on. Type the protocol that the virtual server will handle.
10 Type the protocol that the virtual server will handle.
11 Type the port number that the load balancer will listen on.
12 Select the application profile to be associated with the virtual server. You can associate only an application profile with the same protocol as the virtual server that you are adding.
 The services supported by the selected pool appear.
13 Select the application rule to be associated with the virtual server.
14 In Connection Limit, type the maximum concurrent connections that the virtual server can process.
15 In Connection Rate Limit, type the maximum incoming new connection requests per second.
16 Click OK.

Working with Application Profiles

Delete an Application Profile

You can delete an application profile.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Application Profiles.
6 Select a profile and click the Delete icon.
Edit an Application Profile
You can edit an application profile.

Working with Service Monitors

Edit a Service Monitor
You can edit a service monitor.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Service Monitoring.
6 Select a service monitor and click the Edit icon.
7 Make the appropriate changes and click OK.

Delete a Service Monitor
You can delete a service monitor.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Service Monitoring.
6 Select a service monitor and click the Delete icon.

Working with Server Pools

Edit a Server Pool
You can edit a server pool.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the Load Balancer tab.
5 Ensure that you are in the Pool tab.
Delete a Server Pool
You can delete a server pool.

Procedure
1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click an NSX Edge.
4. Click the *Monitor* tab and then click the *Load Balancer* tab.
5. Ensure that you are in the Pool tab.
6. Select the pool to delete
7. Click the *Delete* icon.

Working with Virtual Servers

Edit a Virtual Server
You can edit a virtual server.

Procedure
1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click an NSX Edge.
4. Click the *Monitor* tab and then click the *Load Balancer* tab.
5. Click *Virtual Servers* tab.
6. Select the virtual server to edit.
7. Click the *Edit* icon.
8. Make the appropriate changes and click *Finish*.

Delete a Virtual Server
You can delete a virtual server.

Procedure
1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click an NSX Edge.
4. Click the *Monitor* tab and then click the *Load Balancer* tab.
5 Click Virtual Servers tab.
6 Select the virtual server to delete.
7 Click the Delete (×) icon.

Working with Application Rules

Edit an Application Rule

You can edit an application rule.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Application Rules.
6 Select a rule and click the Edit icon.
7 Make the appropriate changes and click OK.

Delete an Application Rule

You can delete an application rule.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Application Profiles.
6 Select a profile and click the Delete icon.
Other Edge Services

An NSX services gateway offers IP address pooling and one-to-one static IP address allocation and external DNS server configuration.

You must have a working NSX Edge instance before you can use any of the above services. For information on setting up NSX Edge, see “NSX Edge Operations,” on page 156.

This chapter includes the following topics:

- “Managing DHCP Service,” on page 119
- “Configure DNS Servers,” on page 122

Managing DHCP Service

NSX Edge supports IP address pooling and one-to-one static IP address allocation. Static IP address binding is based on the vCenter managed object ID and interface ID of the requesting client.

NSX Edge DHCP service adheres to the following guidelines:

- Listens on the NSX Edge internal interface for DHCP discovery.
- Uses the IP address of the internal interface on NSX Edge as the default gateway address for all clients, and the broadcast and subnet mask values of the internal interface for the container network.

You must restart the DHCP service on client virtual machines in the following situations:

- You changed or deleted a DHCP pool, default gateway, or DNS server.
- You changed the internal IP address of the NSX Edge instance.

Add a DHCP IP Pool

DHCP service requires a pool of IP addresses. An IP pool is a sequential range of IP addresses within the network. Virtual machines protected by NSX Edge that do not have an address binding are allocated an IP address from this pool. An IP pool's range cannot intersect one another, thus one IP address can belong to only one IP pool.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the DHCP tab.
5. Click the Add (➕) icon.
Configure the pool.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Configure DNS</td>
<td>Select to use the DNS service configuration for the DHCP binding.</td>
</tr>
<tr>
<td>Lease never expires</td>
<td>Select to bind the address to the MAC address of the virtual machine forever. If you select this, Lease Time is disabled.</td>
</tr>
<tr>
<td>Start IP</td>
<td>Type the starting IP address for the pool.</td>
</tr>
<tr>
<td>End IP</td>
<td>Type the ending IP address for the pool.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Type the domain name of the DNS server. This is optional.</td>
</tr>
<tr>
<td>Primary Name Server</td>
<td>If you did not select Auto Configure DNS, type the Primary Nameserver for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution. This is optional.</td>
</tr>
<tr>
<td>Secondary Name Server</td>
<td>If you did not select Auto Configure DNS, type the Secondary Nameserver for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution. This is optional.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>Type the default gateway address. If you do not specify the default gateway IP address, the internal interface of the NSX Edge instance is taken as the default gateway. This is optional.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>Select whether to lease the address to the client for the default time (1 day), or type a value in seconds. You cannot specify the lease time if you selected Lease never expires. This is optional.</td>
</tr>
</tbody>
</table>

Click OK.

Enable the DHCP Service

Enable the DHCP service to allow NSX Edge to automatically assign an IP address to a virtual machine from a defined IP pool.

Prerequisites

A DHCP IP pool must have been added.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the DHCP tab.
5. Click Enable.
6. Select Enable logging if required and select the log level.
7. Click Publish Changes.

What to do next

Create an IP pool and bindings.

Edit DHCP IP Pool

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the DHCP tab.
5 Select a DHCP pool and click the Edit icon.
6 Make the appropriate changes and click OK.

Add a DHCP Static Binding

If you have services running on a virtual machine and do not want the IP address to be changed, you can bind an IP address to the MAC address of a virtual machine. The IP address you bind must not overlap an IP pool.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the DHCP tab.
5 Select Bindings from the left panel.
6 Click the Add (➕) icon.
7 Configure the binding.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Configure DNS</td>
<td>Select to use the DNS service configuration for the DHCP binding.</td>
</tr>
<tr>
<td>Lease never expires</td>
<td>Select to bind the address to the MAC address of the virtual machine</td>
</tr>
<tr>
<td></td>
<td>forever.</td>
</tr>
<tr>
<td>Interface</td>
<td>Select the NSX Edge interface to bind.</td>
</tr>
<tr>
<td>VM Name</td>
<td>Select the virtual machine to bind.</td>
</tr>
<tr>
<td>VM vNIC Index</td>
<td>Select the virtual machine NIC to bind to the IP address.</td>
</tr>
<tr>
<td>Host Name</td>
<td>Type the host name of the DHCP client virtual machine.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Type the address to which to bind the MAC address of the selected</td>
</tr>
<tr>
<td></td>
<td>virtual machine.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Type the domain name of the DNS server.</td>
</tr>
<tr>
<td>Primary Name Server</td>
<td>If you did not select Auto Configure DNS, type the Primary Nameserver</td>
</tr>
<tr>
<td></td>
<td>for the DNS service. You must enter the IP address of a DNS server</td>
</tr>
<tr>
<td></td>
<td>for hostname-to-IP address resolution.</td>
</tr>
<tr>
<td>Secondary Name Server</td>
<td>If you did not select Auto Configure DNS, type the Secondary Nameserver</td>
</tr>
<tr>
<td></td>
<td>for the DNS service. You must enter the IP address of a DNS server</td>
</tr>
<tr>
<td></td>
<td>for hostname-to-IP address resolution.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>Type the default gateway address. If you do not specify the default</td>
</tr>
<tr>
<td></td>
<td>gateway IP address, the internal interface of the NSX Edge instance</td>
</tr>
<tr>
<td></td>
<td>is taken as the default gateway.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>If you did not select Lease never expires, select whether to lease</td>
</tr>
<tr>
<td></td>
<td>the address to the client for the default time (1 day), or type a</td>
</tr>
<tr>
<td></td>
<td>value in seconds.</td>
</tr>
</tbody>
</table>

8 Click Add.
9 Click Publish Changes.
Edit DHCP Binding

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the DHCP tab.
5 Select Bindings from the left panel and click the binding to edit.
6 Click the Edit icon.
7 Make the appropriate changes and click OK.

Configure DNS Servers

You can configure external DNS servers to which NSX Edge can relay name resolution requests from clients. NSX Edge will relay client application requests to the DNS servers to fully resolve a network name and cache the response from the servers.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click a NSX Edge.
4 Click the Manage tab and then click the Settings tab.
5 In the DNS Configuration panel, click Change.
6 Click Enable DNS Service to enable the DNS service.
7 Type IP addresses for both DNS servers.
8 Change the default cache size if required.
9 Click Enable Logging to log DNS traffic and select the log level.
 Generated logs are sent to the syslog server.
10 Click Ok.
Service Composer helps you provision and assign network and security services to applications in a virtual infrastructure. You map these services to a security group, and the services are applied to the virtual machines in the security group.

Security Group

You begin by creating a security group to define assets that you want to protect. Security groups may be static (including specific virtual machines) or dynamic where membership may be defined in one or more of the following ways:

- vCenter containers (clusters, port groups, or datacenters)
- Security tags, IPset, MACset, or even other security groups. For example, you may include a criteria to add all members tagged with the specified security tag (such as AntiVirus.virusFound) to the security group.
- Directory Groups (if NSX Manager is registered with Active Directory)
- Regular expressions such as virtual machines with name VM1

Note that security group membership changes constantly. For example, a virtual machine tagged with the AntiVirus.virusFound tag is moved into the Quarantine security group. When the virus is cleaned and this tag is removed from the virtual machine, it again moves out of the Quarantine security group.

Security Policy

A security policy is a collection of the following service configurations.

<table>
<thead>
<tr>
<th>Table 11-1. Security services contained in a security policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
</tr>
<tr>
<td>Firewall rules</td>
</tr>
<tr>
<td>Endpoint service</td>
</tr>
<tr>
<td>Network introspection services</td>
</tr>
</tbody>
</table>

Mapping Security Policy to Security Group

You map a security policy (say SPI) to a security group (say SG1). The services configured for SPI are applied to all virtual machines that are members of SG1.
If a virtual machine belongs to more than one security group, the services that are applied to the virtual machine depends on the precedence of the security policy mapped to the security groups.

Service Composer profiles can be exported and imported as backups or for use in other environments. This approach to managing network and security services helps you with actionable and repeatable security policy management.

This chapter includes the following topics:

- “Using Service Composer,” on page 124
- “Graphical View of Service Composer,” on page 130
- “Export a Service Composer Configuration,” on page 132
- “Import a Service Composer Configuration,” on page 133
- “Working with Security Tags,” on page 133
- “Viewing Effective Services,” on page 135
- “Working with Security Policies,” on page 136
- “Edit a Security Group,” on page 138
- “Service Composer Scenarios,” on page 138

Using Service Composer

Service Composer helps you consume security services with ease.

Let us walk through an example to show how Service Composer helps you protect your network end-to-end. Let us say you have the followings security policies defined in your environment:

- An initial state security policy that includes a vulnerability scanning service (InitStatePolicy)
- A remediation security policy that includes a network IPS service in addition to firewall rules and an anti-virus service (RemPolicy)

Ensure that the RemPolicy has higher weight (precedence) than InitStatePolicy.

You also have the followings security groups in place:

- An applications assets group that includes the business critical applications in your environment (AssetGroup)
- A remediation security group defined by a tag that indicates the virtual machine is vulnerable (VULNERABILITY_MGMT.VulnerabilityFound.threat=medium) named RemGroup

You now map the InitStatePolicy to AssetGroup to protect all business critical applications in your environment. You also map RemPolicy to RemGroup to protect vulnerable virtual machines.
When you initiate a vulnerability scan, all virtual machines in AssetGroup are scanned. If the scan identifies a virtual machine with a vulnerability, it applies the VULNERABILITY_MGMT.VulnerabilityFound.threat=medium tag to the virtual machine.

Service Composer instantly adds this tagged virtual machine to RemGroup, where a network IPS solution is already in place to protect this vulnerable virtual machine.

Figure 11-2. Service Composer in action

This topic will now take you through the steps required to consume the security services offered by Service Composer.

1. **Create a Security Group in Service Composer** on page 125

 You create a security group at the NSX Manager level.

2. **Create a Security Policy** on page 127

 A security policy is a set of Endpoint, firewall, and network introspection services that can be applied to a security group. The order in which security policies are displayed is determined by the weight associated with the policy. By default, a new policy is assigned the highest weight so that it is at the top of the table. However, you can modify the default suggested weight to change the order assigned to the new policy.

3. **Map a Security Policy to a Security Group** on page 129

 You can apply a security policy to a security group to secure your virtual desktops, business critical applications, and the connections between them. You can also view a list of the services that were not applied and the reason they failed to apply.

Create a Security Group in Service Composer

You create a security group at the NSX Manager level.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Groups tab and then click the Add Security Group icon.
4. Type a name and description for the security group and click Next.
5 On the Dynamic Membership page, define the criteria that an object must meet for it to be added to the security group you are creating.

For example, you may include a criteria to add all members tagged with the specified security tag (such as AntiVirus.virusFound) to the security group. Security tags are case sensitive.

Note If you define a security group by virtual machines that have a certain security tag applied to them, you can create a dynamic or conditional workflow. The moment the tag is applied to a virtual machine, the virtual machine is automatically added to that security group.

Or you can add all virtual machines containing the name W2008 AND virtual machines that are in the logical switch global_wire to the security group.

6 Click **Next**.

7 On the Select objects to include page, select the tab for the resource you want to add and select one or more resource to add to the security group. You can include the following objects in a security group.

- Other security groups to nest within the security group you are creating.
- Cluster
- Virtual wire
- Network
- Virtual App
- Datacenter
- IP sets
- AD groups

Note The AD configuration for NSX security groups is different from the AD configuration for vSphere SSO. NSX AD group configuration is for end users accessing guest virtual machines while vSphere SSO is for administrators using vSphere and NSX.

- MAC Sets
- Security tag
- vNIC
- Virtual Machine
- Resource Pool
- Distributed Virtual Port Group

The objects selected here are always included in the security group regardless of whether or not they match the dynamic criteria.

When you add a resource to a security group, all associated resources are automatically added. For example, when you select a virtual machine, the associated vNIC is automatically added to the security group.
8 Click **Next** and select the objects that you want to exclude from the security group.

The objects selected here are always excluded from the security group even if they match the dynamic criteria or are selected in the include list.

9 Click **Finish**.

Membership of a security group is determined as follows:

\[(\text{Expression result (derived from step 4) + Inclusions (specified in step 6)} - \text{Exclusion (specified in step 7)})\]

which means that inclusion items are first added to the expression result. Exclusion items are then subtracted from the combined result.

Create a Security Policy

A security policy is a set of Endpoint, firewall, and network introspection services that can be applied to a security group. The order in which security policies are displayed is determined by the weight associated with the policy. By default, a new policy is assigned the highest weight so that it is at the top of the table. However, you can modify the default suggested weight to change the order assigned to the new policy.

Prerequisites

Ensure that:

- the required VMware built-in services (such as Distributed Firewall, Data Security, and Endpoint) are installed. See *NSX Installation and Upgrade Guide*.
- the required partner services have been registered with NSX Manager. See “Register a Partner Solution Manually,” on page 187.

Procedure

1 Log in to the vSphere Web Client.

2 Click **Networking & Security** and then click **Service Composer**.

3 Click the **Security Policies** tab.

4 Click the **Create Security Policy** (新增政策) icon.

5 In the Add Security Policy dialog box, type a name for the security policy.

6 Type a description for the security policy.

 NSX assigns a default weight (highest weight +1000) to the policy. For example, if the highest weight amongst the existing policy is 1200, the new policy is assigned a weight of 2200.

 Security policies are applied according to their weight - a policy with the higher weight has precedence over a policy with a lower weight.

7 Select **Inherit security policy from specified policy** if you want the policy that you are creating to receive services from another security policy. Select the parent policy.

 All services from the parent policy are inherited by the new policy.

8 Click **Next**.

9 In the Endpoint Services page, click the **Add Endpoint Service** (新增服务) icon.

 a In the Add Endpoint Service dialog box, type a name and description for the service.

 b Specify whether you want to apply the service or block it.

 When you inherit a security policy, you may choose to block a service from the parent policy.
Select the type of service.

If you select Data Security, you must have a data security policy in place. See Chapter 12, “Data Security,” on page 143.

d If you chose to apply the Endpoint service, select the service name and service configuration.

Service configuration refers to vendor templates. These configurations are defined in third party consoles and are registered along with partner services. Tagging and untagging of virtual machines depends on the service configuration selected for the security policy.

e In State, specify whether you want to enable the selected Endpoint service or disable it.

You can add Endpoint services as placeholders for services to be enabled at a later time. This is especially useful for cases where services need to be applied on-demand (for example, new applications).

f Select whether the Endpoint service is to be enforced (i.e. it cannot be overridden).

If you enforce an Endpoint service in a security policy, other policies that inherit this security policy would require that this policy be applied before the other child policies. If this service is not enforced, an inheritance selection would add the parent policy after the child policies are applied.

g Click OK.

You can add additional Endpoint services by following the above steps. You can manage the Endpoint services through the icons above the service table.

You can export or copy the services on this page by clicking the icon on the bottom right side of the Endpoint Services page.

10 Click Next.

11 On the Firewall page, click the Add Firewall Rule () icon.

Here, you are defining firewall rules for the security groups(s) that this security policy will be applied to.

a Type a name and description for the firewall rule you are adding.

b Select Allow or Block to indicate whether the rule needs to allow or block traffic to the selected destination.

c Select the source for the rule. By default, the rule applies to traffic coming from the security groups to which this policy gets applied to. To change the default source, click Change and select the appropriate security groups.

d Select the destination for the rule.

Note Either the Source or Destination (or both) must be security groups to which this policy gets applied to.

Say you create a rule with the default Source, specify the Destination as Payroll, and select Negate Destination. You then apply this security policy to security group Engineering. This would result in Engineering being able to access everything except for the Payroll server.

e Select the services and/or service groups to which the rule applies to.

f Select Enabled or Disabled to specify the rule state.

g Select Log to log sessions matching this rule.

Enabling logging may affect performance.

h Click OK.
You can add additional firewall rules by following the above steps. You can manage the firewall rules through the icons above the firewall table.

You can export or copy the rules on this page by clicking the icon on the bottom right side of the Firewall page.

The firewall rules you add here are displayed on the Firewall table. VMware recommends that you do not edit Service Composer rules in the firewall table. If you must do so for an emergency troubleshooting, you must re-synchronize Service Composer rules with firewall rules by selecting Synchronize Firewall Rules from the Actions menu in the Security Policies tab.

12 Click Next.

The Network Introspection Services page displays NetX services that you have integrated with your VMware virtual environment. See “Register a Partner Solution Manually,” on page 187.

13 Click the Add Network Introspection Service () icon.

 a In the Add Network Introspection Service dialog box, type a name and description for the service you are adding.
 b Select whether or not to redirect to service.
 c Select the service name and profile.
 d Select the source and destination
 e Select the protocol.
 You can specify the protocol type, source port advanced options, and destination port.
 f Select whether to enable or disable the service.
 g Select Log to log sessions matching this rule.
 h Click OK.

You can add additional network introspection services by following the above steps. You can manage the network introspection services through the icons above the service table.

You can export or copy the services on this page by clicking the icon on the bottom right side of the Network Introspection Service page.

14 Click Finish.

The security policy is added to the policies table. You can click the policy name and select the appropriate tab to view a summary of the services associated with the policy, view service errors, or edit a service.

What to do next

Map the security policy to a security group.

Map a Security Policy to a Security Group

You can apply a security policy to a security group to secure your virtual desktops, business critical applications, and the connections between them. You can also view a list of the services that were not applied and the reason they failed to apply.

Procedure

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click Service Composer.
3 Click the Security Policy tab.

4 Select a security policy and click the Apply Security Policy icon.

5 Select the security group that you want to apply the policy to.

If you select a security group defined by virtual machines that have a certain security tag applied to them, you can create a dynamic or conditional workflow. The moment the tag is applied to a virtual machine, the virtual machine is automatically added to that security group.

6 Click the Preview Service Status icon to see the services that cannot be applied to the selected security group and the reason for the failure.

For example, the security group may include a virtual machine that belongs to a cluster on which one of the policy services has not been installed. You must install that service on the appropriate cluster for the security policy to work as intended.

7 Click OK.

Graphical View of Service Composer

Service Composer offers a canvas view displaying all security groups within the selected NSX Manager. The view also displays details such as members of each security group as well as the security policy applied on it.

This topic introduces Service Composer by walking you through a partially configured system so that you can visualize the mappings between security groups and security policy objects at a high level from the canvas view.

Procedure

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click Service Composer.

3 Click the Canvas tab.

All security groups within the selected NSX Manager (that are not contained within another security group) are displayed along with the policies applied on them. The NSX Manager drop-down lists all NSX Managers on which the currently logged in user has a role assigned.

Figure 11-3. Service Composer canvas top level view
Each rectangular box in the canvas represents a security group and the icons within the box represents security group members and details about the security policy mapped to the security group.

Figure 11-4. Security group

A number next to each icon indicates the number of instances - for example, indicates that 1 security policy is mapped to that security group.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Click to display</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Security groups nested within the main security group.</td>
</tr>
<tr>
<td></td>
<td>Virtual machines that are currently part of the main security group as well as nested security groups. Click the Errors tab to see virtual machines with service errors.</td>
</tr>
<tr>
<td></td>
<td>Effective security policies mapped to the security group.</td>
</tr>
<tr>
<td></td>
<td>You can create a new security policy by clicking the Create Security Policy icon. The newly created security policy object is automatically mapped to the security group.</td>
</tr>
<tr>
<td></td>
<td>Map additional security policies to the security group by clicking the Apply Security Policy icon.</td>
</tr>
<tr>
<td></td>
<td>Effective Endpoint services associated with the security policy mapped to the security group. Suppose you have two policies applied to a security group and both have the same category Endpoint service configured. The effective service count in this case will be 1 (since the second lower priority service is overridden). Endpoint service failures, if any, are indicated by the alert icon. Clicking the icon displays the error.</td>
</tr>
<tr>
<td></td>
<td>Effective firewall rules associated with the security policy mapped to the security group. Service failures, if any, are indicated by the alert icon. Clicking the icon displays the error.</td>
</tr>
<tr>
<td></td>
<td>Effective network introspection services associated with the security policy mapped to the security group. Service failures, if any, are indicated by the alert icon. Clicking the icon displays the error.</td>
</tr>
</tbody>
</table>

Clicking an icon displays a dialog box with appropriate details.

Figure 11-5. Details displayed when you click an icon in the security group

You can search for security groups by name. For example, if you type PCI in the search field in the top right corner of the canvas view, only the security groups with PCI in their names are displayed.
To see the security group hierarchy, click the **Top Level** (верх) icon at the top left of the window and select the security group you want to display. If a security group contains nested security groups, click ➤ to display the nested groups. The top bar displays the name of the parent security group and the icons in the bar display the total number of security policies, endpoint services, firewall services, and network introspection services applicable to the parent group. You can navigate back up to the top level by clicking the **Go up one level** (верх) icon in the top left part of the window.

You can zoom in and out of the canvas view smoothly by moving the zoom slider on the top right corner of the window. The Navigator box shows a zoomed out view of the entire canvas. If the canvas is much bigger than what fits on your screen, it will show a box around the area that is actually visible and you can move it to change the section of the canvas that is being displayed.

What to do next

Now that we have seen how the mapping between security groups and security policies work, you can begin creating security policies to define the security services you want to apply to your security groups.

Map Security Group to Security Policy

You can map the selected security group to a security policy.

Procedure

1. Select the security policy that you want to apply to the security group.
2. To create a new policy, select New Security Group.
 - See “Create a Security Policy,” on page 127.
3. Click **Save**.

Export a Service Composer Configuration

You can export a Service Composer configuration (along with the security groups to which the security policies are mapped) and save it to your desktop. The saved configuration can be used as a backup for situations where you may accidentally delete a policy configuration, or it can be exported for use in another NSX Manager environment.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Service Composer**.
3. Click the **Security Policies** tab.
4. Select the security policy that you want to export.
5. Click **Actions** and then click the **Export Service Configuration** icon.
6. Type a name and description for the configuration that you are exporting.
7. If desired, type a prefix to be added to the security policies and security groups that are being exported.
 - If you specify a prefix, it is added to the target security policy names thus ensuring that they have unique names.
8. Click **Next**.
9. In the Select security policies page, select the security policy that you want to export and click **Next**.
The Ready to complete page displays the security policies along with associated objects (security
groups on which these have been applied, as well as Endpoint services, firewall rules, and network
introspection services) to be exported.

Click Finish.

Select the directory on your computer where you want to download the exported blueprint and click
Save.

The configuration file is saved at the specified location.

Import a Service Composer Configuration

You can import a saved Service Composer configuration (along with the security groups to which the
security policies are mapped) either as a backup or to restore configuration on a different NSX Manager.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Click Actions and then click the Import Service Configuration icon.
5. Select the configuration file that you want to import.
6. If desired, type a suffix to be added to the security policies and security groups that are being imported.
 If you specify a suffix, it is added to the security policy names being imported thus ensuring that they
 have unique names.
7. Click Next.
 Service Composer verifies that all services referred to in the configuration are available in the
destination environment. If not, the Manage Missing Services page is displayed, where you can map
missing services to available target services.
 The Ready to complete page displays the security policies along with associated objects (security
groups on which these have been applied, as well as Endpoint services, firewall rules, and network
introspection services) to be imported.
8. Click Finish.
 The imported security policies are added to the top of the security policy table (above the existing
policies) in the target NSX Manager. The original order of the imported policies is preserved.

Working with Security Tags

You can view security tags applied on a virtual machine or create a user defined security tag.

View Applied Security Tags

You can view the security tags applied to virtual machines in your environment.

Prerequisites

A data security or antivirus scan must have been run and a tag applied to the appropriate virtual machine.

Note Refer to the third party solution documentation for details of the tags applied by those solutions.
Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Security Tags tab.
 A list of tags applied in your environment is displayed along with details about the virtual machines to which those tags have been applied. Note down the exact tag name if you plan on adding a security group to include virtual machines with a specific tag.
5. Click the number in the VM Count column to view the virtual machines to which that tag in that row has been applied.

Add a Security Tag
You can manually add a security tag and apply it to a virtual machine. This is especially useful when you are using a non-NSX solution in your environment and hence, cannot register the solution tags with NSX Manager.

Prerequisites

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Security Tags tab.
5. Click the New Security Tag (➕) icon.
6. Type a name and description for the tag and click OK.

Assign a Security Tag
In addition to creating a conditional workflow with a dynamic membership-based security tag, you can manually assign a security tag to a virtual machine.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Security Tags tab.
5. Select a security tag and click the Assign Security Tag (➕) icon.
6. Select one or more virtual machines and click OK.
Edit a Security Tag

You can edit a user-defined security tag. If a security group is based on the tag you are editing, changes to the tag may affect security group membership.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Security Tags tab.
5. Select a security tag and click the Edit Security Tag (✓) icon.
6. Make the appropriate changes and click OK.

Delete a Security Tag

You can delete a user-defined security tag. If a security group is based on the tag you are deleting, changes to the tag may affect security group membership.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Security Tags tab.
5. Select a security tag and click the Delete Security Tag (✗) icon.

Viewing Effective Services

You can view the services that are effective on a security policy object or on a virtual machine.

View Effective Services on a Security Policy

You can view the services effective on a security policy, including those services inherited from a parent policy.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Click a security policy in the Name column.
5. Ensure that you are in the Manage > Information Security tab.

Each of the three tabs (Endpoint Services, Firewall, Network Introspection Services) displays the corresponding services for the security policy.
Services that are not effective are greyed out. The **Overridden** column displays the services that are actually applied on the security policy and the **Inherited from** column displays the security policy from which services are inherited.

View Service Failures for a Security Policy

You can see the services associated with a security policy that failed to apply to the security group(s) mapped to the policy.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Service Composer**.
3. Click the **Security Policies** tab.
4. Click a security policy in the **Name** column.
5. Ensure that you are in the **Monitor > Service Errors** tab.

Clicking the link in the **Status** column takes you to the Service Deployment page where you can correct service errors.

View Effective Services on a Virtual Machine

You can view the services effective on a virtual machine. If multiple security policies are getting applied on a virtual machine (i.e. a virtual machine is part of multiple security groups that have policies mapped to them), then this view lists all effective services from all these policies, in the order in which they get applied. The service status column displays the status for each service.

Procedure

1. Log in to the vSphere Web Client.
2. Click **vCenter** and then click **Virtual Machines**.
3. Click a virtual machine in the **Name** column.
4. Ensure that you are in the **Monitor > Service Composer** tab.

Working with Security Policies

A security policy is a group of network and security services.

The following network and security services can be grouped into a security policy:

- Endpoint services - data security, anti-virus, and vulnerability management
- Distributed Firewall rules
- Network introspection services - network IPS and network forensics
Manage Security Policy Priority

Security policies are applied according to their weight - a security policy with a higher weight has a higher priority. When you move a policy up or down in the table, its weight is adjusted accordingly.

Multiple security policies may be applied to a virtual machine either because the security group that contains the virtual machine is associated with multiple policies or because the virtual machine is part of multiple security groups associated with different policies. If there is a conflict between services grouped with each policy, the weight of the policy determines the services that will be applied to the virtual machine. For example, say policy 1 blocks internet access and has a weight value of 1000 while policy 2 allows internet access and has a weight value of 2000. In this particular case, policy 2 has a higher weight and hence the virtual machine will be allowed internet access.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Click the Manage Precedence (↑↓) icon.
5. In the Manage Precedence dialog box, select the security policy that you want to change the precedence for and click the Move Up (↑) or Move Down (↓) icon.
6. Click OK.

Edit a Security Policy

You can edit the name or description of a security policy, as well as the associated services and rules.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Select the security policy that you want to edit and click the Edit Security Policy (📝) icon.
5. In the Edit Security Policy dialog box, make the appropriate changes and click Finish.

Delete a Security Policy

You can delete a security policy.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Select the security policy that you want to delete and click the Delete Security Policy (❌) icon.
Edit a Security Group

You can edit a security group.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Groups tab.
4. Select the security group you want to edit and click the Edit Security Group icon.
5. Make the appropriate changes and click OK.

Service Composer Scenarios

This section illustrates some hypothetical scenarios for Service Composer. It is assumed that the Security Administrator role has been created and assigned to the administrator in each use case.

Quarantining Infected Machines Scenario

Service Composer can identify infected systems on your network with 3rd party antivirus solutions and quarantine them to prevent further outbreaks.

Our sample scenario shows how you can protect your desktops end to end.

Figure 11-6. Configuring Service Composer

Run Rapid 7 scan
Create security group for desktops (DesktopPolicy)
Create security group for infected VMs (QuarantinePolicy)
Create security group for desktops (DesktopSecurityGroup)

Create security group for infected VMs (QuarantineSecurityGroup)
Map DesktopPolicy to DesktopSecurityGroup
Map QuarantinePolicy to QuarantineSecurityGroup

Figure 11-7. Service Composer Conditional Workflow

Run Rapid 7 scan
Vulnerable VM tagged
Tagged VM instantly added to QuarantineSecurityGroup
VM in QuarantineSecurityGroup protected with IPS

Prerequisites

vShield Endpoint and a partner solution have been installed on the cluster where the desktops need to be protected.

Procedure
1. Install, register, and deploy the Symantec Antimalware solution.
2. Create a security policy for your desktops.
 a. Click the Security Policies tab and click the Add Security Policy icon.
 b. In Name, type DesktopPolicy.
 c. In Description, type Antivirus scan for all desktops.
 d. Change the weight to 51000. The policy precedence is set very high so as to ensure that it is enforced above all other policies.
 e. Click Next.
 f. On the Add Endpoint Service page, click + and fill in the following values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td>Service Type</td>
<td>Anti Virus</td>
</tr>
<tr>
<td>Service Name</td>
<td>Symantec Antimalware</td>
</tr>
<tr>
<td>Service Configuration</td>
<td>Silver</td>
</tr>
<tr>
<td>State</td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td>Enforce</td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td>Name</td>
<td>Desktop AV</td>
</tr>
<tr>
<td>Description</td>
<td>Mandatory policy to be applied on all desktops</td>
</tr>
</tbody>
</table>

g. Click OK.
 h. Do not add any firewall or network introspection services and click Finish.

3. Create a security policy for infected virtual machines.
 a. Click the Security Policies tab and click the Add Security Policy icon.
 b. In Name, type QuarantinePolicy.
 c. In Description, type Policy to be applied to all infected systems.
 d. Do not change the default weight.
 e. Click Next.
 f. On the Add Endpoint Service page, do not do anything and click Next.
 g. In Firewall, add three rules - one rule to block all outgoing traffic, the next rule to block all traffic with groups, and the last rule to allow incoming traffic only from remediation tools.
 h. Do not add any network introspection services and click Finish.

4. Move QuarantinePolicy to the top of the security policy table to ensure that it is enforced before all other policies.
 a. Click the Manage Priority icon.
 b. Select QuarantinePolicy and click the Move Up icon.

5. Create a security group for all desktops in your environment.
 a. Log in to the vSphere Web Client.
 b. Click Networking & Security and then click Service Composer.
 c. Click the Security Groups tab and click the Add Security Group icon.
 d. In Name, type DesktopSecurityGroup.
 e. In Description, type All desktops.
Click Next on the next couple of pages.

Review your selections on the Ready to Complete page and click Finish.

6 Create a Quarantine security group where the infected virtual machines are to be placed.
 a Click the Security Groups tab and click the Add Security Group icon.
 b In Name, type QuarantineSecurityGroup.
 c In Description, type Dynamic group membership based on infected VMs identified by the antivirus scan.
 d On the Define membership Criteria page click + and add the following criteria.

 Members matching Any of the criteria below

 +

 Security Tag ▼ Equals to ▼ AntiVirus.virusFound

 e Do not do anything on the Select objects to include or Select objects to exclude pages and click Next.
 f Review your selections on the Ready to Complete page and click Finish.

7 Map the DesktopPolicy policy to the DesktopSecurityGroup security group.
 a On the Security Policies tab, ensure that the DesktopPolicy policy is selected.
 b Click the Apply Security Policy (.blob) icon and select the SG_Desktops group.
 c Click OK.

 This mapping ensures that all desktops (part of the DesktopSecurityGroup) are scanned when an antivirus scan is triggered.

8 Navigate to the canvas view to confirm that QuarantineSecurityGroup does not include any virtual machines yet.
 a Click the Information Security tab.
 b Confirm that there are 0 virtual machines in the group.

9 Map QuarantinePolicy to QuarantineSecurityGroup.
 This mapping ensures that no traffic flows to the infected systems.

10 From the Symantec Antimalware console, trigger a scan on your network.

 The scan discovers infected virtual machine and tags them with the security tag AntiVirus.virusFound.
 The tagged virtual machines are instantly added to QuarantineSecurityGroup. The QuarantinePolicy allows no traffic to and from the infected systems.
Backing up Security Configurations

Service Composer can be very effectively used to back up your security configurations and restore them at a later time.

Procedure

1. Install, register, and deploy the Rapid 7 Vulnerability Management solution.
2. Create a security group for the first tier of the Share Point application - web servers.
 a. Log in to the vSphere Web Client.
 b. Click Networking & Security and then click Service Composer.
 c. Click the Security Groups tab and click the Add Security Group icon.
 d. In Name, type SG_Web.
 e. In Description, type Security group for application tier.
 f. Do not do anything on the Define membership Criteria page and click Next.
 g. On the Select objects to include page, select the web server virtual machines.
 h. Do not do anything on the Select objects to exclude page and click Next.
 i. Review your selections on the Ready to Complete page and click Finish.
3. Now create a security group for your database and share point servers and name them SG_Database, and SG_Server_SharePoint respectively. Include the appropriate objects in each group.
4. Create a top level security group for your application tiers and name it SG_App_Group. Add SG_Web, SG_Database, and SG_Server_SharePoint to this group.
5. Create a security policy for your web servers.
 a. Click the Security Policies tab and click the Add Security Policy icon.
 b. In Name, type SP_App.
 c. In Description, type SP for application web servers.
 d. Change the weight to 50000. The policy precedence is set very high so as to ensure that it is enforced above most other policies (with the exception of quarantine).
 e. Click Next.
 f. On the Endpoint Services page, click and fill in the following values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td>Service Type</td>
<td>Vulnerability Management</td>
</tr>
<tr>
<td>Service Name</td>
<td>Rapid 7</td>
</tr>
<tr>
<td>Service Configuration</td>
<td>Silver</td>
</tr>
<tr>
<td>State</td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td>Enforce</td>
<td>Do not modify the default value</td>
</tr>
</tbody>
</table>

 g. Do not add any firewall or network introspection services and click Finish.
7 Navigate to the canvas view to confirm that the SP_App has been mapped to SG_App_Group.
 a Click the Information Security tab.
 b Click the number next to the icon to see that the SP_App is mapped.

8 Export the SP_App policy.
 a Click the Security Policies tab and then click the Export Blueprint icon.
 b In Name, type Template_App_ and in Prefix, type FromAppArchitect.
 c Click Next.
 d Select the SP_App policy and click Next.
 e Review your selections and click Finish.
 f Select the directory on your computer where you want to download the exported file and click Save.

 The security policy as well as all the security groups to which this policy has been applied (in our case, the Application security group as well as the three security groups nested within it) are exported.

9 In order to demonstrate how the exported policy works, delete the SP_App policy.

10 Now we will restore the Template_App_DevTest policy that we exported in step 7.
 a Click Actions and then click the Import Service Configuration icon.
 b Select the FromAppArchitect_Template_App file from your desktop (you saved it in step 7).
 c Click Next.
 d The Ready to complete page displays the security policies along with associated objects (security groups on which these have been applied, as well as Endpoint services, firewall rules, and network introspection services) to be imported.
 e Click Finish.

 The configuration and associated objects are imported to the vCenter inventory and are visible in the canvas view.
NSX Data Security provides visibility into sensitive data stored within your organization's virtualized and cloud environments. Based on the violations reported by NSX Data Security, you can ensure that sensitive data is adequately protected and assess compliance with regulations around the world.

To begin using NSX Data Security, you create a policy that defines the regulations that apply to data security in your organization and specifies the areas of your environment and files to be scanned. A regulation is composed of content blades, which identify the sensitive content to be detected. NSX supports PCI, PHI, and PII related regulations only.

When you start a Data Security scan, NSX analyzes the data on the virtual machines in your vSphere inventory and reports the number of violations detected and the files that violated your policy.

This chapter includes the following topics:

- “NSX Data Security User Roles,” on page 143
- “Defining a Data Security Policy,” on page 143
- “Running a Data Security Scan,” on page 145
- “Viewing and Downloading Reports,” on page 146
- “Creating Regular Expressions,” on page 146

NSX Data Security User Roles

A user's role determines the actions that the user can perform.

<table>
<thead>
<tr>
<th>Role</th>
<th>Actions Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Administrator</td>
<td>Create and publish policies and view violation reports. Cannot start or stop a data security scan.</td>
</tr>
<tr>
<td>NSX Administrator</td>
<td>Start and stop data security scans.</td>
</tr>
<tr>
<td>Auditor</td>
<td>View configured policies and violation reports.</td>
</tr>
</tbody>
</table>

Defining a Data Security Policy

To detect sensitive data in your environment, you must create a data security policy. You must be a Security Administrator to create policies.

To define a policy, you must specify the following:

1. Regulations
A regulation is a data privacy law for protecting PCI (Payment Card Industry), PHI (Protected Health Information) and PII (Personally Identifiable Information) information. You can select the regulations that your company needs to comply to. When you run a scan, Data Security identifies data that violates the regulations in your policy and is sensitive for your organization.

2 File filters
You can create filters to limit the data being scanned and exclude file types unlikely to contain sensitive data from the scan.

Select Regulations
Once you select the regulations that you want your company data to comply with, NSX can identify files that contain information which violates these particular regulations.

Prerequisites
You must have been assigned the Security Administrator role.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking and Security and then click Data Security.
3 Click the Manage tab.
4 Click Edit and click All to display all available regulations.
5 Select the regulations for which you want to detect compliance.

Note For information on available regulations, see Chapter 16, “Data Security Regulations,” on page 211.

6 Click Next.
7 Certain regulations require additional information for NSX Data Security to recognize sensitive data. If you selected a regulation that monitors Group Insurance Numbers, Patient Identification Numbers, Medical Record Numbers, Health Plan Beneficiary Numbers, US Bank Account Numbers, Custom Accounts, or Student identification numbers, specify a regular expression pattern for identifying that data.

Note Check the accuracy of the regular expression. Specifying incorrect regular expressions can slow down the discovery process. For more information on regular expressions, see “Creating Regular Expressions,” on page 146.

8 Click Finish.
9 Click Publish Changes to apply the policy.

Specify File Filters
You can restrict the files that you want to monitor based on size, last modified date, or file extensions.

Prerequisites
You must have been assigned the Security Administrator role.

Procedure
1 In the Manage tab of the Data Security panel, click Edit next to Files to scan.
You can either monitor all files on the virtual machines in your inventory, or select the restrictions you want to apply.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor all files on the guest virtual machines</td>
<td>NSX Data Security scans all files.</td>
</tr>
</tbody>
</table>
| Monitor only the files that match the following conditions | Select the following options as appropriate.
 ■ Size indicates that NSX Data Security should only scan files less than the specified size.
 ■ Last Modified Date indicates that NSX Data Security should scan only files modified between the specified dates.
 ■ Types: Select Only files with the following extensions to enter the file types to scan. Select All files, except those with extensions to enter the file types to exclude from the scan. |

For information on file formats that NSX Data Security can detect, see Chapter 18, “File Formats Supported by Data Security,” on page 273.

3 Click Save.

4 Click Publish Changes to apply the policy.

Running a Data Security Scan

Running a data security scan identifies data in your virtual environment that violates your policy.

Prerequisites

You must be a NSX Administrator to start, pause, or stop a data security scan.

Procedure

1 Log in to the vSphere Web Client.

2 Click Networking and Security and then click Data Security.

3 Click the Manage tab.

4 Click Start next to Scanning.

Note If a virtual machine is powered off, it will not be scanned till it is powered on.

If a scan is in progress, the available options are Pause and Stop.

If Data Security is part of a Service Composer policy, virtual machines in the security group mapped to that Service Composer policy are scanned once during a scan. If the policy is edited and published while a scan is running, the scan restarts. This rescan ensures that all virtual machines comply with the edited policy. A rescan is triggered by publishing an edited policy, not by data updates on your virtual machines.

If a virtual machine is moved to an excluded cluster or resource pool while the data security scan is in progress, the files on that virtual machine are not scanned. In case a virtual machine is moved via vMotion to another host, the scan continues on the second host (files that were scanned while the virtual machine was on the previous host are not scanned again).

When the Data Security engine starts scanning a virtual machine, it records the scan start time. When the scan ends, it records the end of the scan. You can view the scan start and end time for a cluster, host, or virtual machine by selecting the Tasks and Events tab.

NSX Data Security throttles the number of virtual machines scanned on a host at a time to minimize impact on performance. VMware recommends that you pause the scan during normal business hours to avoid any performance overhead.
Viewing and Downloading Reports

When you start a security scan, NSX displays the start and end time of each scan, the number of virtual machines scanned, and the number of violations detected.

Prerequisites

Verify that you have been assigned the Security Administrator or Auditor role.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking and Security and then click Data Security.
3. Click the Reports tab.
4. Specify whether you want to view a Violation counts or Violating files report.

Creating Regular Expressions

A regular expression is a pattern that describes a certain sequence of text characters, otherwise known as strings. You use regular expressions to search for, or match, specific strings or classes of strings in a body of text.

Using a regular expression is like performing a wildcard search, but regular expressions are far more powerful. Regular expressions can be very simple, or very complex. An example of a simple regular expression is `cat`.

This finds the first instance of the letter sequence cat in any body of text that you apply it to. If you want to make sure it only finds the word `cat`, and not other strings like `cats` or `hepcat`, you could use this slightly more complex one: `\bcat\b`.

This expression includes special characters that make sure a match occurs only if there are word breaks on both sides of the `cat` sequence. As another example, to perform a near equivalent to the typical wildcard search string `c+t`, you could use this regular expression: `\bc\w+t\b`.

This means find a word boundary (`\b`) followed by a `c`, followed by one or more non-whitespace, non-punctuation characters (`\w+`), followed by a `t`, followed by a word boundary (`\b`). This expression finds `cot`, `cat`, `croat`, but not `crate`.

Expressions can get very complex. The following expression finds any valid email address.

```
\b[A-Za-z0-9-._%]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}\b
```

For more information on creating regular expressions, see http://userguide.icu-project.org/strings/regexp.
This section describes

This chapter includes the following topics:

- “System Events and Audit Logs,” on page 147
- “Management System Settings,” on page 151
- “Working with Active Directory Domains,” on page 154
- “NSX Edge Operations,” on page 156
- “Backing Up NSX Manager Data,” on page 166
- “Flow Monitoring,” on page 167
- “Activity Monitoring,” on page 173
- “vShield Endpoint Events and Alarms,” on page 182

System Events and Audit Logs

System events are events that are related to NSX operations. They are raised to detail every operational event. Events might relate to basic operation (Informational) or to a critical error (Critical).

With the NSX ticket logger feature, you can track the changes you make with a ticket ID. Audit logs for operations tracked by a ticket will include the ticket ID.

About NSX Logs

This section describes how you can configure the syslog server and view technical support logs for each NSX component. Management plane logs are available through NSX Manager and data plane logs are available through vCenter Server. Hence, it is recommended that you specify the same syslog server for the NSX component and vCenter Server in order to get a complete picture when viewing logs on the syslog server.

For information on configuring syslog for hosts managed by a vCenter Server, see VMware vSphere ESXi and vCenter Server 5.5 Documentation.

NSX Manager

To specify a syslog server, see “Specify Syslog Server,” on page 151.

To download technical support logs, see “Download Technical Support Logs for NSX,” on page 153.
NSX Edge

To specify a syslog server, see “Configure Remote Syslog Servers,” on page 164.

To download technical support logs, see “Download Tech Support Logs for NSX Edge,” on page 165.

Firewall

You must configure the remote syslog server for each cluster that has firewall enabled. The remote syslog server is specified in the `Syslog.global.logHost` attribute. See *ESXi and vCenter Server 5.5 Documentation*.

Here is a sample line from a host log file.

```
2013-10-02T05:41:12.670Z cpu11:1000046503)vsip_pkt: INET, match, PASS, Rule 0/3, Ruleset domain-c7, Rule ID 100, OUT, Len 60, SRC 10.24.106.96, DST 10.24.106.52, TCP SPORT 59692, DPORT 22 S
```

which consists of three parts:

Table 13-1. Components of log file entry

<table>
<thead>
<tr>
<th>Value in example</th>
<th>2013-10-02T05:41:12.670Z cpu11:1000046503)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMKernel common log portion consists of date, time, CPU, and WorldID</td>
<td>vsip_pkt</td>
</tr>
<tr>
<td>Identifier</td>
<td>Firewall specific portion</td>
</tr>
<tr>
<td>Identifier</td>
<td>INET, match, PASS, Rule 0/3, Ruleset domain-c7, Rule ID 100, OUT, Len 60, SRC 10.24.106.96, DST 10.24.106.52, TCP SPORT 59692, DPORT 22 S</td>
</tr>
</tbody>
</table>

Table 13-2. Firewall specific portion of log file entry

<table>
<thead>
<tr>
<th>Entity</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF Value</td>
<td>INET, INET6</td>
</tr>
<tr>
<td>Reason</td>
<td>Possible values: match, bad-offset, fragment, short, normalize, memory, bad-timestamp, congestion, ip-option, proto-cksum, state-mismatch, state-insert, state-limit, src-limit, synproxy, spoofguard</td>
</tr>
<tr>
<td>Action</td>
<td>PASS, DROP, SCRUB, NOSCRUB, NAT, NONAT, BINAT, NOBINAT, RDR, NORDR, SYNPXROY_DROP, PUNT, REDIRECT, COPY</td>
</tr>
<tr>
<td>Rule identifier</td>
<td>Identifier</td>
</tr>
<tr>
<td>Rule value</td>
<td>Ruleset ID and Rule position (Internal details)</td>
</tr>
<tr>
<td>Rule set identifier</td>
<td>Identifier</td>
</tr>
<tr>
<td>Rule set value</td>
<td>Ruleset name</td>
</tr>
<tr>
<td>Rule ID identifier</td>
<td>Identifier</td>
</tr>
<tr>
<td>Rule ID</td>
<td>ID matched</td>
</tr>
<tr>
<td>Direction</td>
<td>ROUT, IN</td>
</tr>
<tr>
<td>Length identifier</td>
<td>Len followed by variable</td>
</tr>
<tr>
<td>Length value</td>
<td>Packet length</td>
</tr>
<tr>
<td>Source identifier</td>
<td>SRC</td>
</tr>
<tr>
<td>Source IP address</td>
<td>IP address</td>
</tr>
<tr>
<td>Destination identifier</td>
<td>IP address</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP, UDP, PROTO</td>
</tr>
<tr>
<td>Source port identifier</td>
<td>SPORT</td>
</tr>
<tr>
<td>Source port</td>
<td>Source port number for TDP and UDP</td>
</tr>
</tbody>
</table>
Table 13-2. Firewall specific portion of log file entry (Continued)

<table>
<thead>
<tr>
<th>Entity</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source port identifier</td>
<td>Destination port identifier</td>
</tr>
<tr>
<td>Destination port</td>
<td>Destination port number for TDP and UDP</td>
</tr>
<tr>
<td>Flag</td>
<td>Flag for TCP</td>
</tr>
</tbody>
</table>

Using NSX Ticket Logger

The NSX Ticket Logger allows you to track the infrastructure changes that you make. All operations are tagged with the specified ticket ID, and audit logs for these operations include the ticket ID. Log files for these operations are tagged with the same ticked ID.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click the **Manage** tab.
3. Click **Edit** next to **NSX Ticket Logger Settings**.
4. Type a ticket ID and click **Turn On**.

The NSX Ticket Logging pane is displayed at the right side of the vSphere Web Client window. Audit logs for the operations that you perform in the current UI session include the ticket ID in the **Operation Tags** column.

Figure 13-1. NSX Ticket Logger pane

If multiple vCenter Servers are being managed by the vSphere Web Client, the ticket ID is used for logging on all applicable NSX Managers.

What to do next

Ticket logging is session based. If ticket logging is on and you log out or if the session is lost, ticket logging will be turned off by default when you re-login to the UI. When you complete the operations for a ticket, you turn logging off by repeating steps 2 and 3 and clicking **Turn Off**.

View the System Event Report

NSX Manager aggregates system events into a report.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Managers**.

3. Click an NSX Manager in the Name column and then click the **Monitor** tab.

4. Click the **System Events** tab.

5. To sort events, click or next to the appropriate column header.

NSX Manager Virtual Appliance Events

The following events are specific to the NSX Manager virtual appliance.

<table>
<thead>
<tr>
<th>Table 13-3. NSX Manager Virtual Appliance Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Off</td>
</tr>
<tr>
<td>Local CLI</td>
</tr>
<tr>
<td>GUI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 13-4. NSX Manager Virtual Appliance Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
</tr>
<tr>
<td>Local CLI</td>
</tr>
<tr>
<td>GUI</td>
</tr>
</tbody>
</table>

About the Syslog Format

The system event message logged in the syslog has the following structure.

```text
syslog header (timestamp + hostname + sysmgr/)
Timestamp (from the service)
Name/value pairs
Name and value separated by delimiter '::' (double colons)
Each name/value pair separated by delimiter ';;' (double semi-colons)
```

The fields and types of the system event contain the following information.

- Event ID :: 32 bit unsigned integer
- Timestamp :: 32 bit unsigned integer
- Application Name :: string
- Application Submodule :: string
- Application Profile :: string
- Event Code :: integer (possible values: 10007 10016 10043 20019)
- Severity :: string (possible values: INFORMATION LOW MEDIUM HIGH CRITICAL)
- Message ::

View the Audit Log

The **Audit Logs** tab provides a view into the actions performed by all NSX Manager users. The NSX Manager retains up to 1,000,000 audit logs.

Procedure

1. Log in to the vSphere Web Client.

2. Click **Networking & Security** and then click **NSX Managers**.

3. In the **Name** column, click an NSX server and then click the **Monitor** tab.
4 Click the Audit Logs tab.

5 When details are available for an audit log, the text in the Operation column for that log is clickable. To view details of an audit log, click the text in the Operation column.

6 In the Audit Log Change Details, select Changed Rows to display only those properties whose values have changed for this audit log operation.

Management System Settings

You can edit the vCenter Server, DNS and NTP server, and Lookup server that you specified during initial login. NSX Manager requires communication with your vCenter Server and services such as DNS and NTP to provide details on your VMware Infrastructure inventory.

Log In to the NSX Manager Virtual Appliance

After you have installed and configured the NSX Manager virtual machine, log in to the NSX Manager virtual appliance to review the settings specified during installation.

Procedure

1 Open a Web browser window and type the IP address assigned to the NSX Manager. For example, https://11.111.11.11. The NSX Manager user interface opens in a web browser window using SSL.

2 Accept the security certificate.

 NOTE You can use an SSL certificate for authentication. Refer to the NSX Administration Guide.

 The NSX Manager login screen appears.

3 Log in to the NSX Manager virtual appliance by using the user name admin and the password you set during installation. If you had not set a password during installation, type default as the password.

4 Click Log In.

Edit the NSX Manager Date and Time

You can change the NTP server specified during initial login.

Procedure

1 Log in to the NSX Manager virtual appliance.

2 Under Appliance Management, click Manage Appliance Settings.

3 Click Edit next to Time Settings.

4 Make the appropriate changes.

5 Click OK.

6 Reboot the NSX Manager.

Specify Syslog Server

If you specify a syslog server, NSX Manager sends all audit logs and system events from NSX Manager to the syslog server.

Procedure

1 Log in to the NSX Manager virtual appliance.
2. Under **Appliance Management**, click **Manage Appliance Settings**.

3. From the Settings panel, click **General**.

4. Click **Edit** next to **Syslog Server**.

5. Type the IP address of the syslog server.

6. Type the port and protocol for the syslog server.

 If you do not specify a port, the default UDP port for the IP address/host name of the syslog server is used.

7. Click **OK**.

Edit DNS Servers

You can change the DNS servers specified during Manager installation.

Procedure

1. Log in to the NSX Manager virtual appliance.

2. Under **Appliance Management**, click **Manage Appliance Settings**.

3. From the Settings panel, click **Network**.

4. Click **Edit** next to **DNS Servers**.

5. Make the appropriate changes.

6. Click **OK**.

Edit Lookup Service Details

You can change the Lookup Service details specified during initial login.

Procedure

1. Log in to the NSX Manager virtual appliance.

2. Under **Appliance Management**, click **Manage Appliance Settings**.

3. From the Settings panel, click **NSX Management Service**.

4. Click **Edit** next to **Lookup Service**.

5. Make the appropriate changes.

6. Click **OK**.

Edit vCenter Server

You can change the vCenter Server with which you registered NSX Manager during installation. You should do this only if you change the IP address of your current vCenter Server.

Procedure

1. If you are logged in to the vSphere Web Client, log out.

2. Log in to the NSX Manager virtual appliance.

3. Under **Appliance Management**, click **Manage Appliance Settings**.

4. From the Settings panel, click **NSX Management Service**.

5. Click **Edit** next to **vCenter Server**.
6 Make the appropriate changes.
7 Click OK.

Download Technical Support Logs for NSX

You can download NSX Manager system logs and Web Manager logs to your desktop.

Procedure
1 Log in to the NSX Manager virtual appliance.
2 Under Appliance Management, click **Manage Appliance Settings**.
3 Click ![] and then click **Download Tech Support Log**.
4 Click **Download**.
5 After the log is ready, click the **Save** to download the log to your desktop.
 The log is compressed and has the file extension `.gz`.

What to do next
You can open the log using a decompression utility by browsing for **All Files** in the directory where you saved the file.

Add an SSL Certificate to Identify the NSX Manager Web Service

You can generate a certificate signing request, get it signed by a CA, and import the signed SSL certificate into NSX Manager to authenticate the identity of the NSX Manager web service and encrypt information sent to the NSX Manager web server. As a security best practice, you should use the generate certificate option to generate a private key and public key, where the private key is saved to the NSX Manager.

Procedure
1 Log in to the NSX Manager virtual appliance.
2 Under **Appliance Management**, click **Manage Settings**.
3 From the Settings panel, click **SSL Certificate**.
4 Under **Generate Certificate Signing Request**, complete the form by filling in the following fields:

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Size</td>
<td>Select the key length used in the selected algorithm.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Type the IP address or fully qualified domain name (FQDN) of the NSX Manager. VMware recommends that you enter the FQDN.</td>
</tr>
<tr>
<td>Organization Unit</td>
<td>Enter the department in your company that is ordering the certificate.</td>
</tr>
<tr>
<td>Organization Name</td>
<td>Enter the full legal name of your company.</td>
</tr>
<tr>
<td>City Name</td>
<td>Enter the full name of the city in which your company resides.</td>
</tr>
<tr>
<td>State Name</td>
<td>Enter the full name of the state in which your company resides.</td>
</tr>
<tr>
<td>Country Code</td>
<td>Enter the two-digit code that represents your country. For example, the United States is US.</td>
</tr>
</tbody>
</table>

5 Click **OK**.
Import an SSL certificate
You can import a pre-existing or CA signed SSL certificate for use by the NSX Manager.

Procedure
1. Log in to the NSX Manager virtual appliance.
2. Under Appliance Management, click Manage Settings.
3. From the Settings panel, click SSL Certificates and then click Import.
4. Click Browse to locate the file.
5. Click Import.
 A yellow bar containing the message Successfully imported certificate is displayed at the top of the screen.
6. Click Apply Certificate.
 NSX Manager is restarted to apply the certificate.

The certificate is stored in NSX Manager.

Working with Active Directory Domains
You can register one or more Windows domains with an NSX Manager and associated vCenter server. NSX Manager gets group and user information as well as the relationship between them from each domain that it is registered with. NSX Manager also retrieves Active Directory (AD) credentials.

Once NSX Manager retrieves AD credentials, you can create security groups based on user identity, create identity-based firewall rules, and run Activity Monitoring reports.

Register a Windows Domain with NSX Manager

Prerequisites
The domain account must have AD read permission for all objects in the domain tree. The event log reader account must have read permissions for security event logs.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Domain tab and then click the Add domain (icon.
5. In the Add Domain dialog box, enter the fully qualified domain name (for example, eng.vmware.com) and netBIOS name for the domain.
 To retrieve the netBIOS name for your domain, type nbstat -n in a command window on a Windows workstation that is part of a domain or on a domain controller. In the NetBIOS Local Name Table, the entry with a <00> prefix and type Group is the netBIOS name.
6. Click Next.
7. In the LDAP Options page, specify the domain controller that the domain is to be synchronized with and select the protocol.
8 Edit the port number if required.
9 Enter the user credentials for the domain account. This user must be able to access the directory tree structure.
10 Click Next.
11 In the Security Event Log Access page, select the connection method to access security event logs on the specified LDAP server. Change the port number if required.
12 Select Use Domain Credentials to use the LDAP server user credentials. To specify an alternate domain account for log access, un-select Use Domain Credentials and specify the user name and password. The specified account must be able to read the security event logs on the Domain Controller specified in step 10.
13 Click Next.
14 In the Ready to Complete page, review the settings you entered.
15 Click Finish.
The domain is created and its settings are displayed below the domain list.

What to do next
Verify that login events on the event log server are enabled.

You can add, edit, delete, enable, or disable LDAP servers by selecting the LDAP Servers tab in the panel below the domain list. You can perform the same tasks for event log servers by selecting the Event Log Servers tab in the panel below the domain list. Adding more than one Windows server (Domain Controllers, Exchange servers, or File Servers) as an event log server improves the user identity association.

Synchronize a Windows Domain with Active Directory

By default, all registered domains are automatically synchronized with Active Directory every 3 hours. You can also synchronize on demand.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Select the domain to be synchronized.
5 Click one of the following.

<table>
<thead>
<tr>
<th>Click</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌐</td>
<td>Perform a delta synchronization, where local AD objects that changed since the last synchronization event are updated</td>
</tr>
<tr>
<td>🌐</td>
<td>Perform a full synchronization, where the local state of all AD objects is updated</td>
</tr>
</tbody>
</table>

Edit a Windows Domain

You can edit the name, netBIOS name, primary LDAP server, and account credentials of a domain.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Select a domain and then click the Edit domain icon.
5 Make the desired changes and click Finish.

NSX Edge Operations

If you installed a working NSX Edge (i.e. added one or more appliances and interfaces, and configured the default gateway, firewall policy, and high availability), you can begin using NSX Edge services.

If you did not do one or more of the above tasks and the NSX Edge is not deployed, you may need to follow some of the instructions in this topic before you can use NSX Edge services.

Working with Certificates

NSX Edge supports self-signed certificates, certificates signed by a Certification Authority (CA), and certificates generated and signed by a CA.

Configure a CA Signed Certificate

You can generate a CSR and get it signed by a CA. If you generate a CSR at the global level, it is available to all NSX Edges in your inventory.

Procedure

1 Do one of the following.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To generate a global certificate</td>
<td>a Log in to the NSX Manager Virtual Appliance.</td>
</tr>
<tr>
<td></td>
<td>b Click the Manage tab and then click SSL Certificates.</td>
</tr>
<tr>
<td></td>
<td>c Click Generate CSR.</td>
</tr>
<tr>
<td>To generate a certificate for an NSX Edge</td>
<td>a Log in to the vSphere Web Client.</td>
</tr>
<tr>
<td></td>
<td>b Click Networking & Security and then click Edge Services.</td>
</tr>
<tr>
<td></td>
<td>c Double-click anNSX Edge.</td>
</tr>
<tr>
<td></td>
<td>d Click the Manage tab and then click Settings.</td>
</tr>
<tr>
<td></td>
<td>e Click the Certificates link.</td>
</tr>
<tr>
<td></td>
<td>f Click Actions and select Generate CSR.</td>
</tr>
</tbody>
</table>

2 Type your organization unit and name.
3 Type the locality, street, state, and country of your organization.
4 Select the encryption algorithm for communication between the hosts.
 Note that SSL VPN-Plus only supports RSA certificates.
5 Edit the default key size if required.
6 For a global certificate, type a description for the certificate.
7 Click OK.
 The CSR is generated and displayed in the Certificates list.
8 Have an online Certification Authority sign this CSR.
9 Import the signed certificate.
 a Copy the contents of the signed certificate.
 b Do one of the following.
 ■ To import a signed certificate at the global level, click Import in the NSX Manager Virtual Appliance.
 ■ To import a signed certificate for an NSX Edge, click Actions and select Import Certificate in the Certificates tab.
 c In the Import CSR dialog box, paste the contents of the signed certificate.
 d Click OK.

 The CA signed certificate appears in the certificates list.

Add a CA Certificate

By adding a CA certificate, you can become an interim CA for your company. You then have the authority for signing your own certificates.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then ensure that you are in the Settings tab.
5 Click Certificates.
6 Click the Add (➕) icon and select CA Certificate.
7 Copy and paste the certificate contents in the Certificate contents text box.
8 Type a description for the CA certificate.
9 Click OK.

 You can now sign your own certificates.

Configure a Self-Signed Certificate

You can create, install, and manage self-signed server certificates.

Prerequisites

Verify that you have a CA certificate so that you can sign your own certificates.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then ensure that you are in the Settings tab.
5 Click Certificates.
Follow the steps below to generate a CSR.

- Click **Actions** and select **Generate CSR**.
- In **Common name**, type the IP address or fully qualified domain name (FQDN) of the NSX Manager.
- Type your organization name and unit.
- Type the locality, street, state, and country of your organization.
- Select the encryption algorithm for communication between the hosts.
 - Note that SSL VPN-Plus only supports RSA certificates. VMware recommends RSA for backward compatibility.
- Edit the default key size if required.
- Type a description for the certificate.
- Click **OK**.
 - The CSR is generated and displayed in the Certificates list.

Verify that the certificate you generated is selected.

Click **Actions** and select **Self Sign Certificate**.

Type the number of days the self sign certificate is valid for.

Click **OK**.

Using Client Certificates

You can create a client certificate through a CAI command or REST call. You can then distribute this certificate to your remote users, who can install the certificate on their web browser.

The main benefit of implementing client certificates is that a reference client certificate for each remote user can be stored and checked against the client certificate presented by the remote user. To prevent future connections from a certain user, you can delete the reference certificate from the security server’s list of client certificates. Deleting the certificate denies connections from that user.

Add a Certificate Revocation List

A Certificate Revocation List (CRL) is a list of subscribers and their status, which is provided and signed by Microsoft.

The list contains the following items:

- The revoked certificates and the reasons for revocation
- The dates that the certificates are issued
- The entities that issued the certificates
- A proposed date for the next release

When a potential user attempts to access a server, the server allows or denies access based on the CRL entry for that particular user.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then ensure that you are in the **Settings** tab.
5 Click Certificates.
6 Click the Add (➕) icon and select CRL.
7 In Certificate contents, paste the list.
8 (Optional) Type a description.
9 Click OK.

Managing Appliances
You can add, edit, or delete appliances. An NSX Edge instance remains offline till at least one appliance has been added to it.

Add an Appliance
You must add at least one appliance to NSX Edge before deploying it.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the Settings tab.
5 In Edge Gateway Appliances, click the Add (➕) icon.
6 Select the cluster or resource pool and datastore for the appliance.
7 (Optional) Select the host on which the appliance is to be added.
8 (Optional) Select the vCenter folder within which the appliance is to be added.
9 Click Add.

Edit an Appliance
You can edit a NSX Edge appliance.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the Settings tab.
5 In Edge Gateway Appliances, select the appliance to change.
6 Click the Edit (📝) icon.
7 In the Edit Edge Appliance dialog box, make the appropriate changes.
8 Click Save.
Delete an Appliance
You can delete an NSX Edge appliance.

Procedure
1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **Settings** tab.
5. In **Edge Gateway Appliances**, select the appliance to delete.
6. Click the **Delete (x)** icon.

Working with Interfaces
An NSX Edge services gateway can have up to ten internal or uplink interfaces. An NSX Edge router can have eight uplink interfaces and up to a thousand internal interfaces.

An NSX Edge must have at least one internal interface before it can be deployed.

Configure an Interface
An NSX Edge services gateway can have up to ten internal or uplink interfaces. An NSX Edge router can have eight uplink interfaces and up to a thousand internal interfaces.

Procedure
1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **Interfaces** tab.
5. Select an interface and click the **Edit (✏)** icon.
6. In the **Edit Edge Interface** dialog box, type a name for the interface.
7. Select **Internal** or **Uplink** to indicate whether this is an internal or external interface.
8. Select the port group or logical switch to which this interface should be connected.
 a. Click **Select** next to the **Connected To** field.
 b. Depending on what you want to connect to the interface, click the **Virtual Wire**, **Standard Portgroup**, or **Distributed Portgroup** tab.
 c. Select the appropriate virtual wire or portgroup.
 d. Click **Select**.
9. Select the connectivity status for the interface.
10. In **Configure Subnets**, click the **Add (➕)** icon to add a subnet for the interface.
 An interface can have multiple non-overlapping subnets.
In **Add Subnet**, click the **Add** icon to add an IP address.

If you enter more than one IP address, you can select the Primary IP address. An interface can have one primary and multiple secondary IP addresses. NSX Edge considers the Primary IP address as the source address for locally generated traffic.

You must add an IP address to an interface before using it on any feature configuration.

Type the subnet mask for the interface and click **Save**.

Change the default MTU if required.

In **Options**, select the required options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Proxy ARP</td>
<td>Supports overlapping network forwarding between different interfaces.</td>
</tr>
<tr>
<td>Send ICMP Redirect</td>
<td>Conveys routing information to hosts.</td>
</tr>
</tbody>
</table>

Type the fence parameters and click **Add**.

Click **OK**.

Delete an Interface

You can delete an NSX Edge interface.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **Interfaces** tab.
5. Select the interface to delete.
6. Click the **Delete** icon

Enable an Interface

An interface must be enabled for NSX Edge to isolate the virtual machines within that interface (port group or logical switch).

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **Interfaces** tab.
5. Select the interface to enable.
6. Click the **Enable** icon.
Disable an Interface
You can disable an interface

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the Interfaces tab.
5 Select the interface to disable.
6 Click the Disable icon.

Add Subnet

Prerequisites

Procedure

Example:

What to do next

Change Auto Rule Configuration
If auto rule generation is enabled, NSX Edge adds firewall, NAT, and routing routes to enable control traffic to flow for these services. If auto rule generation is not enabled, you must manually add firewall, NAT, and routing configuration to allow control channel traffic for NSX Edge services such as Load Balancing, VPN, etc.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the Settings tab.
5 Click the More Actions () icon and select Change Auto Rule configuration.
6 Make the appropriate changes and click OK.

Change CLI Credentials
You can edit the credentials to be used for logging in to the Command Line Interface (CLI).

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the Settings tab.
5 Click the More Actions () icon and select Change CLI Credentials.
6 Make the appropriate edits.
7 Click OK.

About High Availability

High Availability (HA) ensures that an NSX Edge appliance is always available by installing an active pair of Edges on your virtualized infrastructure. You can enable HA either when installing NSX Edge or on an installed NSX Edge instance.

Stateful High Availability

The primary NSX Edge appliance is in the active state and the secondary appliance is in the standby state. NSX Edge replicates the configuration of the primary appliance for the standby appliance or you can manually add two appliances. VMware recommends that you create the primary and secondary appliances on separate resource pools and datastores. If you create the primary and secondary appliances on the same datastore, the datastore must be shared across all hosts in the cluster for the HA appliance pair to be deployed on different ESX hosts. If the datastore is a local storage, both virtual machines are deployed on the same host.

All NSX Edge services run on the active appliance. The primary appliance maintains a heartbeat with the standby appliance and sends service updates through an internal interface.

If a heartbeat is not received from the primary appliance within the specified time (default value is 15 seconds), the primary appliance is declared dead. The standby appliance moves to the active state, takes over the interface configuration of the primary appliance, and starts the NSX Edge services that were running on the primary appliance. When the switch over takes place, a system event is displayed in the System Events tab of Settings & Reports. Load Balancer and VPN services need to re-establish TCP connection with NSX Edge, so service is disrupted for a short while. Logical switch connections and firewall sessions are synched between the primary and standby appliances, so there is no service disruption during switch over.

If the NSX Edge appliance fails and a bad state is reported, HA force syncs the failed appliance in order to revive it. When revived, it takes on the configuration of the now-active appliance and stays in a standby state. If the NSX Edge appliance is dead, you must delete the appliance and add a new one.

NSX Edge ensures that the two HA NSX Edge virtual machines are not on the same ESX host even after you use DRS and vMotion (unless you manually vMotion them to the same host). Two virtual machines are deployed on vCenter in the same resource pool and datastore as the appliance you configured. Local link IPs are assigned to HA virtual machines in the NSX Edge HA so that they can communicate with each other. You can specify management IP addresses to override the local links.

If syslog servers are configured, logs on the active appliance are sent to the syslog servers.

vSphere High Availability

NSX Edge HA is compatible with vSphere HA. If the host on which a NSX Edge instance is running dies, the NSX Edge is restarted on the standby host thereby ensuring the NSX Edge HA pair is still available to take another failover.

If vSphere HA is not leveraged, the active-standby NSX Edge HA pair will survive one fail-over. However, if another fail-over happens before the second HA pair was restored, NSX Edge availability can be compromised.

For more information on vSphere HA, see vSphere Availability.
Change HA Configuration
You can change the HA configuration that you had specified while installing NSX Edge.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the Settings tab.
5. In the HA Configuration panel, click Change.
6. In the Change HA Configuration dialog box, make changes as appropriate.
 - In case L2 VPN is configured on this Edge appliance before HA is enabled, there must be at least two internal interfaces set up. If there is a single interface configured on this Edge which is already being used by L2 VPN, HA is disabled on the Edge appliance.
7. Click OK.

Synchronize NSX Edge with NSX Manager
You can send a synchronization request from NSX Manager to NSX Edge.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Select an NSX Edge instance.
4. Click the More Actions (⋮) icon and select Force Sync.

Configure Remote Syslog Servers
You can configure one or two remote syslog servers. NSX Edge events and logs related to firewall events that flow from NSX Edge appliances are sent to the syslog servers.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click a NSX Edge.
4. Click the Monitor tab and then click the Settings tab.
5. In the Details panel, click Change next to Syslog servers.
6. Type the IP address of both remote syslog servers and select the protocol.
7. Click OK to save the configuration.
View the Status of an NSX Edge

The status page displays graphs for the traffic flowing through the interfaces of the selected NSX Edge and connection statistics for the firewall and load balancer services.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab.
5. Select the period for which you want to view the statistics.

What to do next
To view more details about NSX Edge, click Manage and then click Settings.

Redeploy NSX Edge

If NSX Edge services do not work as expected after a force sync, you can redeploy the NSX Edge instance.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Select an NSX Edge instance.
4. Click the More Actions () icon and select Redeploy Edge.

The NSX Edge virtual machine is replaced with a new virtual machine and all services are restored. If redeploy does not work, power off the NSX Edge virtual machine and redeploy NSX Edge again.

NOTE Redeploy may not work in the following cases.

- Resource pool on which the NSX Edge was installed is no longer in the vCenter inventory or its MoId (identifier in vCenter Server) has changed.
- Datastore on which the NSX Edge was installed is corrupted/unmounted or in-accessible.
- dvPortGroups on which the NSX Edge interfaces were connected are no longer in the vCenter inventory or their MoId (identifier in vCenter server) has changed.

If any of the above is true, you must update the MoId of the resource pool, datastore, or dvPortGroup using a REST API call. See NSX API Programming Guide.

Download Tech Support Logs for NSX Edge

You can download technical support logs for each NSX Edge instance. If high availability is enabled for the NSX Edge instance, support logs from both NSX Edge virtual machines are downloaded.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Select an NSX Edge instance.
4. Click the More Actions () icon and select Download Tech Support Logs.

5. After the tech support logs are generated, click Download.

6. In the Select location for download dialog box, browse to the directory where you want to save the log file.

7. Click Save.

8. Click Close.

Upgrade NSX Edge to Large or X-Large

If you installed a compact NSX Edge instance, you can upgrade it to a large or x-large NSX Edge instance.

Prerequisites
- A compact NSX Edge instance requires 256 MB memory and 200 MB disk space.
- A large NSX Edge instance requires 1 GB memory and 256 MB disk space.
- An x-large NSX Edge instance requires 8 GB memory and 256 MB disk space. An x-large NSX Edge instance is recommended for an environment where the Load Balancer service is being used on millions of concurrent sessions.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Select a compact NSX Edge instance.
4. Click the More Actions () icon and select Upgrade to Large or Upgrade to X-Large.

The NSX Edge instance is upgraded.

Backing Up NSX Manager Data

You can back up and restore your NSX Manager data, which can include system configuration, events, and audit log tables. Configuration tables are included in every backup. Backups are saved to a remote location that must be accessible by the NSX Manager.

Back Up Your NSX Manager Data

You can back up NSX Manager data at any time by performing an on-demand backup.

Procedure
1. Log in to the NSX Manager Virtual Appliance.
2. Under Appliance Management, click Backups & Restore.
3. To specify the backup location, click Change next to FTP Server Settings.
 a. Type the IP address or host name of the backup system.
 b. From the Transfer Protocol drop-down menu, select either SFTP or FTP, based on what the destination supports.
 c. Edit the default port if required.
 d. Type the user name and password required to login to the backup system.
In the **Backup Directory** field, type the absolute path where backups will be stored.

Type a text string in **Filename Prefix**.

This text is prepended to each backup filename for easy recognition on the backup system. For example, if you type `ppdb`, the resulting backup is named as `ppdbHH_MM_SS_DayDDMonYYYY`.

Type the pass phrase to secure the backup.

Click **OK**.

To specify schedule details, click **Change** next to Scheduling.

 a From the **Backup Frequency** drop-down menu, select **Hourly**, **Daily**, or **Weekly**. The Day of Week, Hour of Day, and Minute drop-down menus are disabled based on the selected frequency. For example, if you select Daily, the Day of Week drop-down menu is disabled as this field is not applicable to a daily frequency.

 b For a weekly backup, select the day of the week the data should be backed up.

 c For a weekly or daily backup, select the hour at which the backup should begin.

 d Select the minute at which the begin and click **Schedule**.

To exclude logs and flow data from being backed up, click **Change** next to Exclude.

 a Select the items you want to exclude from the backup.

 b Click **OK**.

Restore a Backup

You can restore a backup only on a freshly deployed NSX Manager appliance.

To restore an available backup, the **Host IP Address**, **User Name**, **Password**, **Backup Directory**, **Filename Prefix**, and **Pass Phrase** fields in the Backup Location screen must have values that identify the location of the backup to be restored.

IMPORTANT Back up your current data before restoring a backup file.

Procedure

1 Log in to the NSX Manager Virtual Appliance.

2 Under Appliance Management, click **Backups & Restore**.

3 In the Backups History section, select the check box for the backup to restore.

4 Click **Restore**.

5 Click **OK** to confirm.

Flow Monitoring

Flow Monitoring is a traffic analysis tool that provides a detailed view of the traffic to and from protected virtual machines. When flow monitoring is enabled, its output defines which machines are exchanging data and over which application. This data includes the number of sessions and packets transmitted per session. Session details include sources, destinations, applications, and ports being used. Session details can be used to create firewall allow or block rules.

You can view TCP and UDP connections to and from a selected vNIC. You can also exclude flows by specifying filters.

Flow Monitoring can thus be used as a forensic tool to detect rogue services and examine outbound sessions.
Configure Flow Monitoring

Flow collection must be enabled for you to view traffic information. You can filter the data being displayed by specifying exclusion criterion.

For example, you may want to exclude a proxy server to avoid seeing duplicate flows. Or if you are running a Nessus scan on the virtual machines in your inventory, you may not want to exclude the scan flows from being collected.

Procedure

1. Log in to the vSphere Web Client.
2. Select Networking & Security from the left navigation pane and then select Flow Monitoring.
3. Select the Configuration tab.
4. Ensure that Global Flow Collection Status is Enabled.
 All firewall related flows are collected across your inventory except for the objects specified in Exclusion Settings.
5 To specify filtering criterion, follow the steps below.

a Click the tab corresponding to the flows you want to exclude.

<table>
<thead>
<tr>
<th>Flow Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dashboard</td>
</tr>
<tr>
<td>NSX Manager:</td>
</tr>
<tr>
<td>Global Flow Collection Status:</td>
</tr>
</tbody>
</table>

System is configured to collect all firewall-related flows except those that match the conditions specified.

Exclusion Settings

System will not collect flows that match the specified condition.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collect Blocked Flows</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect Layer2 Flows</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>system-generated-broadcast/mcast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination ports</td>
<td>130,137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exclusion Policy
(Click Save to commit changes to settings)

- Collect Blocked Flows:
 - Yes
 - No
- Collect Layer2 Flows:
 - Yes
 - No

b Specify the required information.

<table>
<thead>
<tr>
<th>If you selected</th>
<th>Specify the following information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collect Blocked Flows</td>
<td>Select No to exclude blocked flows.</td>
</tr>
<tr>
<td>Collect Layer2 Flows</td>
<td>Select No to exclude Layer2 flows.</td>
</tr>
</tbody>
</table>
| Source | Flows are not collected for the specified sources.
 1. Click the Add icon.
 2. In View, select the appropriate container.
 3. Select the objects to exclude. |
| Destination | Flows are not collected for the specified destinations.
 1. Click the Add icon.
 2. In View, select the appropriate container.
 3. Select the objects to exclude. |
| Destination ports | Excludes flows to the specified ports.
 Type the port numbers to exclude. |
| Service | Excludes flows for the specified services and service groups.
 1. Click the Add icon.
 2. Select the appropriate services and/or service groups. |

6 Click Save.

View Flow Monitoring Data

You can view traffic sessions on virtual machines within the specified time span. The last 24 hours of data are displayed by default, the minimum time span is one hour and the maximum is two weeks.

Prerequisites

Flow monitoring data is only available for virtual machines in clusters that have the network virtualization components installed and firewall enabled. See the *NSX Installation and Upgrade Guide*.
Procedure

1. Log in to the vSphere Web Client.
2. Select Networking & Security from the left navigation pane and then select Flow Monitoring.
3. Ensure that you are in the Dashboard tab.
4. Click Flow Monitoring.

The page might take several seconds to load. The top of the page displays the percentage of allowed traffic, traffic blocked by firewall rules, and traffic blocked by SpoofGuard. The multiple line graph displays data flow for each service in your environment. When you point to a service in the legend area, the plot for that service is highlighted.

Traffic statistics are displayed in three tabs:

- **Top Flows** displays the total incoming and outgoing traffic per service over the specified time period based on the total bytes value (not based on sessions/packets). The top five services are displayed. Blocked flows are not considered when calculating top flows.

- **Top Destinations** displays incoming traffic per destination over the specified time period. The top five destinations are displayed.

- **Top Sources** displays outgoing traffic per source over the specified time period. The top five sources are displayed.
5 Click the **Details by Service** tab.

Details about all traffic for the selected service is displayed. Click **Load More Records** to display additional flows. The **Allowed Flows** tab displays the allowed traffic sessions and the **Blocked Flows** tab displays the blocked traffic.

You can search on service names.

6 Click an item in the table to display the rules that allowed or blocked that traffic flow.

7 Click the **Rule Id** for a rule to display the rule details.

Change the Date Range of the Flow Monitoring Charts

You can change the date range of the flow monitoring data for both the Dashboard and Details tabs.

Procedure

1 Log in to the vSphere Web Client.

2 Select **Networking & Security** from the left navigation pane and then select **Flow Monitoring**.

3 Click **next to **Time interval**.

4 Select the time period or type a new start and end date.

The maximum time span for which you can view traffic flow data is the previous two weeks.

5 Click **OK**.
View Live Flow

You can view UDP and TCP connections from and to a selected vNIC. In order to view traffic between two virtual machines, you can view live traffic for one virtual machine on one computer and the other virtual machine on a second computer. You can view traffic for a maximum of two vNICs per host and for 5 vNICs per infrastructure.

Viewing live flows can affect the performance of NSX Manager and the corresponding virtual machine.

Procedure

1. Log in to the vSphere Web Client.
2. Select **Networking & Security** from the left navigation pane and then select **Flow Monitoring**.
3. Click the **Live Flow** tab.
4. Click **Browse** and select a vNIC.
5. Click **Start** to begin viewing live flow.

The page refreshes every 5 seconds. You can select a different frequency from the **Refresh Rate** drop-down.

6. Click **Stop** when your debugging or troubleshooting is done to avoid affecting the performance of NSX Manager or the selected virtual machine.

Add or Edit a Firewall Rule from the Flow Monitoring Report

By drilling down into the traffic data, you can evaluate the use of your resources and send session information to Distributed Firewall to create a new allow or block rule at any level.

Procedure

1. Log in to the vSphere Web Client.
2. Select **Networking & Security** from the left navigation pane and then select **Flow Monitoring**.
3. Click the **Details by Service** tab.
4. Click a service to view the traffic flow for it.

Depending on the selected tab, rules that allowed or denied traffic for this service are displayed.

5. Click a rule ID to view rule details.
6. Do one of the following:
 - To edit a rule:
 1. Click **Edit Rule** in the **Actions** column.
 2. Change the name, action, or comments for the rule.
3 Click OK.

To add a rule:

1 Click Add Rule in the Actions column.
2 Complete the form to add a rule. For information on completing the firewall rule form, see “Add a Distributed Firewall Rule,” on page 56.
3 Click OK.

The rule is added at the top of the firewall rule section.

Activity Monitoring

Activity Monitoring provides visibility into your virtual network to ensure that security policies at your organization are being enforced correctly.

A Security policy may mandate who is allowed access to what applications. The Cloud administrator can generate Activity Monitoring reports to see if the IP based firewall rule that they set is doing the intended work. By providing user and application level detail, Activity Monitoring translates high level security policies to low level IP address and network based implementation.

Figure 13-2. Your virtual environment today
Once you enable data collection for Activity Monitoring, you can run reports to view inbound traffic (such as virtual machines being accessed by users) as well as outbound traffic (resource utilization, interaction between inventory containers, and AD groups that accessed a server).

Figure 13-3. Your virtual environment with Activity Monitoring

<table>
<thead>
<tr>
<th>User</th>
<th>AD group</th>
<th>App name</th>
<th>Originating VM name</th>
<th>Destination VM name</th>
<th>Source IP</th>
<th>Destination IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Doctors</td>
<td>Epic.exe</td>
<td>DoctorsWS13</td>
<td>EpicSVR3</td>
<td>172.16.254.1</td>
<td>172.16.112.2</td>
</tr>
</tbody>
</table>

Activity Monitoring Scenarios

This section describes some hypothetical scenarios for Activity Monitoring.

User Access to Applications

Our hypothetical company, ACME Enterprise, only permits approved users to access specific applications on corporate assets.

Their security policy mandates are:

- Allow only authorized users to access critical business applications
- Allow only authorized applications on corporate servers
- Allow access to only required ports from specific networks

Based on the above, they need controlled access for employees based on user identity to safeguard corporate assets. As a starting point, the security operator at ACME Enterprise needs to be able to verify that only administrative access is allowed to the MS SQL servers.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then Activity Monitoring.
3. Click the Inbound Activity tab.
4. Leave Outbound from value as All Observed AD Groups to see access from any and all employees.
5. In Where destination virtual machine, select includes.
6. Click the link next to And where destination virtual machine and select the MS SQL servers.
7. Click Search.

The search results show that only administrative users are accessing the MS SQL servers. Notice that there are no groups (such as Finance or HR) accessing these servers.
8 We can now invert this query by setting the **Outbound from** value to HR and Finance AD groups.

9 Click **Search**.

No records are displayed, confirming that no users from either of these groups can access MS SQL servers.

Applications on Datacenter

As part of their security policies, ACME Enterprise needs Visibility into all data center applications. This can help identify rogue applications that either capture confidential information or siphon sensitive data to external sources.

John, Cloud Administrator at ACME Enterprise, wants to confirm that access to the share point server is only through Internet Explorer and no rogue application (such as FTP or RDP) can access this server.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then **Activity Monitoring**.
3. Click the **VM Activity** tab.
4. Leave **Where source** value as **All observed virtual machines** to capture traffic originating from all virtual machines in the datacenter.
5. In **Where destination**, select **includes**.
6. Click the link next to **And where destination virtual machine** and select the share point server.
7. Click **Search**.

The **Outbound App** column in the search results show that all access to the share point server was only through Internet Explorer. The relatively homogenous search results indicate that there is a firewall rule applied to this share point server preventing all other access methods.

Also note that the search results display the source user of the observed traffic rather than the source group. Clicking a row in the search result displays details about the source user such as the AD group to which the user belongs.

Verify Open Ports

Once John Admin knows that the ACME Enterprise share point server is being accessed only by authorized applications, he can ensure that the company allows only required ports to be open based on expected use.

Prerequisites

In the “Applications on Datacenter,” on page 175 scenario, John Admin had observed traffic to the ACME Enterprise share point server. He now wants to ensure that all access from the share point server to the MSSQL server is through expected protocols and applications.

Procedure

1. Click the **Go Home** icon.
2. Click **vCenter Home** and then click **Virtual Machines**.
3. Select **win_sharepoint** and then click the **Monitor** tab.
4. Click **Activity Monitoring**.
5. In **Where destination**, select **win2K-MSSQL**.
6. Click **Search**.
Search results show traffic from the share point server to the MSSQL server. The User and Outbound App columns show that only systems processes are connecting to the MSSQL server, which is what John expected to see.

The Inbound Port and App columns show that all access is to the MSSQL server running on the destination server.

Since there are too many records in the search results for John to analyze in a web browser, he can export all the entire result set and save the file in a CSV format by clicking the icon on the bottom right side of the page.

Enable Data Collection

You must enable data collection for one or more virtual machines on a vCenter Server before running an Activity Monitoring report. Before running a report, ensure that the enabled virtual machines are active and are generating network traffic.

You should also register NSX Manager with the AD Domain Controller. See “Register a Windows Domain with NSX Manager,” on page 154.

Note that only active connections are tracked by Activity Monitoring. Virtual machine traffic blocked by firewall rules at the vNIC level is not reflected in reports.

Enable Data Collection on a Single Virtual Machine

You must enable data collection at least five minutes before running an Activity Monitoring report.

Prerequisites

Procedure

1. Log in to the vSphere Web Client.
2. Click vCenter and then click VMs and Templates.
3. Select a virtual machine from the left inventory panel.
4. Click the Manage tab and then click the Settings tab.
5. Click NSX Activity Monitoring from the left panel.
6. Click Edit.
7. In the Edit NSX Activity Monitoring Data Collection Settings dialog box, click Yes.

Enable Data Collection for Multiple Virtual Machines

The Activity Monitoring Data Collection security group is a pre-defined security group. You can add multiple virtual machines to this security group at a time, and data collection is enabled on all of these virtual machines.

You must enable data collection at least five minutes before running an Activity Monitoring report.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Groups tab.
4. Select the Activity Monitoring Data Collection security group and click the Edit (Edit) icon.
5 Follow the wizard to add virtual machines to the security group.

Data collection is enabled on all virtual machines you added to this security group, and disabled on any virtual machines you excluded from the security group.

View Virtual Machine Activity Report

You can view traffic to or from a virtual machine or a set of virtual machines in your environment.

You can either do a quick query using the default search criteria by clicking Search, or tailor the query according to your requirements.

Prerequisites

- Either vShield Endpoint must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see NSX Installation and Upgrade Guide. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 154.

- Data collection must be enabled on one or more virtual machines.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then Activity Monitoring.
3 Click the VM Activity tab.
4 Click the link next to Where source. Select the virtual machines for which you want to view outbound traffic. Indicate whether you want to include or exclude the selected virtual machine(s) from the report.
5 Click the link next to Where destination. Select the virtual machines for which you want to view inbound traffic. Indicate whether you want to include or exclude the selected virtual machine(s) from the report.
6 Click the During period (📅) icon and select the time period for the search.
7 Click Search.

Search results filtered by the specified criterion are displayed. Click a row to view detailed information about the user for that row.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.

View Inbound Activity

You can view all inbound activity to a server by desktop pool, security group, or AD group.

Figure 13-4. View inbound activity

You can either do a quick query using the default search criteria by clicking Search, or tailor the query according to your requirements.
Prerequisites

- Either vShield Endpoint must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see *NSX Installation and Upgrade Guide*. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 154.
- Data collection must be enabled on one or more virtual machines.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then **Activity Monitoring**.
3. Click the **Inbound Activity** tab.
4. Click the link next to **Originating from**.
5. Select the type of user group that you want to view activity for.
6. In **Filter type**, select one or more group and click OK.
7. In **Where destination virtual machine**, select **includes** or **excludes** to indicate whether the selected virtual machines should be included in or excluded from the search.
8. Click the link next to **And where destination virtual machine**.
9. Select one or more virtual machine and click **OK**.
10. In **And where destination application**, select **includes** or **excludes** to indicate whether the selected applications should be included in or excluded from the search.
11. Click the link next to **And where destination application**.
12. Select one or more application and click **OK**.
13. Click the **During period** (📅) icon and select the time period for the search.
14. Click **Search**.

Search results filtered by the specified criterion are displayed. Click anywhere in the results table to view information about the users that accessed the specified virtual machines and applications.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the 📋 icon on the bottom right side of the page.

View Outbound Activity

You can view what applications are being run by a security group or desktop pool and then drill down into the report to find out which client applications are making outbound connections by a particular group of users. You can also discover all user groups and users who are accessing a particular application, which can help you determine if you need to adjust identity firewall in your environment.

Figure 13-5. View Outbound activity
Prerequisites

- Either vShield Endpoint must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see *NSX Installation and Upgrade Guide*. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 154.
- Data collection must be enabled on one or more virtual machines.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then Activity Monitoring.
3. Ensure that the Outbound Activity tab is selected in the left pane.
4. Click the link next to Originating from.
 All groups discovered through guest introspection are displayed.
5. Select the type of user group that you want to view resource utilization for.
6. In Filter, select one or more group and click OK.
7. In Where application, select includes or excludes to indicate whether the selected application should be included in or excluded from the search.
8. Click the link next to Where application.
9. Select one or more application and click OK.
10. In And where destination, select includes or excludes to indicate whether the selected virtual machines should be included in or excluded from the search.
11. Click the link next to And where destination.
12. Select one or more virtual machine and click OK.
13. Click the During period () icon and select the time period for the search.
14. Click Search.
 Scroll to the right to see all the information displayed.

Search results filtered by the specified criterion are displayed. Click a row to view information about users within that AD group that used the specified application to access the specified virtual machines.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.
View Interaction between Inventory Containers

You can view the traffic passing between defined containers such as AD groups, security groups and/or desktop pools. This can help you identify and configure access to shared services and to resolve mis-configured relationships between Inventory container definitions, desktop pools and AD groups.

Figure 13-6. Interaction between containers

You can either do a quick query using the default search criteria by clicking Search, or tailor the query according to your requirements.

Prerequisites

- Either vShield Endpoint must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see NSX Installation and Upgrade Guide. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 154.
- Data collection must be enabled on one or more virtual machines.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then Activity Monitoring.
3. Select the Inter Container Interaction tab in the left pane.
4. Click the link next to Originating from.
 All groups discovered through guest introspection are displayed.
5. Select the type of user group that you want to view resource utilization for.
6. In Filter, select one or more group and click OK.
7. In Where the destination is, select is or is not to indicate whether the selected group should be included in or excluded from the search.
8. Click the link next to Where the destination is.
9. Select the group type.
10. In Filter, select one or more group and click OK.
11. Click the During period () icon and select the time period for the search.
12. Click Search.

Search results filtered by the specified criterion are displayed. Click in a row to view information about the users that accessed the specified containers.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.
Example: Interaction between Inventory Containers Query

- **Verify allowed communication**

 If you have defined containers in your vCenter inventory and then added a rule to allow communication between these containers, you can verify that the rule is working by running this query with the two containers specified in the **Originating from** and **Where the destination** is fields.

- **Verify denied communication**

 If you have defined containers in your vCenter inventory and then added a rule to deny communication between these containers, you can verify that the rule is working by running this query with the two containers specified in the **Originating from** and **Where the destination** is fields.

- **Verify denied intra-container communication**

 If you have implemented a policy that does not allow members of a container communicating with other members of the same container, you can run this query to verify that the policy works. Select the container in both **Originating from** and **Where the destination** is fields.

- **Eliminate unnecessary access**

 Suppose you have defined containers in your vCenter inventory and then added a rule to allow communication between these containers. There may be members in either container that do not interact with the other container at all. You may then choose to remove these members from the appropriate container to optimize security control. To retrieve such a list, select the appropriate containers in both **Originating from** and **Where the destination** is fields. Select **is not** next to the **Where the destination** field.

View Outbound AD Group Activity

You can view the traffic between members of defined Active Directory groups and can use this data to fine-tune your firewall rules.

You can either do a quick query using the default search criteria by clicking **Search**, or tailor the query according to your requirements.

Prerequisites

- Either vShield Endpoint must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see **NSX Installation and Upgrade Guide**. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 154.

- Data collection must be enabled on one or more virtual machines.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then **Activity Monitoring**.
3. Select the **AD Groups & Containers** tab in the left pane.
4. Click the link next to **Originating from**.

 All groups discovered through guest introspection are displayed.
5. Select the type of user group that you want to include in the search.
6. In **Filter**, select one or more group and click **OK**.
7. In **Where AD Group**, select **includes** or **excludes** to indicate whether the selected AD group should be included in or excluded from the search.
8 Click the link next to Where AD Group.
9 Select one or more AD groups and click OK.
10 Click the During period () icon and select the time period for the search.
11 Click Search.

Search results filtered by the specified criterion are displayed. Click in a row to view information about the members of the specified AD group that are accessing network resources from within the specified security group or desktop pool.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.

Override Data Collection

In case of an emergency such as a network overload, you can turn off data collection at a global level. This overrides all other data collection settings.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then Activity Monitoring.
3 Click the Settings tab.
4 Select the vCenter Server for which you want to overwrite data collection.
5 Click Edit.
6 De-select Collect reporting data.
7 Click OK.

vShield Endpoint Events and Alarms

vShield Endpoint offloads antivirus and anti-malware agent processing to a dedicated secure virtual appliance delivered by VMware partners. Since the secure virtual appliance (unlike a guest virtual machine) doesn't go offline, it can continuously update antivirus signatures thereby giving uninterrupted protection to the virtual machines on the host. Also, new virtual machines (or existing virtual machines that went offline) are immediately protected with the most current antivirus signatures when they come online.

vShield Endpoint health status is conveyed by using alarms that show in red on the vCenter Server console. In addition, more status information can be gathered by looking at the event logs.

IMPORTANT Your vCenter Server must be correctly configured for vShield Endpoint security:
- Not all guest operating systems are supported by vShield Endpoint. Virtual machines with non-supported operating systems are not protected by the security solution.
- All hosts in a resource pool containing protected virtual machines must be prepared for vShield Endpoint so that virtual machines continue to be protected as they are vMotioned from one ESX host to another within the resource pool.
View vShield Endpoint Status

Monitoring a vShield Endpoint instance involves checking for status coming from the vShield Endpoint components: the security virtual machine (SVM), the ESX host-resident vShield Endpoint module, and the protected virtual machine-resident thin agent.

Procedure

1. In the vSphere Web Client, click **vCenter**, and then click **Datacenters**.
2. In the **Name** column, click a datacenter.
3. Click **Monitor** and then click **Endpoint**.

 The vShield Endpoint Health and Alarms page displays the health of the objects under the datacenter you selected, and the active alarms. Health status changes are reflected within a minute of the actual occurrence of the event that triggered the change.

vShield Endpoint Alarms

Alarms signal the vCenter Server administrator about vShield Endpoint events that require attention. Alarms are automatically cancelled in case the alarm state is no longer present.

vCenter Server alarms can be displayed without a custom vSphere plug-in. See the *vCenter Server Administration Guide* on events and alarms.

Upon registering as a vCenter Server extension, NSX Manager defines the rules that create and remove alarms, based on events coming from the three vShield Endpoint components: SVM, vShield Endpoint module, and thin agent. Rules can be customized. For instructions on how to create new custom rules for alarms, see the vCenter Server documentation. In some cases, there are multiple possible causes for the alarm. The tables that follow list the possible causes and the corresponding actions you might want to take for remediation.

Host Alarms

Host alarms are generated by events affecting the health status of the vShield Endpoint module.

Table 13-5. Errors (Marked Red)

<table>
<thead>
<tr>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The vShield Endpoint module has been installed on the host, but is no longer reporting status to the NSX Manager.</td>
<td>1. Ensure that vShield Endpoint is running by logging in to the host and typing the command <code>/etc/init.d/vShield-Endpoint-Mux start</code>.</td>
</tr>
<tr>
<td></td>
<td>2. Ensure that the network is configured properly so that vShield Endpoint can connect to NSX Manager.</td>
</tr>
<tr>
<td></td>
<td>3. Reboot the NSX Manager.</td>
</tr>
</tbody>
</table>
SVM Alarms

SVM alarms are generated by events affecting the health status of the SVM.

Table 13-6. Red SVM Alarms

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a protocol version mismatch with the vShield Endpoint module</td>
<td>Ensure that the vShield Endpoint module and SVM have a protocol that is compatible with each other.</td>
</tr>
<tr>
<td>vShield Endpoint could not establish a connection to the SVM</td>
<td>Ensure that the SVM is powered on and that the network is configured properly.</td>
</tr>
<tr>
<td>The SVM is not reporting its status even though guests are connected.</td>
<td>Internal error. Contact your VMware support representative.</td>
</tr>
</tbody>
</table>

vShield Endpoint Events

Events are used for logging and auditing conditions inside the vShield Endpoint-based security system.

Events can be displayed without a custom vSphere plug-in. See the vCenter Server Administration Guide on events and alarms.

Events are the basis for alarms that are generated. Upon registering as a vCenter Server extension, the NSX Manager defines the rules that create and remove alarms.

Common arguments for all events are the event time stamp and the NSX Manager event_id.

The following table lists vShield Endpoint events reported by the SVM and the NSX Manager.

Table 13-7. vShield Endpoint Events

<table>
<thead>
<tr>
<th>Description</th>
<th>Severity</th>
<th>VC Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>vShield Endpoint solution SolutionName enabled. Supporting version versionNumber of the VFile protocol.</td>
<td>info</td>
<td>timestamp</td>
</tr>
<tr>
<td>ESX module enabled.</td>
<td>info</td>
<td>timestamp</td>
</tr>
<tr>
<td>ESX module uninstalled.</td>
<td>info</td>
<td>timestamp</td>
</tr>
<tr>
<td>The NSX Manager has lost connection with the ESX module.</td>
<td>info</td>
<td>timestamp</td>
</tr>
<tr>
<td>vShield Endpoint solution SolutionName was contacted by a non-compatible version of the ESX module.</td>
<td>error</td>
<td>timestamp, solution version, ESX module version</td>
</tr>
<tr>
<td>A connection between the ESX module and SolutionName failed.</td>
<td>error</td>
<td>timestamp, ESX module version, solution version</td>
</tr>
<tr>
<td>vShield Endpoint failed to connect to the SVM.</td>
<td>error</td>
<td>timestamp</td>
</tr>
<tr>
<td>vShield Endpoint lost connection with the SVM.</td>
<td>error</td>
<td>timestamp</td>
</tr>
</tbody>
</table>

vShield Endpoint Audit Messages

Audit messages include fatal errors and other important audit messages and are logged to vmware.log.

The following conditions are logged as AUDIT messages:

- Thin agent initialization success (and version number.)
- Thin agent initialization failure.
- Established first time communication with SVM.
Failure to establish communication with SVM (when first such failure occurs).

Generated log messages have the following substrings near the beginning of each log message: vf-AUDIT, vf-ERROR, vf-WARN, vf-INFO, vf-DEBUG.
Extensibility (Integrate Partner Solutions with NSX)

VMware partners can integrate their solutions with the VMware NSX platform.

After partners design the services that they want to offer, they can implement their service virtual machine and create vendor templates which contain the settings and configuration parameters for the service levels that they provide. They register the service manager and service with NSX Manager and can monitor the health and performance of the service.

If the partner solutions’s management console does not provide a mechanism to register the solution with NSX Manager, you must register the solution manually.

This chapter includes the following topics:
- “Register a Partner Solution Manually,” on page 187
- “Install a Partner Service,” on page 189

Register a Partner Solution Manually

If the partner solutions’s management console does not provide a mechanism to register the solution with NSX Manager, you must register the solution manually.
Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Service Definitions**.
3. Click the **New Service Definition** icon.
4. Type a name and version for the service that you are inserting.
5. Select the service manager and type a description for the service.
 Your service manager manages your services in the NSX environment.
6. Select the deployment mechanism for the solution.
7. Add the required attributes by clicking the **New Attribute** icon.
8. Click **Next** and select the service categories within which you want to add the solution.
9. Click **Next**.
 The Configure Service Manager page is displayed only if you selected New Service Manager in step 5.
10. On the Configure service manager page, configure the service manager for the service you are adding.
 a. Type a name and description for the service manager.
 b. In **Administrative URL**, type the URL of the solution provider's service manager.
 c. In **Base API URL**, type the URL of the web site where the service manager's REST APIs are available and the thumbprint of the service manager.
 d. In **Credentials**, type the username and password for logging in to the service manager.
 e. In **Vendor Details**, type the solution provider's ID and name.
 f. Click **Next**.
11. On the Add service configuration page, click the **New Service Definition** icon to add one or more service configurations.
12. Click **Next**.
13. On the Add profile configuration page, add one or more service profiles.
 a. Type the configuration ID, name, and description for the profile.
 b. Add one or more attributes by clicking the **New Attribute** icon.
 c. Click **OK**.
 d. On the Add profile configuration page, click **Next**.
14. Select the required transports and click **Next**.
15. Review settings and click **Finish**.

What to do next

Deploy the solution.
Install a Partner Service

If the partner solution includes a host-resident virtual appliance, you can install the service after you register the solution.

Prerequisites

If you have not registered third party solutions with NSX Manager, you must manually add the solution to NSX Manager before you can install the service. See Chapter 14, “Extensibility (Integrate Partner Solutions with NSX),” on page 187.

Ensure that NSX Manager can access the partner solution’s management console.

Procedure

1. Click Networking & Security and then click Installation.
2. Click the Service Deployments tab and click the New Service Deployment () icon.
3. In the Deploy Network and Security Services dialog box, select the appropriate solution(s).
4. In Specify schedule (at the bottom of the dialog box), select Deploy now to deploy the solution immediately or select a deployment date and time.
5. Click Next.
6. Select the datacenter and cluster(s) where you want to deploy the solution and click Next.
7. On the Select storage page, select the datastore on which to add the solution service virtual machines storage or select Specified on host.

The selected datastore must be available on all hosts in the selected cluster.

If you selected Specified on host, the datastore for the ESX host must be specified in the AgentVM Settings of the host before it is added to the cluster. See vSphere API/SDK Documentation.

8. Click Next.
9. On the Configure management network page, select the distributed virtual port group to host the management interface. This port group must be able to reach the NSX Manager’s port group.

If the network is set to Specified on host, the network to be used must be specified in the Agent VM Settings > Network property of each host in the cluster. See vSphere API/SDK Documentation.

When you add a host(s) to the cluster, the Agent VM Settings > Network property for the host must be set before it is added to the cluster.

The selected port group must be available on all hosts in the selected cluster.

10. In IP assignment, select one of the following:

<table>
<thead>
<tr>
<th>Select</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>Assign an IP address to the service virtual machine through Dynamic Host Configuration Protocol (DHCP).</td>
</tr>
<tr>
<td>An IP pool</td>
<td>Assign an IP address to the service virtual machine from the selected IP pool.</td>
</tr>
</tbody>
</table>

11. Click Next and then click Finish on the Ready to complete page.
12. Monitor the deployment till the Installation Status displays Successful. If the status displays Failed, click the icon next to Failed and take action to resolve the error.
What to do next

You can now consume the partner service through NSX UI or NSX API. See NSX Administration Guide.
This scenario contains configuration examples for a basic point-to-point IPSEC VPN connection between an NSX Edge and a Cisco or WatchGuard VPN on the other end.

For this scenario, NSX Edge connects the internal network 192.0.2.0/24 to the internet. NSX Edge interfaces are configured as follows:

- Uplink interface: 198.51.100.1
- Internal interface: 192.0.2.1

The remote gateway connects the 172.16.0.0/16 internal network to the internet. The remote gateway interfaces are configured as follows:

- Uplink interface: 10.24.120.90/24
- Internal interface: 172.16.0.1/16

Figure 15-1. NSX Edge connecting to a remote VPN gateway

NOTE For NSX Edge to NSX Edge IPSEC tunnels, you can use the same scenario by setting up the second NSX Edge as the remote gateway.

This chapter includes the following topics:

- “Terminology,” on page 192
- “IKE Phase 1 and Phase 2,” on page 192
- “Configuring IPSec VPN Service Example,” on page 194
- “Using a Cisco 2821 Integrated Services Router,” on page 195
- “Using a Cisco ASA 5510,” on page 198
- “Configuring a WatchGuard Firebox X500,” on page 200
- “Troubleshooting NSX Edge Configuration Example,” on page 201
Terminology

IPSec is a framework of open standards. There are many technical terms in the logs of the NSX Edge and other VPN appliances that you can use to troubleshoot the IPSEC VPN.

These are some of the standards you may encounter:

- ISAKMP (Internet Security Association and Key Management Protocol) is a protocol defined by RFC 2408 for establishing Security Associations (SA) and cryptographic keys in an Internet environment. ISAKMP only provides a framework for authentication and key exchange and is designed to be key exchange independent.

- Oakley is a key-agreement protocol that allows authenticated parties to exchange keying material across an insecure connection using the Diffie-Hellman key exchange algorithm.

- IKE (Internet Key Exchange) is a combination of ISAKMP framework and Oakley. NSX Edge provides IKEv1.

- Diffie-Hellman (DH) key exchange is a cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure communications channel. VSE supports DH group 2 (1024 bits) and group 5 (1536 bits).

IKE Phase 1 and Phase 2

IKE is a standard method used to arrange secure, authenticated communications.

Phase 1 Parameters

Phase 1 sets up mutual authentication of the peers, negotiates cryptographic parameters, and creates session keys. The Phase 1 parameters used by NSX Edge are:

- Main mode
- TripleDES / AES [Configurable]
- SHA-1
- MODP group 2 (1024 bits)
- pre-shared secret [Configurable]
- SA lifetime of 28800 seconds (eight hours) with no kbytes rekeying
- ISAKMP aggressive mode disabled

Phase 2 Parameters

IKE Phase 2 negotiates an IPSec tunnel by creating keying material for the IPSec tunnel to use (either by using the IKE phase one keys as a base or by performing a new key exchange). The IKE Phase 2 parameters supported by NSX Edge are:

- TripleDES / AES [Will match the Phase 1 setting]
- SHA-1
- ESP tunnel mode
- MODP group 2 (1024 bits)
- Perfect forward secrecy for rekeying
- SA lifetime of 3600 seconds (one hour) with no kbytes rekeying
- Selectors for all IP protocols, all ports, between the two networks, using IPv4 subnets

Transaction Mode Samples

NSX Edge supports Main Mode for Phase 1 and Quick Mode for Phase 2.

NSX Edge proposes a policy that requires PSK, 3DES/AES128, sha1, and DH Group 2/5. The peer must accept this policy; otherwise, the negotiation phase fails.

Phase 1: Main Mode Transactions

This example shows an exchange of Phase 1 negotiation initiated from a NSX Edge to a Cisco device.

The following transactions occur in sequence between the NSX Edge and a Cisco VPN device in Main Mode.

1. **NSX Edge to Cisco**
 - proposal: encrypt 3des-cbc, sha, psk, group5(group2)
 - DPD enabled
2. **Cisco to NSX Edge**
 - contains proposal chosen by Cisco
 - If the Cisco device does not accept any of the parameters the NSX Edge sent in step one, the Cisco device sends the message with flag NO_PROPOSAL_CHOSEN and terminates the negotiation.
3. **NSX Edge to Cisco**
 - DH key and nonce
4. **Cisco to NSX Edge**
 - DH key and nonce
5. **NSX Edge to Cisco (Encrypted)**
 - include ID (PSK)
6. **Cisco to NSX Edge (Encrypted)**
 - include ID (PSK)
 - If the Cisco device finds that the PSK doesn't match, the Cisco device sends a message with flag INVALID_ID_INFORMATION; Phase 1 fails.

Phase 2: Quick Mode Transactions

The following transactions occur in sequence between the NSX Edge and a Cisco VPN device in Quick Mode.

1. **NSX Edge to Cisco**
 - NSX Edge proposes Phase 2 policy to the peer. For example:

 Aug 26 12:16:09 weiqing-desktop
 ipsec[5789]:
 "s1-c1" #2: initiating Quick Mode
 PSK=ENCRYPT=TUNNEL+PFS+UP+SAREFTRACK
 {using isakmp#1 msgid:d20849ac
 proposal=3DES(3)_192-SHA1(2)_160
 pfs.group=OAKLEY_GROUP_MODP1024}
Cisco to NSX Edge

Cisco device sends back NO_PROPOSAL_CHOSEN if it does not find any matching policy for the proposal. Otherwise, the Cisco device sends the set of parameters chosen.

NSX Edge to Cisco

To facilitate debugging, you can enable IPSec logging on the NSX Edge and enable crypto debug on Cisco (debug crypto isakmp <level>).

Configuring IPSec VPN Service Example

You must configure VPN parameters and then enable the IPSEC service.

Procedure

1. Configure NSX Edge VPN Parameters Example on page 194
 You must configure at least one external IP address on NSX Edge to provide IPSec VPN service.

2. Enable IPSec VPN Service Example on page 195
 You must enable the IPSec VPN service for traffic to flow from the local subnet to the peer subnet.

Configure NSX Edge VPN Parameters Example

You must configure at least one external IP address on NSX Edge to provide IPSec VPN service.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab and then click the VPN tab.
5. Click IPSec VPN.
6. Click the Add (➕) icon.
7. Type a name for the IPSec VPN.
8. Type the IP address of the NSX Edge instance in Local Id. This will be the peer Id on the remote site.
9. Type the IP address of the local endpoint.
 If you are adding an IP to IP tunnel using a pre-shared key, the local Id and local endpoint IP can be the same.
10. Type the subnets to share between the sites in CIDR format. Use a comma separator to type multiple subnets.
11. Type the Peer Id to uniquely identify the peer site. For peers using certificate authentication, this ID must be the common name in the peer’s certificate. For PSK peers, this ID can be any string. VMware recommends that you use the public IP address of the VPN or a FQDN for the VPN service as the peer ID.
12. Type the IP address of the peer site in Peer Endpoint. If you leave this blank, NSX Edge waits for the peer device to request a connection.
13. Type the internal IP address of the peer subnet in CIDR format. Use a comma separator to type multiple subnets.
15 In Authentication Method, select one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSK (Pre Shared Key)</td>
<td>Indicates that the secret key shared between NSX Edge and the peer site is to be used for authentication. The secret key can be a string with a maximum length of 128 bytes.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Indicates that the certificate defined at the global level is to be used for authentication.</td>
</tr>
</tbody>
</table>

16 Type the shared key in if anonymous sites are to connect to the VPN service.

17 Click **Display Shared Key** to display the key on the peer site.

18 In Diffie-Hellman (DH) Group, select the cryptography scheme that will allow the peer site and the NSX Edge to establish a shared secret over an insecure communications channel.

19 Change the MTU threshold if required.

20 Select whether to enable or disable the Perfect Forward Secrecy (PFS) threshold. In IPsec negotiations, Perfect Forward Secrecy (PFS) ensures that each new cryptographic key is unrelated to any previous key.

21 Click **OK**.

NSX Edge creates a tunnel from the local subnet to the peer subnet.

What to do next

Enable the IPSec VPN service.

Enable IPSec VPN Service Example

You must enable the IPSec VPN service for traffic to flow from the local subnet to the peer subnet.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Monitor** tab and then click the **VPN** tab.
5. Click **IPSec VPN**.
6. Click **Enable**.

What to do next

Click **Enable Logging** to log the traffic flow between the local subnet and peer subnet.

Using a Cisco 2821 Integrated Services Router

The following describes configurations performed using Cisco IOS.

Procedure

1. Configure Interfaces and Default Route

   ```
   interface GigabitEthernet0/0
   ip address 10.24.120.90 255.255.252.0
duplex auto
speed auto
   ```
crypto map MYVPN
!
interface GigabitEthernet0/1
ip address 172.16.0.1 255.255.0.0
duplex auto
speed auto
!
ip route 0.0.0.0 0.0.0.0 10.24.123.253

2 Configure IKE Policy
Router# config term
Router(config)# crypto isakmp policy 1
Router(config-isakmp)# encryption 3des
Router(config-isakmp)# group 2
Router(config-isakmp)# hash sha
Router(config-isakmp)# lifetime 28800
Router(config-isakmp)# authentication
 pre-share
Router(config-isakmp)# exit

3 Match Each Peer with Its Pre-Shared Secret
Router# config term
Router(config)# crypto isakmp key vshield
 address 10.115.199.103
Router(config-isakmp)# exit

4 Define the IPSEC Transform
Router# config term
Router(config)# crypto ipsec transform-set
 myset esp-3des esp-sha-hmac
Router(config-isakmp)# exit

5 Create the IPSEC Access List
Router# config term
Enter configuration commands, one per line.
 End with CNTL/Z.
Router(config)# access-list 101 permit ip
 172.16.0.0 0.0.255.255 192.168.5.0 0.0.0.255
Router(config)# exit

6 Bind the Policy with a Crypto Map and Label It
In the following example, the crypto map is labeled MYVPN
Router# config term
Router(config)# crypto map MYVPN 1
 ipsec-isakmp
% NOTE: This new crypto map will remain
disabled until a peer and a valid
access list have been configured.
Router(config-crypto-map)# set transform-set
 myset
Router(config-crypto-map)# set pfs group1
Router(config-crypto-map)# set peer
 10.115.199.103
Router(config-crypto-map)# match address 101
Router(config-crypto-map)# exit
Example: Example Configuration

 router2821#show running-config output
 Building configuration...

 Current configuration : 1263 bytes

 version 12.4
 service timestamps debug datetime msec
 service timestamps log datetime msec
 no service password-encryption

 hostname router2821

 boot-start-marker
 boot-end-marker

 ! card type command needed for slot 0
 ! card type command needed for slot 1
 enable password cisco

 no aaa new-model

 resource policy

 ip subnet-zero

 ip cef
 !no ip dhcp use vrf connected

 !
 no ip ips deny-action ips-interface

 crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
 crypto isakmp key vshield address 10.115.199.103

 crypto ipsec transform-set myset esp-3des
 esp-sha-hmac

 crypto map MYVPN 1 ipsec-isakmp
 set peer 10.115.199.103
 set transform-set myset
 set pfs group1
 match address 101

 interface GigabitEthernet0/0
 ip address 10.24.120.90 255.255.252.0
duplex auto
 speed auto
 crypto map MYVPN

 !
interface GigabitEthernet0/1
 ip address 172.16.0.1 255.255.0.0
duplex auto
 speed auto
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.24.123.253
!
ip http server
no ip http secure-server
!
access-list 101 permit ip 172.16.0.0 0.0.255.255 192.168.5.0 0.0.0.255
!
control-plane
!
line con 0
line aux 0
line vty 0 4
password cisco
login
line vty 5 15
password cisco
login
!
scheduler allocate 20000 1000
!
end

Using a Cisco ASA 5510

Use the following output to configure a Cisco ASA 5510.

ciscoasa# show running-config output
: Saved
:
ASA Version 8.2(1)18
!
hostname ciscoasa
enable password 2KFQnbNIdI.2KYOU encrypted
passwd 2KFQnbNIdI.2KYOU encrypted
names
!
interface Ethernet0/0
nameif untrusted
security-level 100
ip address 10.24.120.90 255.255.252.0
!
interface Ethernet0/1
nameif trusted
security-level 90
ip address 172.16.0.1 255.255.0.0
!
interface Ethernet0/2
shutdown
no nameif
no security-level
no ip address

interface Ethernet0/3
shutdown
no nameif
no security-level
no ip address

interface Management0/0
shutdown
no nameif
no security-level
no ip address

boot system disk0:/asa821-18-k8.bin
ftp mode passive
access-list ACL1 extended permit ip 172.16.0.0 255.255.0.0
 192.168.5.0 255.255.255.0
access-list ACL1 extended permit ip 192.168.5.0 255.255.255.0
 172.16.0.0 255.255.0.0
access-list 101 extended permit icmp any any
pager lines 24
mtu untrusted 1500
mtu trusted 1500
no failover
icmp unreachable rate-limit 1 burst-size 1
icmp permit any untrusted
icmp permit any trusted
no asdm history enable
arp timeout 14400
access-group 101 in interface untrusted
access-group 101 out interface untrusted
access-group 101 in interface trusted
access-group 101 out interface trusted
route untrusted 10.115.0.0 255.255.0.0 10.24.123.253 1
route untrusted 192.168.5.0 255.255.255.0 10.115.199.103 1
timeout xlate 3:00:00
timeout conn 1:00:00 half-closed 0:10:00
 udp 0:02:00 icmp 0:00:02
timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00
 mgcp-pat 0:05:00
timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00
 sip-disconnect 0:02:00
timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute
timeout tcp-proxy-reassembly 0:01:00
dynamic-access-policy-record DfltAccessPolicy
no snmp-server location
no snmp-server contact
crypto ipsec transform-set MYSET esp-3des esp-sha-hmac
crypto ipsec security-association lifetime seconds 28800
crypto ipsec security-association lifetime kilobytes 4608000
crypto map MYVPN 1 match address ACL1
crypto map MYVPN 1 set pfs
crypto map MYVPN 1 set peer 10.115.199.103
crypto map MYVPN 1 set transform-set MYSET
crypto map MYVPN interface untrusted
crypto isakmp enable untrusted
crypto isakmp policy 1
authentication pre-share
encryption 3des
hash sha
group 2
lifetime 86400
telnet 10.0.0.0 255.0.0.0 untrusted
telnet timeout 5
ssh timeout 5
console timeout 0
no threat-detection basic-threat
no threat-detection statistics access-list
no threat-detection statistics tcp-intercept
username admin password f3UhLvUjIQsXsuK7 encrypted
tunnel-group 10.115.199.103 type ipsec-l2l
tunnel-group 10.115.199.103 ipsec-attributes
pre-shared-key *
!
!
prompt hostname context

Configuring a WatchGuard Firebox X500

You can configure your WatchGuard Firebox X500 as a remote gateway.

Note Refer to your WatchGuard Firebox documentation for exact steps.

Procedure

1. In Firebox System Manager, select **Tools > Policy Manager**.
2. In Policy Manager, select **Network > Configuration**.
3. Configure the interfaces and click **OK**.
4. (Optional) Select **Network > Routes** to configure a default route.
5. Select **Network > Branch Office VPN > Manual IPSec** to configure the remote gateway.
6. In the IPSec Configuration dialog box, click **Gateways** to configure the IPSEC Remote Gateway.
7. In the IPSec Configuration dialog box, click **Tunnels** to configure a tunnel.
8. In the IPSec Configuration dialog box, click **Add** to add a routing policy.
9. Click **Close**.
10. Confirm that the tunnel is up.
Troubleshooting NSX Edge Configuration Example

Use this information to help you troubleshoot negotiation problems with your setup.

Successful Negotiation (both Phase 1 and Phase 2)

The following examples display a successful negotiating result between NSX Edge and a Cisco device.

NSX Edge

From the NSX Edge command line interface (ipsec auto -status, part of show service ipsec command):

000 #2: "s1-c1":500 STATE_QUICK_I2 (sent QI2, IPsec SA established);
 EVENT_SA_REPLACE in 2430s; newest IPSEC; eroute owner; isakmp#1; idle;
 import:admin initiate
000 #2: "s1-c1" esp.f5f6877d@10.20.131.62 esp.7aaf335f@10.20.129.80
 tun.0@10.20.131.62 tun.0@10.20.129.80 ref=0 refhim=4294901761
000 #1: "s1-c1":500 STATE_MAIN_I4 (ISAKMP SA established); EVENT_SA_REPLACE in
 27623s; newest ISAKMP; lastdpd=0s(seq in:0 out:0); idle;
 import:admin initiate

Cisco

ciscoasa# show crypto isakmp sa detail

 Active SA: 1
 Rekey SA: 0 (A tunnel will report 1 Active and 1 Rekey SA during rekey)
 Total IKE SA: 1

 IKE Peer: 10.20.129.80
 Type : L2L Role : responder
 Rekey : no State : MM_ACTIVE
 Encrypt : 3des Hash : SHA
 Auth : preshared Lifetime: 28800
 Lifetime Remaining: 28379

Phase 1 Policy Not Matching

The following lists Phase 1 Policy Not Matching Error logs.

NSX Edge

NSX Edge hangs in STATE_MAIN_I1 state. Look in /var/log/messages for information showing that the peer sent back an IKE message with "NO_PROPOSAL_CHOSEN" set.

000 #1: "s1-c1":500 STATE_MAIN_I1 (sent MI1, expecting MR1); EVENT_RETRANSMIT in 7s; nodpd; idle;
 import:admin initiate
000 #1: pending Phase 2 for "s1-c1" replacing #0
Aug 26 12:31:25 weiqing-desktop ipsec[6569]:
 | got payload 0x800(ISAKMP_NEXT_N) needed: 0x0 opt: 0x0
Aug 26 12:31:25 weiqing-desktop ipsec[6569]:
 | ***parse ISAKMP Notification Payload:
Aug 26 12:31:25 weiqing-desktop ipsec[6569]:
 | next payload type: ISAKMP_NEXT_NONE
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: | length: 96
Aug 26 12:31:25 weiqing-desktop ipsec[6569]:

VMware, Inc. 201
If debug crypto is enabled, an error message is printed to show that no proposals were accepted.

```
ciscoasa# Aug 26 18:17:27 [IKEv1]:
  IP = 10.20.129.80, IKE_DECODE RECEIVED
  Message (msgid=0) with payloads : HDR + SA (1)
  + VENDOR (13) + VENDOR (13) + NONE (0) total length : 148
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80,
  processing SA payload
Aug 26 18:17:27 [IKEv1]: Phase 1 failure: Mismatched attribute types for class Group Description: Rcv'd: Group 5
 Cfg'd: Group 2
Aug 26 18:17:27 [IKEv1]: Phase 1 failure: Mismatched attribute types for class Group Description: Rcv'd: Group 5
 Cfg'd: Group 2
Aug 26 18:17:27 [IKEv1]: IP = 10.20.129.80, IKE_DECODE SENDING
  Message (msgid=0) with payloads : HDR + NOTIFY (11)
  + NONE (0) total length : 124
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80,
  All SA proposals found unacceptable
Aug 26 18:17:27 [IKEv1]: IP = 10.20.129.80, Error processing payload: Payload ID: 1
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80, IKE MM Responder
  FSM error history (struct &0xd8355a60) <state>, <event>:
  MM_DONE, EV_ERROR-->MM_START, EV_RCV_MSG-->MM_START,
  EV_START_MM-->MM_START, EV_START_MM-->MM_START,
  EV_START_MM-->MM_START, EV_START_MM-->MM_START,
  EV_START_MM-->MM_START, EV_START_MM
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80, IKE SA
  MM:9e0e4511 terminating: flags 0x01000002, refcnt 0,
  tuncnt 0
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80, sending delete/delete with reason message
```

Phase 2 Not Matching

The following lists Phase 2 Policy Not Matching Error logs.

NSX Edge

NSX Edge hangs at STATE_QUICK_I1. A log message shows that the peer sent a NO_PROPOSAL_CHOSEN message.

```
000 #2: "s1-c1":500 STATE_QUICK_I1 (sent QI1, expecting QRI1): EVENT_RETRANSMIT in 11s; lastdpd=-1s(seq in:0 out:0);
  idle; import:admin initiate
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | got payload
```

```
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: | protocol ID: 0
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: | SPI size: 0
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: | Notify Message Type: NO_PROPOSAL_CHOSEN
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: "s1-c1" #1: ignoring informational payload,
  type NO_PROPOSAL_CHOSEN msgid=00000000
```
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | ***parse ISAKMP Notification Payload:
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | next payload
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | type: ISAKMP_NEXT_NONE
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | length: 32
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | DOI: ISAKMP_DOI_IPSEC
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | protocol ID: 3
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | SPI size: 16
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | Notify Message
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: "s1-c1" #3:
 ignoring informational payload, type NO_PROPOSAL_CHOSEN
 msgid=00000000

Cisco

Debug message show that Phase 1 is completed, but Phase 2 failed because of policy negotiation failure.

Aug 26 16:03:49 [IKEv1]: Group = 10.20.129.80,
 IP = 10.20.129.80, PHASE 1 COMPLETED
Aug 26 16:03:49 [IKEv1]: IP = 10.20.129.80, Keep-alive type for this connection: DPD
Aug 26 16:03:49 [IKEv1 DEBUG]: Group = 10.20.129.80,
 IP = 10.20.129.80, Starting P1 rekey timer: 21600 seconds
Aug 26 16:03:49 [IKEv1]: IP = 10.20.129.80, IKE_DECODE RECEIVED
 Message (msgid=b2cdec13) with payloads : HDR + HASH (8) + SA (1) + NONCE (10) + KE (4) + ID (5) + ID (5) + NONE (0)
 total length : 288

PFS Mismatch

The following lists PFS Mismatch Error logs.

NSX Edge

PFS is negotiated as part of Phase 2. If PFS does not match, the behavior is similar to the failure case described in “Phase 2 Not Matching,” on page 202.

Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | got payload 0x800 (ISAKMP_NEXT_N) needed: 0x0 opt: 0x0
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | ***parse ISAKMP Notification Payload:
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | next payload
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | type: ISAKMP_NEXT_NONE
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | length: 32

Aug 26 12:35:52 weiqing Desktop ipsec[7312]: protocol ID: 3
Aug 26 12:35:52 weiqing Desktop ipsec[7312]: SPI size: 16
Aug 26 12:35:52 weiqing Desktop ipsec[7312]: Notify Message
Type: NO_PROPOSAL_CHOSEN
Aug 26 12:35:52 weiqing Desktop ipsec[7312]: "s1-c1" #1: ignoring informational payload, type NO_PROPOSAL_CHOSEN
msgid=00000000
Aug 26 12:35:52 weiqing Desktop ipsec[7312]: info: fa 16 b3 e5 91 a9 b0 02 a3 30 e1 d9 6e 5a 13 d4
Aug 26 12:35:52 weiqing Desktop ipsec[7312]: info: 93 e5 e4 d7
Aug 26 12:35:52 weiqing Desktop ipsec[7312]: processing informational NO_PROPOSAL_CHOSEN (14)

Cisco

Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, sending delete/delete with reason message
Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, constructing blank hash payload
Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, constructing blank hash payload
Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, constructing IKE delete payload
Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, constructing qm hash payload
Aug 26 19:00:26 [IKEv1]: IP = 10.20.129.80, IKE_DECIDE SENDING Message (msgid=19eb1e59) with payloads : HDR + HASH (8) + DELETE (12) + NONE (0) total length : 80
Aug 26 19:00:26 [IKEv1]: Group = 10.20.129.80, IP = 10.20.129.80, Session is being torn down. Reason: Phase 2 Mismatch

PSK not Matching

The following lists PSK Not Matching Error logs

NSX Edge

PSK is negotiated in the last round of Phase 1. If PSK negotiation fails, NSX Edge state is STATE_MAIN_I4. The peer sends a message containing INVALID_ID_INFORMATION.

Aug 26 11:55:55 weiqing Desktop ipsec[3855]: "s1-c1" #1: transition from state STATE_MAIN_I3 to state STATE_MAIN_I4
Aug 26 11:55:55 weiqing Desktop ipsec[3855]: "s1-c1" #1: ISAKMP SA established {auth=OAKLEY_PRESHARED_KEY, cipher= oakley_3des_cbc_192 prf=oakley_sha group=modp1024}
Aug 26 11:55:55 weiqing Desktop ipsec[3855]: "s1-c1" #1: Dead Peer Detection (RFC 3706): enabled
Aug 26 11:55:55 weiqing Desktop ipsec[3855]: "s1-c1" #2: initiating Quick Mode PSK+ENCRYPT+TUNNEL+PFS+UP+SAREFTRACK {using isakmp#1 msgid:e8add10e proposal=3DES(3)_192-SHA1(2)_160
Cisco

Aug 26 15:27:07 [IKEv1]: IP = 10.115.199.191,
IKE_DECODE SENDING Message (msgid=0) with payloads : HDR
+ KE (4) + NONCE (10) + VENDOR (13) + VENDOR (13)
+ VENDOR (13) + VENDOR (13) + NAT-D (130) + NAT-D (130)
+ NONE (0) total length : 304

Aug 26 15:27:07 [IKEv1]: Group = 10.115.199.191,
IP = 10.115.199.191, Received encrypted Oakley Main Mode
packet with invalid payloads, MessID = 0

Message (msgid=0) with payloads : HDR + NOTIFY (11)
+ NONE (0) total length : 80

Aug 26 15:27:07 [IKEv1]: Group = 10.115.199.191,
IP = 10.115.199.191, ERROR, had problems decrypting
packet, probably due to mismatched pre-shared key.
Aborting

Packet Capture for a Successful Negotiation

The following lists a packet capture session for a successful negotiation between NSX Edge and a Cisco
device.

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9203</td>
<td>768.394800</td>
<td>10.20.129.80</td>
<td>10.20.131.62</td>
<td>ISAKMP Identity Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Main Mode)</td>
</tr>
</tbody>
</table>

Frame 9203 (190 bytes on wire, 190 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
 Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
 Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Initiator cookie: 92585D2D797E9C52
Responder cookie: 0000000000000000
Next payload: Security Association (1)
 Version: 1.0
 Exchange type: Identity Protection (Main Mode) (2)
 Flags: 0x00
 Message ID: 0x00000000
 Length: 148
Security Association payload
 Next payload: Vendor ID (13)
 Payload length: 84
 Domain of interpretation: IPSEC (1)
 Situation: IDENTITY (1)
 Proposal payload # 0
 Next payload: NONE (0)
 Payload length: 72
 Proposal number: 0
 Protocol ID: ISAKMP (1)
SPI Size: 0
Proposal transforms: 2

Transform payload # 0
Next payload: Transform (3)
Payload length: 32
Transform number: 0
Transform ID: KEY_IKE (1)
Life-Type (11): Seconds (1)
Life-Duration (12): Duration-Value (28800)
Encryption-Algorithm (1): 3DES-CBC (5)
Hash-Algorithm (2): SHA (2)
Authentication-Method (3): PSK (1)
Group-Description (4): 1536 bit MODP group (5)

Transform payload # 1
Next payload: NONE (0)
Payload length: 32
Transform number: 1
Transform ID: KEY_IKE (1)
Life-Type (11): Seconds (1)
Life-Duration (12): Duration-Value (28800)
Encryption-Algorithm (1): 3DES-CBC (5)
Hash-Algorithm (2): SHA (2)
Authentication-Method (3): PSK (1)
Group-Description (4): Alternate 1024-bit MODP group (2)

Vendor ID: 4F456C6A405D72544D42754D
Next payload: Vendor ID (13)
Payload length: 16
Vendor ID: 4F456C6A405D72544D42754D
Vendor ID: RFC 3706 Detecting Dead IKE Peers (DPD)
Next payload: NONE (0)
Payload length: 20
Vendor ID: RFC 3706 Detecting Dead IKE Peers (DPD)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9204</td>
<td>768.395550</td>
<td>10.20.131.62</td>
<td>10.20.129.80</td>
<td>ISAKMP Identity Protection (Main Mode)</td>
</tr>
</tbody>
</table>

Frame 9204 (146 bytes on wire, 146 bytes captured)
Ethernet II, Src: Cisco_80:70:f5 (00:13:c4:80:70:f5),
 Dst: Vmware_9d:2c:dd (00:50:56:9d:2c:dd)
Internet Protocol, Src: 10.20.131.62 (10.20.131.62),
 Dst: 10.20.129.80 (10.20.129.80)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Initiator cookie: 92585D2D797E9C52
Responder cookie: 34704CFC8C8D8D09
Next payload: Security Association (1)
Version: 1.0
Exchange type: Identity Protection (Main Mode) (2)
Flags: 0x80
Message ID: 0x80000000
Length: 104
Security Association payload
 Next payload: Vendor ID (13)
 Payload length: 52
Domain of interpretation: IPSEC (1)
Situation: IDENTITY (1)
Proposal payload # 1
 Next payload: NONE (0)
 Payload length: 40
 Proposal number: 1
 Protocol ID: ISAKMP (1)
 SPI Size: 0
 Proposal transforms: 1
Transform payload # 1
 Next payload: NONE (0)
 Payload length: 32
 Transform number: 1
 Transform ID: KEY_IKE (1)
 Encryption-Algorithm (1): 3DES-CBC (5)
 Hash-Algorithm (2): SHA (2)
 Group-Description (4): Alternate 1024-bit MODP group (2)
 Authentication-Method (3): PSK (1)
 Life-Type (11): Seconds (1)
 Life-Duration (12): Duration-Value (28800)
Vendor ID: Microsoft L2TP/IPSec VPN Client
 Next payload: NONE (0)
 Payload length: 24
 Vendor ID: Microsoft L2TP/IPSec VPN Client

No. Time Source Destination Protocol Info
9205 768.399599 10.20.129.80 10.20.131.62 ISAKMP Identity Protection (Main Mode)

Frame 9205 (222 bytes on wire, 222 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
 Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
 Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
 Initiator cookie: 92585D2D797E9C52
 Responder cookie: 34704CFC8C8DBD09
 Next payload: Key Exchange (4)
 Version: 1.0
 Exchange type: Identity Protection (Main Mode) (2)
 Flags: 0x00
 Message ID: 0x00000000
 Length: 180
 Key Exchange payload
 Next payload: Nonce (10)
 Payload length: 132
 Key Exchange Data (128 bytes / 1024 bits)
 Nonce payload
 Next payload: NONE (0)
 Payload length: 20
 Nonce Data

No. Time Source Destination Protocol Info
Frame 9206 (298 bytes on wire, 298 bytes captured)
Ethernet II, Src: Cisco_80:70:f5 (00:13:c4:80:70:f5),
 Dst: Vmware_9d:2c:dd (00:50:56:9d:2c:dd)
Internet Protocol, Src: 10.20.131.62 (10.20.131.62),
 Dst: 10.20.129.80 (10.20.129.80)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
 Initiator cookie: 92585D2D797E9C52
 Responder cookie: 34704CFC8C8DBD09
 Next payload: Key Exchange (4)
 Version: 1.0
 Exchange type: Identity Protection (Main Mode) (2)
 Flags: 0x00
 Message ID: 0x00000000
 Length: 256
 Key Exchange payload
 Next payload: Nonce (10)
 Payload length: 132
 Key Exchange Data (128 bytes / 1024 bits)
 Nonce payload
 Next payload: Vendor ID (13)
 Payload length: 24
 Nonce Data
 Vendor ID: CISCO-UNITY-1.0
 Next payload: Vendor ID (13)
 Payload length: 20
 Vendor ID: CISCO-UNITY-1.0
 Vendor ID: draft-beaulieu-ike-xauth-02.txt
 Next payload: Vendor ID (13)
 Payload length: 12
 Vendor ID: draft-beaulieu-ike-xauth-02.txt
 Vendor ID: C1B7EBE18C8CBD099E89695E2CB16A4A
 Next payload: Vendor ID (13)
 Payload length: 20
 Vendor ID: C1B7EBE18C8CBD099E89695E2CB16A4A
 Vendor ID: CISCO-CONCENTRATOR
 Next payload: NONE (0)
 Payload length: 20
 Vendor ID: CISCO-CONCENTRATOR

No. Time Source Destination Protocol Info
9206 768.401192 10.20.131.62 10.20.129.80 ISAKMP Identity Protection
 (Main Mode)

Frame 9207 (110 bytes on wire, 110 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
 Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
 Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
 Initiator cookie: 92585D2D797E9C52
 Responder cookie: 34704CFC8C8DBD09

208 VMware, Inc.
Next payload: Identification (5)
Version: 1.0
Exchange type: Identity Protection (Main Mode) (2)
Flags: 0x01
Message ID: 0x00000000
Length: 68
Encrypted payload (40 bytes)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9208</td>
<td>768.405921</td>
<td>10.20.131.62</td>
<td>10.20.129.80</td>
<td>ISAKMP Identity Protection (Main Mode)</td>
</tr>
</tbody>
</table>

Frame 9208 (126 bytes on wire, 126 bytes captured)
Ethernet II, Src: Cisco_80:70:f5 (00:13:c4:80:70:f5),
 Dst: Vmware_9d:2c:dd (00:50:56:9d:2c:dd)
Internet Protocol, Src: 10.20.131.62 (10.20.131.62),
 Dst: 10.20.129.80 (10.20.129.80)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
 Initiator cookie: 92585D2D797E9C52
 Responder cookie: 34704CF8C8DBD09
 Next payload: Identification (5)
 Version: 1.0
 Exchange type: Identity Protection (Main Mode) (2)
 Flags: 0x01
 Message ID: 0x00000000
 Length: 84
 Encrypted payload (56 bytes)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9209</td>
<td>768.409799</td>
<td>10.20.129.80</td>
<td>10.20.131.62</td>
<td>ISAKMP Quick Mode</td>
</tr>
</tbody>
</table>

Frame 9209 (334 bytes on wire, 334 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
 Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
 Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
 Initiator cookie: 92585D2D797E9C52
 Responder cookie: 34704CF8C8DBD09
 Next payload: Hash (8)
 Version: 1.0
 Exchange type: Quick Mode (32)
 Flags: 0x01
 Message ID: 0x79a63fb1
 Length: 292
 Encrypted payload (264 bytes)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9210</td>
<td>768.411797</td>
<td>10.20.131.62</td>
<td>10.20.129.80</td>
<td>ISAKMP Quick Mode</td>
</tr>
</tbody>
</table>

Frame 9210 (334 bytes on wire, 334 bytes captured)
Ethernet II, Src: Cisco_80:70:f5 (00:13:c4:80:70:f5),
 Dst: Vmware_9d:2c:dd (00:50:56:9d:2c:dd)
Internet Protocol, Src: 10.20.131.62 (10.20.131.62),
Dst: 10.20.129.80 (10.20.129.80)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
 Initiator cookie: 92585D2D797E9C52
 Responder cookie: 34704CF8C8D8D09
 Next payload: Hash (8)
 Version: 1.0
 Exchange type: Quick Mode (32)
 Flags: 0x01
 Message ID: 0x79a63fb1
 Length: 292
 Encrypted payload (264 bytes)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9211</td>
<td>768.437057</td>
<td>10.20.129.80</td>
<td>10.20.131.62</td>
<td>ISAKMP Quick Mode</td>
</tr>
</tbody>
</table>

Frame 9211 (94 bytes on wire, 94 bytes captured)
 Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
 Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
 Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
 Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
 Initiator cookie: 92585D2D797E9C52
 Responder cookie: 34704CF8C8D8D09
 Next payload: Hash (8)
 Version: 1.0
 Exchange type: Quick Mode (32)
 Flags: 0x01
 Message ID: 0x79a63fb1
 Length: 52
 Encrypted payload (24 bytes)
Below are descriptions of each of the regulations available within NSX Data Security.

This chapter includes the following topics:

- “Arizona SB-1338,” on page 213
- “ABA Routing Numbers,” on page 213
- “Australia Bank Account Numbers,” on page 213
- “Australia Business and Company Numbers,” on page 213
- “Australia Medicare Card Numbers,” on page 214
- “Australia Tax File Numbers,” on page 214
- “California AB-1298,” on page 214
- “California SB-1386,” on page 215
- “Canada Social Insurance Numbers,” on page 215
- “Canada Drivers License Numbers,” on page 215
- “Colorado HB-1119,” on page 216
- “Connecticut SB-650,” on page 216
- “Credit Card Numbers,” on page 216
- “Custom Account Numbers,” on page 216
- “EU Debit Card Numbers,” on page 217
- “FERPA (Family Educational Rights and Privacy Act),” on page 217
- “Florida HB-481,” on page 217
- “France IBAN Numbers,” on page 217
- “France National Identification Numbers Policy,” on page 217
- “Georgia SB-230 Policy,” on page 218
- “Germany BIC Numbers Policy,” on page 218
- “Germany Driving License Numbers Policy,” on page 218
- “Germany IBAN Numbers Policy,” on page 218
- “Germany National Identification Numbers Policy,” on page 218
- “Germany VAT Numbers Policy,” on page 218
- “Hawaii SB-2290 Policy,” on page 219
- “HIPAA (Healthcare Insurance Portability and Accountability Act) Policy,” on page 219
- “Idaho SB-1374 Policy,” on page 219
- “Illinois SB-1633,” on page 220
- “Indiana HB-1101 Policy,” on page 220
- “Italy Driving License Numbers Policy,” on page 220
- “Italy IBAN Numbers Policy,” on page 220
- “Italy National Identification Numbers Policy,” on page 220
- “Kansas SB-196 Policy,” on page 221
- “Louisiana SB-205 Policy,” on page 221
- “Maine LD-1671 Policy,” on page 221
- “Massachusetts CMR-201,” on page 222
- “Minnesota HF-2121,” on page 222
- “Montana HB-732,” on page 222
- “Netherlands Driving Licence Numbers,” on page 222
- “Nevada SB-347,” on page 223
- “New Hampshire HB-1660,” on page 223
- “New Jersey A-4001,” on page 223
- “New York AB-4254,” on page 224
- “New Zealand Inland Revenue Department Numbers,” on page 224
- “New Zealand Ministry of Health Numbers,” on page 224
- “Ohio HB-104,” on page 224
- “Oklahoma HB-2357,” on page 225
- “Patient Identification Numbers,” on page 225
- “Payment Card Industry Data Security Standard (PCI-DSS),” on page 225
- “Texas SB-122,” on page 225
- “UK BIC Numbers,” on page 226
- “UK Driving Licence Numbers,” on page 226
- “UK IBAN Numbers,” on page 226
- “UK National Health Service Numbers,” on page 226
- “UK National Insurance Numbers (NINO),” on page 226
- “UK Passport Numbers,” on page 226
- “US Drivers License Numbers,” on page 227
- “US Social Security Numbers,” on page 227
- “Utah SB-69,” on page 227
- “Vermont SB-284,” on page 227
Arizona SB-1338

Arizona SB-1338 is a state data privacy law which protects personally identifiable information. Arizona SB-1338 was signed into law April 26, 2006 and became effective December 31, 2006. The law applies to any person or entity that conducts business in Arizona and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

ABA Routing Numbers

A routing transit number (RTN) or ABA number is a nine digit bank code, used in the United States, which appears on items such as checks that identifies which financial institution it is drawn upon. This code is also used by the Automated Clearing House to process direct deposits and other automated transfers. This system is named after the American Bankers Association, which designed it in 1910.

There are approximately 24,000 active routing and transit numbers currently in use. Every financial institution has one of these; it is a 9-digit number printed in MICR font at the bottom of checks that specifically identifies which financial institution it is associated with, and it is governed by the Routing Number Administrative Board which is sponsored by the ABA.

The primary purposes of the routing number are:

- To identify the bank which is responsible to either pay or give credit or is entitled to receive payment or credit for a financial transaction.
- To provide a reference to a designated presentment point of the bank at which the transaction can be delivered or presented.

For more information, see “ABA Routing Number Content Blade,” on page 228.

Australia Bank Account Numbers

An Australian bank account number, along with a BSB (Bank-State-Branch number) identifies the bank account of an individual or organization.

Australia Business and Company Numbers

Australia Business Numbers (ABN) and Australia Company Numbers (ACN) uniquely identify businesses within the country.

The ABN is a unique 11-digit identifying number that businesses use when dealing with other businesses. A company’s ABN frequently includes the ACN as the last nine digits. The ABN indicates that a person, trust or company is registered with the Australian Business Register (ABR).

An Australian Company Number (usually shortened to ACN) is a unique 9-digit number issued by the Australian Securities and Investments Commission (ASIC) to every company registered under the Commonwealth Corporations Act 2001 as an identifier. The number is usually printed in three groups of three digits.
Companies are required to disclose their ACN on:
- the common seal (if any)
- every public document issued, signed or published by, or on behalf of, the company
- every eligible negotiable instrument issued, signed or published by, or on behalf of, the company
- all documents required to be lodged with ASIC

This regulation uses the content blades titled Australia Business Number or Australia Company Number.

Australia Medicare Card Numbers

All Australian citizens and permanent residents of Australia and their families are eligible for a Medicare Card, with the exception of residents on Norfolk Island. The card lists an individual as well as members of his or her family he or she chooses to add who are also permanent residents and meet the Medicare definition of a dependent (maximum of five names). It is necessary to provide a Medicare Number for a Medicare rebate or to gain access to the public hospital system to be treated at no cost as a public patient.

Medicare is administered by Medicare Australia (known as the Health Insurance Commission until late 2005) which also has the responsibility for supplying Medicare cards and numbers. Almost every eligible person has a card: in June 2002 there were 20.4 million Medicare card-holders, and the Australian population was less than 20 million at the time (card-holders includes overseas Australians who still have a card).

The Medicare card is used for health care purposes only and cannot be used to track in a database. It contains a name and number, and no visible photograph (with the exception of the Tasmanian “Smartcard” version which does have an electronic image of the cardholder on an embedded chip).

The primary purpose of the Medicare card is to prove Medicare eligibility when seeking Medicare-subsidized care from a medical practitioner or hospital. Legally, the card need not be produced and a Medicare number is sufficient. In practice, most Medicare providers will have policies requiring the card be presented to prevent fraud.

Australia Tax File Numbers

A Tax File Number (TFN) is a number that is issued to a person by the Commissioner of Taxation and is used to verify client identity and establish income level.

This policy uses the content blade titled Australia Tax File Number. Refer to the description of the content blades to understand what content will be detected.

California AB-1298

California AB-1298 is a state data privacy law which protects personally identifiable information. California AB-1298 in was signed into law October 14, 2007 and became effective January 1, 2008. The law applies to any person, business, or state agency that conducts business in California and owns or licenses unencrypted computerized data that includes personally identifiable information.

This law is an amendment to California SB-1386 to include medical information and health information in the definition of personal information.

The regulation looks for at least one match to personally identifiable information, as defined through the following content blades:
- Admittance and Discharge Dates
- Credit Card Numbers
- Credit Card Track Data
California SB-1386

California SB-1386 is a state data privacy law which protects personally identifiable information. California SB-1386 was signed into law September 25, 2002 and became effective July 1, 2003. The law applies to any person, business, or state agency that conducts business in California and owns or licenses unencrypted computerized data that includes personally identifiable information.

This law has been amended to include medical information and health information; it is now referred to as California AB-1298, which is provided as an expanded regulation in the SDK. If California AB-1298 is enabled, you do not need to also use this regulation as the same information is detected as part of AB-1298.

The regulation looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Canada Social Insurance Numbers

A Social Insurance Number (SIN) is a number issued in Canada to administer various government programs. The SIN was created in 1964 to serve as a client account number in the administration of the Canada Pension Plan and Canada's varied employment insurance programs. In 1967, Revenue Canada (now the Canada Revenue Agency) started using the SIN for tax reporting purposes.

Canada Drivers License Numbers

In Canada, driver's licenses are issued by the government of the province in which the driver resides. Thus, specific regulations relating to driver's licenses vary province to province, though overall they are quite similar. All provinces have provisions allowing non-residents to use licenses issued by other provinces and International Driving Permits.

The regulation looks for at least a match to at least one of the following content blades:
- Alberta Drivers Licence
- British Columbia Drivers Licence
- Manitoba Drivers Licence
- New Brunswick Drivers Licence
- Newfoundland and Labrador Drivers Licence
- Nova Scotia Drivers Licence

License pattern rules: 5 letters followed by 9 digits
Colorado HB-1119

Colorado HB-1119 is a state data privacy law which protects personally identifiable information. Colorado HB-1119 was signed into law April 24, 2006 and became effective September 1, 2006. The law applies to any individual or a commercial entity that conducts business in Colorado and owns or licenses unencrypted computerized data that includes personally identifiable information.

The regulation looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Connecticut SB-650

Connecticut SB-650 is a state data privacy law which protects personally identifiable information. Connecticut SB-650 was signed into law June 8, 2005 and became effective January 1, 2006. The law applies to any person, business or agency that conducts business in Connecticut and owns or licenses unencrypted computerized data that includes personally identifiable information.

The regulation looks for at least one match to personally identifiable information, as defined through the following content blades:
- Admittance and Discharge Dates
- Birth and Death Certificates
- Credit Card Numbers
- Credit Card Track Data
- Group Insurance Numbers
- Health Plan Beneficiary Numbers
- Healthcare Dictionaries
- Medical History
- Patient Identification Numbers
- US Drivers License Numbers
- US National Provider Identifiers
- US Social Security Numbers

Credit Card Numbers

Custom Account Numbers

If you have organizational account numbers that need to be protected, then customize the content blade assigned to the Custom Account Numbers regulation with the number pattern via a regular expression.
EU Debit Card Numbers

The policy looks for debit card numbers as issued by the major debit card carriers in the European Union such as Maestro, Visa and Laser.

FERPA (Family Educational Rights and Privacy Act)

FERPA protects the privacy of student records at educational institutions receiving U.S. Department of Education funds. It requires the educational institution to have written permission from a parent or student in order to release information from a student’s educational record.

Under certain circumstances the release of information such as name, address, telephone number, honors and awards, and dates of attendance may be released or published without permission. Information that can connect an individual with grades or disciplinary actions requires permission.

The policy must match both of the following content blades for a document to trigger as a violation:

- Student Identification Numbers
- Student Records

Florida HB-481

Florida HB-481 is a state data privacy law which protects personally identifiable information. Florida HB-481 was signed into law June 14, 2005 and became effective July 1, 2005. The law applies to any person, firm, association, joint venture, partnership, syndicate, corporation, and all other groups or combinations that conduct business in Florida and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

France IBAN Numbers

A France International Bank Account Number (IBAN) is an international standard for identifying France bank accounts across national borders and was originally adopted by the European Committee for Banking Standards. The official IBAN registrar under ISO 13616:2003 is issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade France IBAN Number.

France National Identification Numbers Policy

The policy identifies documents and transmissions that contain national identification numbers, also called INSEE numbers and Social Security numbers, issued to individuals at birth by the Institut National de la Statistique et des Etudes Économiques (INSEE) in France.

The policy looks for a match to the content blade France National Identification Number.
Georgia SB-230 Policy

Georgia SB-230 is a state data privacy law which protects personally identifiable information. Georgia SB-230 was signed into law May 5, 2005 and became effective May 5, 2005. The law applies to any person or entity who, for monetary fees or dues, engages in whole or in part in the business of collecting, assembling, evaluating, compiling, reporting, transmitting, transferring, or communicating information concerning individuals for the primary purpose of furnishing personally identifiable information to nonaffiliated third parties, or any state or local agency or subdivision thereof that maintains data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Germany BIC Numbers Policy

A Bank Identifier Code (BIC) uniquely identifies a particular bank and is used in Germany and worldwide for the exchange of money and messages between banks. The policy identifies documents and transmissions that contain BIC codes, also known as SWIFT codes, issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade Germany BIC Number.

Germany Driving License Numbers Policy

A Germany Drivers License Number is an identification number on a German Drivers License and identifies the owner of said number for the purposes of driving and driving offences.

The policy looks for a match to the content blade Germany Driving License Number.

Germany IBAN Numbers Policy

International Bank Account Number (IBAN) is an international standard for identifying bank accounts across national borders and was originally adopted by the European Committee for Banking Standards. The official IBAN registrar under ISO 13616:2003 is issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade Germany IBAN Number.

Germany National Identification Numbers Policy

The policy identifies documents and transmissions that contain personal identification numbers, or Personalausweis, issued to individuals in Germany.

The policy looks for a match to the content blade Germany National Identification Number.

Germany VAT Numbers Policy

based business or legal entity for the purposes of levying Value Added Tax (or goods and services tax).

The policy looks for a match to the content blade Germany VAT Number.
Hawaii SB-2290 Policy

Hawaii SB-2290 is a state data privacy law which protects personally identifiable information.

Hawaii SB-2290 was signed into law May 25, 2006 and became effective January 1, 2007. The law applies to any sole proprietorship, partnership, corporation, association, or other group, however organized, and whether or not organized to operate at a profit, including financial institutions organized, chartered, or holding a license or authorization certificate under the laws of Hawaii, any other state, the US, or any other country, or the parent or the subsidiary of any such financial institution, and any entity whose business is records destruction, or any government agency that collects personally identifiable information for specific government purposes.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

HIPAA (Healthcare Insurance Portability and Accountability Act) Policy

The Health Insurance Portability and Accountability Act (HIPAA) was enacted by the Congress of the United States of America. HIPAA includes a Privacy Rule regulating the use and disclosure of protected health information (PHI), a Security Rule defining security safeguards required for electronic protected health information (ePHI), and an Enforcement Rule that defines procedures for violation investigations and penalties for confirmed violations.

PHI is defined as individually identifiable health information that is transmitted or maintained in any form or medium (electronic, oral, or paper) by a covered entity or its business associates, excluding certain educational and employment records. Individually identifiable means the identity of the subject is or may readily be ascertained by the investigator or associated with the information.

This policy is designed to detect electronic PHI, which contains a personal health number in addition to health-related terminology. Some false negatives may occur since combinations of personally identifiable information, such as name and address, would not be considered as ePHI with this policy. Internal research indicates that the majority of health communication will contain a personal health number in addition to health-related terminology.

Idaho SB-1374 Policy

Idaho SB-1374 is a state data privacy law which protects personally identifiable information. Idaho SB-1374 was signed into law March 30, 2006 and became effective July 1, 2006. The law applies to any agency, individual, or commercial entity that conducts business in Idaho and owns or licenses unencrypted computerized data that includes personally identifiable information about a resident of Idaho.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
Illinois SB-1633

Illinois SB-1633 is a state data privacy law which protects personally identifiable information. Illinois SB-1633 was signed into law June 16, 2005 and became effective June 27, 2006.

The law applies to any data collector, which includes, but is not limited to, government agencies, public and private universities, privately and publicly held corporations, financial institutions, retail operators, and any other entity that, for any purpose, handles, collects, disseminates, or otherwise deals with nonpublic personally identifiable information that owns or licenses personally identifiable information concerning an Illinois resident.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Indiana HB-1101 Policy

Indiana HB-1101 is a state data privacy law which protects personally identifiable information. Indiana HB-1101 was signed into law April 26, 2005 and became effective July 1, 2006. The law applies to any individual, corporation, business trust, estate, trust partnership, association, nonprofit corporation or organization, cooperative, or any other legal entity that owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Italy Driving License Numbers Policy

A Italy Drivers License Number is an identification number on a Italian Drivers License and identifies the owner of said number for the purposes of driving and driving offences.

The policy looks for a match to the content blade Italy Driving License Number.

Italy IBAN Numbers Policy

A International Bank Account Number (IBAN) is an international standard for identifying bank accounts across national borders and was originally adopted by the European Committee for Banking Standards. The official IBAN registrar under ISO 13616:2003 issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT)

The policy looks for a match to the content blade Italy IBAN Number.

Italy National Identification Numbers Policy

The policy identifies documents and transmissions that contain personal identification numbers, or Codice Fiscale, issued to individuals in Italy.

The policy looks for a match to the content blade Italy National Identification Number.
Kansas SB-196 Policy

Kansas SB-196 is a state data privacy law which protects personally identifiable information. Kansas SB-196 was signed into law April 19, 2006 and became effective January 1, 2007. The law applies to any individual, partnership, corporation, trust, estate, cooperative, association, government, or government subdivision or agency or other entity that conducts business in Kansas and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Louisiana SB-205 Policy

Louisiana SB-205 is a state data privacy law which protects personally identifiable information. Louisiana SB-205 was signed into law July 12, 2005 and became effective January 1, 2006. The law applies to any individual, corporation, partnership, sole proprietorship, joint stock company, joint venture, or any other legal entity that conducts business in Louisiana and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Maine LD-1671 Policy

Maine LD-1671 is a state data privacy law which protects personally identifiable information. Maine LD-1671 was signed into law June 10, 2005 and became effective January 31, 2006.

The law applies to any individual, partnership, corporation, limited liability company, trust, estate, cooperative, association, or other entity, including agencies of state government, the University of Maine System, the Maine Community College System, Maine Maritime Academy and private colleges and universities, or any information in whole or in part in the business of collecting, assembling, evaluating, compiling, reporting, transmitting, transferring or communicating information concerning individuals for the primary purpose of furnishing personally identifiable information to nonaffiliated third parties that maintains computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
Massachusetts CMR-201

Massachusetts CMR-201 is a state data privacy regulation which protects personally identifiable information. Massachusetts CMR-201 was issued on September 19, 2008 and became effective May 1, 2009. The regulation applies to all businesses and other legal entities that own, license, collect, store or maintain personal information about a resident of the Commonwealth of Massachusetts.

The policy looks for at least one match to personally identifiable information, which may include:

- ABA Routing Numbers
- Credit Card Number
- Credit Card Track Data
- US Bank Account Numbers
- US Drivers License Number
- US Social Security Number

Minnesota HF-2121

Minnesota HF-2121 is a state data privacy law which protects personally identifiable information. Minnesota HF-2121 was signed into law June 2, 2005 and became effective January 1, 2006. The law applies to any person or business that conducts business in Minnesota and owns or licenses data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Montana HB-732

Montana HB-732 is a state data privacy law which protects personally identifiable information. Montana HB-732 was signed into law April 28, 2005 and became effective March 1, 2006. The law applies to any person or business that conducts business in Montana and owns or licenses computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Netherlands Driving Licence Numbers

A Netherlands Driving License number is an identification number on a Netherlands Drivers License and identifies the owner of said number for the purposes of driving and driving offences.

The policy looks for a match to the content blade Netherlands Driving License Number.
Nevada SB-347
Nevada SB-347 is a state data privacy law which protects personally identifiable information. Nevada SB-347 was signed into law June 17, 2005 and became effective October 1, 2005. The law applies to any government agency, institution of higher education, corporation, financial institution or retail operator, or any other type of business entity or association that owns computerized data which includes personal information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

New Hampshire HB-1660
New Hampshire HB-1660 is a state data privacy law which protects personally identifiable information. New Hampshire HB-1660 was signed into law June 2, 2006 and became effective January 1, 2007. The law applies to any individual, corporation, trust, partnership, incorporated or unincorporated association, limited liability company, or other form of entity, or any agency, authority, board, court, department, division, commission, institution, bureau, or other state governmental entity, or any political subdivision of the state doing business in New Hampshire that owns or licenses computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

New Jersey A-4001
New Jersey A-4001 is a state data privacy law which protects personally identifiable information.

New Jersey A-4001 was signed into law September 22, 2005 and became effective January 1, 2006. The law applies to New Jersey, and any country, municipality, district, public authority, public agency, and any other political subdivision or public body in New Jersey, any sole proprietorship, partnership, corporation, association, or other entity, however organized and whether or not organized to operate at a profit, including a financial institution organized, chartered, or holding a license or authorization certificate under the law of New Jersey, any other state, the United States, or of any other country, or the parent or the subsidiary of a financial institution, that conducts business in New Jersey that compiles or maintains computerized records that include personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
New York AB-4254

New York AB-4254 is a state data privacy law which protects personally identifiable information. New York AB-4254 was signed into law August 10, 2005 and became effective December 8, 2005. The law applies to any person or business which conducts business in New York and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

New Zealand Inland Revenue Department Numbers

The policy identifies documents and transmissions that contain New Zealand Inland Revenue Department (IRD) numbers issued by the Inland Revenue Department to every taxpayer and organization. The number must be provided by an individual to the Inland Revenue, employers, banks or other financial institutions, KiwiSaver scheme providers, StudyLink and tax agents.

The policy looks for a match to the content blade New Zealand Inland Revenue Department Number.

New Zealand Ministry of Health Numbers

The policy identifies documents and transmissions that contain New Zealand Health Practitioner Index (HPI) or National Health Index (NHI) numbers.

The New Zealand Ministry of Health, or Manatū Hauora in Māori, is the New Zealand government's principal agent and advisor on health and disability. The agency uses the NHI numbering system for registering patients and the HPI system for registering medical practitioners to ensure that records are accurate while protecting the privacy of individuals. This policy detects 6-digit alphanumeric New Zealand Health Practitioner Index Common Person numbers (HPI-CPN), which uniquely identify a health practitioner or worker. This policy also detects 7-digit NHI numbers used to uniquely identify a patient within the New Zealand health system.

The policy looks for a match to either of the content blades:

- New Zealand Health Practitioner Index Number
- New Zealand National Health Index Number

Ohio HB-104

Ohio HB-104 is a state data privacy law which protects personally identifiable information. Ohio HB-104 was signed into law November 17, 2005 and became effective December 29, 2006. The law applies to any individual, corporation, business trust, estate, trust, partnership, or association that conducts business in Ohio and owns or licenses computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
Oklahoma HB-2357
Oklahoma HB-2357 is a state data privacy law which protects personally identifiable information. Oklahoma HB-2357 was signed into law June 8, 2006 and became effective November 1, 2008. The law applies to any corporations, business trusts, estates, partnerships, limited partnerships, limited liability partnerships, limited liability companies, associations, organizations, joint ventures, governments, governmental subdivisions, agencies, or instrumentalities, or any other legal entity, whether for profit or not-for-profit that conducts business in Oklahoma HB-2357 and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Patient Identification Numbers
The personally identifiable information (PII) commonly held by hospitals and healthcare-related organizations and businesses in the United States of America. This policy should be customized to define the patient identification number format.

The policy looks for at least one match to personally identifiable information, which may include:
- Patient Identification Numbers
- US National Provider Identifier
- US Social Security Number

Payment Card Industry Data Security Standard (PCI-DSS)
The PCI DSS, a set of comprehensive requirements for enhancing payment account data security, was developed by the founding payment brands of the PCI Security Standards Council, including American Express, Discover Financial Services, JCB International, MasterCard Worldwide and Visa Inc. Inc. International, to help facilitate the broad adoption of consistent data security measures on a global basis.

The PCI DSS is a multifaceted security standard that includes requirements for security management, policies, procedures, network architecture, software design and other critical protective measures. This comprehensive standard is intended to help organizations proactively protect customer account data.

The policy looks for at least one match to either of the content blades:
- Credit Card Number
- Credit Card Track Data

Texas SB-122
Texas SB-122 is a state data privacy law which protects personally identifiable information. Texas SB-122 was signed into law June 17, 2005 and became effective September 1, 2005. The law applies to any person that conducts business in Texas and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
UK BIC Numbers

A Bank Identifier Code (BIC) uniquely identifies a particular bank and is used in the UK and worldwide for the exchange of money and messages between banks. The policy identifies documents and transmissions that contain BIC codes, also known as SWIFT codes, issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade UK BIC Number.

UK Driving Licence Numbers

A UK driving license number is an identification number on a UK driving license and identifies the owner of said number for the purposes of driving and driving offences.

The policy looks for a match to the content blade UK Driving License Number.

UK IBAN Numbers

International Bank Account Number (IBAN) is an international standard for identifying the UK bank accounts across national borders and was originally adopted by the European Committee for Banking Standards. The official IBAN registrar under ISO 13616:2003 is issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade UK IBAN Number.

UK National Health Service Numbers

A UK National Health Service number is an identification number provided by the UK National Health Service and identifies the owner of said number for the purposes of medical records.

The policy looks for a match to the content blade UK National Health Service Number.

UK National Insurance Numbers (NINO)

UK National Insurance is a system of payments made out of earnings by employees, employers and the self-employed to the Government that entitle you to a state pension and other benefits.

UK National Insurance Numbers (NINO) are the identification numbers assigned to each person born in the UK, or to anyone resident in the UK who is a legal employee, student, recipient of social welfare benefits, pension etc.

The policy looks for a match at least one of the content blades UK NINO Formal or UK NINO Informal.

UK Passport Numbers

The policy identifies documents and transmissions that contain passport numbers issued in the UK.

The policy looks for a match to the content blade UK Passport Number.
US Drivers License Numbers

Driver’s licenses issued in the United States have a number or alphanumeric code issued by the Department of Motor Vehicles (or equivalent), usually show a photograph of the bearer, as well as a copy of his or her signature, the address of his or her primary residence, the type or class of license, restrictions and/or endorsements (if any), the physical characteristics of the bearer (such as height, weight, hair color, eye color, and sometimes even skin color), and birth date. No two driver’s license numbers issued by a state are alike. Social Security numbers are becoming less common on driver’s licenses, due to identity theft concerns.

The policy looks for a match to the content blade US Drivers Licenses.

US Social Security Numbers

The U.S. Social Security number is issued to U.S. citizens, permanent residents, and temporary (working) residents under section 205(c)(2) of the Social Security Act, codified as 42 U.S.C. § 405(c)(2). The number is issued to an individual by the Social Security Administration, an independent agency of the United States government. Its primary purpose is to track individuals for taxation purposes.

Utah SB-69

Utah SB-69 is a state data privacy law which protects personally identifiable information. Utah SB-69 was signed into law March 20, 2006 and became effective January 1, 2007. The law applies to any who owns or license computerized data that includes personally identifiable information concerning a Utah resident.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Vermont SB-284

Vermont SB-284 is a state data privacy law which protects personally identifiable information. Vermont SB-284 was signed into law May 18, 2006 and became effective January 1, 2007. The law applies to any data collector that owns or licenses unencrypted computerized data that includes personally identifiable information concerning an individual residing in Vermont.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
Washington SB-6043

Washington SB-6043 is a state data privacy law which protects personally identifiable information. Washington SB-6043 was signed into law May 10, 2005 and became effective July 24, 2005. The law applies to any state or local agency or any person or business which conducts business in Washington and owns or licenses computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Data Security Content Blades

This section lists the available content blades for NSX regulations.

ABA Routing Number Content Blade

The content blade looks for matches to 3 pieces of information in close proximity of each other.

The content blade looks for:
- ABA routing number
- Banking words and phrases (e.g. aba, routing number, checking, savings)
- Personally identifiable information (e.g. name, address, phone number)

Words and phrases related to banking are implemented in order to increase precision. A routing number is 9-digits and may pass for many different data types, for example, a valid US Social Security number, Canadian Social Insurance number or international telephone number.

Since routing numbers themselves are not sensitive, personally identifiable information is necessary for a violation to occur.

Admittance and Discharge Dates Content Blade

The content blade looks for matches to the U. S. Date Format entity and words and phrases such as admit date, admittance date, date of discharge, discharge date in close proximity to each other.

Alabama Drivers License Content Blade

The content blade looks for matches to the Alabama driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AL or Alabama.

Driver's license pattern
7 Numeric or 8 Numeric

Alaska Drivers License Content Blade

The content blade looks for matches to the Alaska driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alaska.

Driver's license pattern:
7 Numeric
Alberta Drivers Licence Content Blade

The content blade looks for matches to the Alberta driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alberta.

Driver's license pattern

7 Numeric

Alaska Drivers License Content Blade

The content blade looks for matches to the Alaska driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alaska.

Driver's license pattern:

7 Numeric

Alberta Drivers Licence Content Blade

The content blade looks for matches to the Alberta driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alberta.

Driver's license pattern

7 Numeric

American Express Content Blade

The content blade looks for a combination of the following pieces of information.

- More than one American Express credit card number
- A single credit card number plus words and phrases such as ccn, credit card, expiration date
- A single credit card number plus an expiration date

Arizona Drivers License Content Blade

The content blade looks for matches to the Arizona driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AZ or Arizona.

The Driver’s license pattern can be 1 Alphabetic, 8 Numeric; or 9 Numeric (SSN); or 9 Numeric (Unformatted SSN).

Arkansas Drivers License Content Blade

The content blade looks for matches to the Arkansas driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AR or Arkansas.

Driver’s license pattern can be 9, 8 Numeric.
Australia Bank Account Number Content Blade

The Australian bank account number itself is not sensitive, but identifies a bank account, without identifying the bank branch. Therefore, both the account number and branch information must exist for the document to be considered sensitive.

The content blade looks for matches to both:

- An Australian bank account number
- Words and phrases related to bank state branch or BSB.

It also uses a regular expression rule to differentiate between telephone numbers of the same length.

An Australian bank account number is 6 to 10-digits without any embedded meaning. It has no check digit routine.

Australia Business Number Content Blade

The content blade looks for matches to both pieces of information in close proximity to each other.

- Australia Business Number
- ABN words and phrases (e.g. ABN, Australia business number)

Australia Company Number Content Blade

The content blade looks for matches to both pieces of information in close proximity to each other.

- Australia Company Number
- ACN words and phrases (e.g. ACN, Australia Company Number)

Australia Medicare Card Number Content Blade

The content blade will match if one of the following combinations of information appears in a document.

- More than one Australia Medicare Card Number
- One Medicare card number plus Medicare or patient identification terms (e.g. patient identifier, patient number)
- One Medicare card number plus two of either a name, expiration date or expiration terms

Australia Tax File Number Content Blade

The content blade looks for matches to both pieces of information in high proximity to each other.

- Australia Tax File Number (refer to entity description)
- Tax file number words and phrases (e.g. TFN, tax file number)

California Drivers License Number Content Blade

The content blade looks for matches to the California driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CA or California.

The Driver’s license pattern is 1 Alphabetic, 7 Numeric.
Canada Drivers License Number Content Blade

The content blade is only a container file for child content blades. The content blades assigned to it separately look for driver’s licenses in individual providences and territories.

Canada Social Insurance Number Content Blade

The content blade is only a container file for child content blades. The content blades assigned to it separately look for formatted and unformatted versions of the Canadian Social Insurance numbers plus personal information so different rules may be assigned to them. The formatted version of the Social Insurance number is a more specific pattern, so the rules are less strict for returning a match. However, the unformatted version is very general and matches to many common numbers.

Colorado Drivers License Number Content Blade

The content blade looks for matches to the Colorado driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CO or Colorado.

The driver’s license pattern is 9 Numeric.

Connecticut Drivers License Number Content Blade

The content blade looks for matches to the Connecticut driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CT or Connecticut.

Driver’s license pattern: 9 Numeric, 1st two positions are month of birth in odd or even year. 01-12 Jan-Dec odd years, 13-24 Jan-Dec even years, 99 unknown.

Credit Card Number Content Blade

The content blade looks for a combination of the following pieces of information.

- More than one credit card number
- A single credit card number plus words and phrases such as ccn, credit card, expiration date
- A single credit card number plus an expiration date

Credit Card Track Data Content Blade

Track data is the information encoded and stored on two tracks located within the magnetic stripe on the back of a credit card (debit card, gift card, etc). There are three tracks on the magstripe (magnetic strip on the back of a credit card).

Each track is .110-inch wide. The ISO/IEC standard 7811, which is used by banks, specifies:

- Track one is 210 bits per inch (bpi), and holds 79 six-bit plus parity bit read-only characters.
- Track two is 75 bpi, and holds 40 four-bit plus parity bit characters.
- Track three is 210 bpi, and holds 107 four-bit plus parity bit characters.

Your credit card typically uses only tracks one and two. Track three is a read/write track (that includes an encrypted PIN, country code, currency units, amount authorized), but its usage is not standardized among banks.

This content blade requires a match to the Credit Card Track Data entity.
Custom Account Number Content Blade
The Custom Accounts content blade is an editable blade and should contain a regular expression for an organization's custom account patterns.

Delaware Drivers License Number Content Blade
The content blade looks for matches to the Delaware driver’s license pattern and words and phrases such as driver’s license and license number and terms such as DE or Delaware.

EU Debit Card Number Content Blade
The content blade looks for patterns of the major European Union debit card numbers.
The content blade will match with a combination of the following pieces of information in close proximity, if either:
- More than one match to a EU debit card number
- A single match to a EU debit card number plus two of either a word or phrase for credit card (e.g. card number or cc#), credit card security, expiration date or name
- A single match to a EU debit card number with an expiration date

Florida Drivers License Number Content Blade
The content blade looks for matches to the Florida driver’s license pattern and words and phrases such as driver’s license and license number and terms such as FL or Florida.

Driver’s license pattern: 1 Alphabetic, 12 Numeric.

France Driving License Number Content Blade
The content blade requires the following to match for a French driving license in a close proximity.
- French driving license pattern
- Either words or phrases for a driving license (e.g. driving license, permis de conduire) or E.U. date format

France BIC Number Content Blade
The content blade scans for French BIC numbers by requiring matches for both the following rules.
- European BIC number format
- French format of the BIC number

France IBAN Number Content Blade
The content blade requires the following to match for a French IBAN number in a close proximity.
- European IBAN number format
- French IBAN number pattern
French National Identification Number Content Blade

The content blade requires the following to match for a French National Identification number in a close proximity.

- More than one match to the French National Identification pattern
- One match to the French National Identification pattern plus either words or phrases for a social security number (e

France VAT Number Content Blade

The content blade requires a match for a French value added tax (VAT) number pattern in a close proximity to the abbreviation FR.

Georgia Drivers License Number Content Blade

The content blade looks for matches to the Georgia driver’s license pattern and words and phrases such as driver’s license and license number and terms such as GA or Georgia.

Driver’s license pattern: 7-9 Numeric; or Formatted SSN.

Germany BIC Number Content Blade

The content blade scans for German BIC numbers by requiring matches for both the following rules.

- European BIC number format
- German format of the BIC number

Germany Driving License Number Content Blade

The content blade requires the following to match for a German driving license in a close proximity.

- German driving license pattern
- Words or phrases related to a driving license (e.g. driving license, ausstellungsdatum)

Germany IBAN Number Content Blade

The content blade requires the following to match for a German IBAN number in a close proximity.

- European IBAN number format
- German IBAN number pattern

The German IBAN rule: "DE" country code followed by 22 digits.

Germany National Identification Numbers Content Blade

The content blade requires the following to match for a German National Identification number in a close proximity.

- Either a German National Identification number or a machine-readable version of the number
- Words or phrases for a German National Identification number (e.g. personalausweis, personalausweisnummer)
Germany Passport Number Content Blade

The content blade requires the following to match for a German passport number in a close proximity.

- Either a German passport number or a machine-readable version of the number
- Words or phrases for a German passport number or issuance date (e.g. reisepass, ausstellungsdatum)

Germany VAT Number Content Blade

The content blade requires a match for a German value added tax (VAT) number pattern (refer to entity description) in a close proximity to the abbreviation DE.

Group Insurance Numbers Content Blade

This is a content blade that requires customization. To use this content blade, add a regular expression to match the number pattern for an organization's Group Insurance Number. The content blade looks for matches to words and phrases such as group insurance or a name, U.S. address or U.S. date in combination with the custom regular expression.

Hawaii Drivers License Number Content Blade

The content blade looks for matches to the Hawaii driver's license pattern and words and phrases such as driver’s license and license number and terms such as HI or Hawaii.

Driver’s license pattern: H Alphabetic, 8 Numeric; or SSN.

Italy National Identification Numbers Content Blade

The content blade requires the following to match for an Italy National Identification number in a close proximity.

1. Italy National Identification number pattern
2. Words or phrases for an Italy National Identification number (e.g. codice fiscale, national identification)

National Identification Rule: 16 character alphanumeric code. where:

- SSS are the first three consonants in the family name (the first vowel and then an X are used if there are not enough consonants)
- NNN is the first name, of which the first, third and fourth consonants are used—exceptions are handled as in family names
- YY are the last digits of the birth year
- M is the letter for the month of birth—letters are used in alphabetical order, but only the letters A to E, H, L, M, P, R to T are used (thus, January is A and October is R)
- DD is the day of the month of birth—in order to differentiate between genders, 40 is added to the day of birth for women (thus a woman born on May 3 has ...E43...)
- ZZZZ is an area code specific to the municipality where the person was born—country-wide codes are used for foreign countries, a letter followed by three digits
n X is a parity character as calculated by adding together characters in the even and odd positions, and
dividing them by 26. Numerical values are used for letters in even positions according to their
alphabetical order. Characters in odd positions have different values. A letter is then used which
corresponds to the value of the remainder of the division in the alphabet.

Pattern:

- LLLLLDDLDDLDDDL
- LLL LLL DDLDD LDDDL

Health Plan Beneficiary Numbers

This is a content blade that requires customization. To use this content blade, add a regular expression to
identify recipients of health plan benefits and payments. The content blade looks for matches to words and
phrases such as beneficiary or a name, U.S. address or U.S. date in combination with the custom regular
expression.

Idaho Drivers License Number Content Blade

The content blade looks for matches to the Idaho driver’s license pattern and words and phrases such as
driver’s license and license number and terms such as ID or Idaho.

Driver’s license pattern: 2 Alphabetic, 6 Numeric, 1 Alphabetic.

Illinois Drivers License Number Content Blade

The content blade looks for matches to the Illinois driver’s license pattern and words and phrases such as
driver’s license and license number and terms such as IL or Illinois.

Driver’s license pattern: 1 Alphabetic, 11 Numeric.

Indiana Drivers License Number Content Blade

The content blade looks for matches to the Indiana driver’s license pattern and words and phrases such as
driver’s license and license number and terms such as IN or Indiana.

Driver’s license pattern: 10 Numeric.

Iowa Drivers License Number Content Blade

The content blade looks for matches to the Iowa driver’s license pattern and words and phrases such as
driver’s license and license number and terms such as IA or Iowa.

Driver’s license pattern can be 3 numeric, 2 alphabetic, 3 numeric; or Social Security Number.

Index of Procedures Content Blade

The content blade looks for words and phrases related to medical procedures based on the International
Classification of Diseases (ICD).

The content blade will match with a combination of the following pieces of information, either:

- More than one match to the Index of Procedures dictionary
- A single match to the Index of Procedures dictionary plus two of either a name, U.S. Address or U.S.
 Date
- A single match to the Index of Procedures dictionary with a patient or doctor identification word or
 phrase (e.g. patient ID, physician name)
Italy Driving License Number Content Blade

The content blade requires the following to match for an Italy driving license in a close proximity.

- Italy driving license pattern
- Words or phrases for a driving license (e.g. driving license, patente di guida)

Driver’s License Rule: 10 alphanumeric characters -- 2 letters, 7 numbers and a final letter. The first letter may only be characters A-V.

Driver’s License Pattern:
- LLDDDDDDDL
- LL DDDDDDD L
- LL-DDDDDDDL
- LL - DDDDDDD - L

Italy IBAN Number Content Blade

The content blade requires the following to match for a Italy IBAN number in a close proximity.

1. IBAN words and phrases (e.g. International Bank Account Number, IBAN)
2. Italy IBAN number pattern

IBAN Rule: IT country code followed by 25 alphanumeric characters.

Pattern:
- ITDDDE
Kansas Drivers License Number Content Blade

The content blade looks for matches to the Kansas driver’s license pattern and words and phrases such as driver’s license and license number and terms such as KS or Kansas.

Driver’s license pattern: 1 Alphabetic (K), 8 Numeric; or Social Security Number.

Kentucky Drivers License Number Content Blade

The content blade looks for matches to the Kentucky driver’s license pattern and words and phrases such as driver’s license and license number and terms such as KY or Kentucky.

Driver’s license pattern: 1 Alphabetic, 8 Numeric; or Social Security Number.

Louisiana Drivers License Number Content Blade

The content blade looks for matches to the Louisiana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as LA or Louisiana.

Driver’s license pattern: 2 Zeros, 7 Numeric.

Maine Drivers License Number Content Blade

The content blade looks for matches to the Maine driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ME or Maine.

Driver’s license pattern: 7 Numeric, optional alphabetic X.

Manitoba Drivers Licence Content Blade

The content blade looks for matches to the Manitoba driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as MB or Manitoba in a close proximity.

License pattern rules: 12 alphanumeric characters that may be hyphen-separated, where:

- 1st character is a letter
- 2nd - 5th characters are a letter or asterisk
- 6th character is a letter
- 7th - 10th characters are digits
- 11th character is a letter
- 12th character is a letter or digit

or

- 1st character is a letter
- 2nd - 4th characters are a letter or asterisk
- 5th - 6th characters are digits
- 7th - 12th characters are a letter or digit

Driver’s license pattern:

- LLLLLLDLDDDLA
- LLLLLDAAAAAAA
Maryland Drivers License Number Content Blade

The content blade looks for matches to the Maryland driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MD or Maryland.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Massachusetts Drivers License Number Content Blade

The content blade looks for matches to the Massachusetts driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MA or Massachusetts.

Driver’s license pattern: 1 Alphabetic (S), 8 Numeric; or Social Security Number

Michigan Drivers License Number Content Blade

The content blade looks for matches to the Michigan driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MI or Michigan.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Minnesota Drivers License Number Content Blade

The content blade looks for matches to the Minnesota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MN or Minnesota.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Mississippi Drivers License Number Content Blade

The content blade looks for matches to the Mississippi driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MS or Mississippi.

Driver’s license pattern: 9 Numeric; or Formatted Social Security Number

Missouri Drivers License Number Content Blade

The content blade looks for matches to the Missouri driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MO or Missouri.

Driver’s license pattern: 1 Alphabetic, 6-9 Numeric; or 9 Numeric; or Formatted Social Security Number

Montana Drivers License Number Content Blade

The content blade looks for matches to the Montana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MT or Montana.

Driver’s license pattern: 9 Numeric (SSN); or 1 Alphabetic, 1 Numeric, 1 Alphanumeric, 2 Numeric, 3 Alphabetic and 1 Numeric; or 13 Numeric

NDC Formulas Dictionary Content Blade

The content blade looks for words and phrases related to formulas based on the National Drug Codes (NDC).

The content blade will match with a combination of the following pieces of information, either:

1. More than one match to the NDC Formulas dictionary
2. A single match to the NDC Formulas dictionary plus two of either a name, U.S. Address or U.S. Date
3 A single match to the NDC Formulas dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)

Nebraska Drivers License Number Content Blade

The content blade looks for matches to the Nebraska driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NE or Nebraska.

Driver’s license pattern: 1 Alphabetic , 8 Numeric

Netherlands Driving Licence Number Content Blade

The content blade requires the following to match for a Netherlands driving license in a close proximity.

1 Netherlands driving license pattern (refer to entity description)
2 Words or phrases for a driving license (e.g. driving license, rijbewijs)

Netherlands IBAN Number Content Blade

The content blade requires the following to match for a Netherlands IBAN number in a close proximity.

1 IBAN words and phrases (e.g. International Bank Account Number, IBAN)
2 Netherlands IBAN number pattern

IBAN Rule: NL country code followed by 16 alphanumeric characters.

Pattern:
- **NL**DDLLLLDDDDDDDDDD

Spaces may be substituted with dashes

Netherlands National Identification Numbers Content Blade

The content blade requires the following to match for a Netherlands National Identification number in a close proximity.

1 Netherlands National Identification number (refer to entity description)
2 Words or phrases for a Netherlands National Identification number (e.g. sofinummer, burgerservicenummer)
Netherlands Passport Number Content Blade

The content blade requires the following to match for a Netherlands passport number in a close proximity.

1. Netherlands passport number (refer to entity description)
2. Words or phrases for a Netherlands passport number (e.g. paspoort, Noodpaspoort)

Nevada Drivers License Number Content Blade

The content blade looks for matches to the Nevada driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NV or Nevada.

Driver’s license pattern: 9 Numeric (SSN); or 12 Numeric (last 2 are year of birth), or 10 numeric

New Brunswick Drivers Licence Content Blade

The content blade looks for matches to the New Brunswick driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NB or New Brunswick in a close proximity.

License pattern rules: 5 - 7 digits

Driver’s license pattern:
- DDDDD
- DDDDDD
- DDDDDDD

New Hampshire Drivers License Number Content Blade

The content blade looks for matches to the New Hampshire driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NH or New Hampshire.

Driver’s license pattern: 2 Numeric, 3 Alphabetic, 5 Numeric

New Jersey Drivers License Number Content Blade

The content blade looks for matches to the New Jersey driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NJ or New Jersey.

Driver’s license pattern: 1 Alphabetic, 14 Numeric

New Mexico Drivers License Number Content Blade

The content blade looks for matches to the New Mexico driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NM or New Mexico.

Driver’s license pattern: 9 Numeric

New York Drivers License Number Content Blade

The content blade looks for matches to the New York driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NY or New York.

Driver’s license pattern: 9 Numeric
New Zealand Health Practitioner Index Number Content Blade

The content blade looks for matches to the New Zealand Health Practitioner Index entity and corroborative terms such as hpi-cpn or health practitioner index.

New Zealand Inland Revenue Department Number

The content blade looks for matches to the New Zealand Inland Revenue Department Number entity and words and phrases such as IRD Number or Inland Revenue Department Number.

New Zealand National Health Index Number Content Blade

The content blade looks for matches to the New Zealand National Health Index entity and corroborative terms such as nhi or National Health index.

Newfoundland and Labrador Drivers Licence Content Blade

The content blade looks for matches to the Newfoundland and Labrador driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NL or Labrador in a close proximity.

License pattern rules: 1 letter followed by 9 digits

Driver’s license pattern: LDDDDDDDDDD

North Carolina Drivers License Number Content Blade

The content blade looks for matches to the North Carolina driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NC or North Carolina.

Driver’s license pattern: 6 - 8 Numeric

North Dakota Drivers License Number Content Blade

The content blade looks for matches to the North Dakota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ND or North Dakota.

Driver’s license pattern: 9 Numeric; or 3 Alphabetic, 6 Numeric

Nova Scotia Drivers Licence Content Blade

The content blade looks for matches to the Nova Scotia driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NS or Nova Scotia in a close proximity.

License pattern rules: 5 letters followed by 9 digits

Driver’s license pattern: LLLLLDDDDDDDD

Ohio Drivers License Number Content Blade

The content blade looks for matches to the Ohio driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OH or Ohio.

Driver’s license pattern: 2 Alphabetic, 6 Numeric
Oklahoma License Number Content Blade

The content blade looks for matches to the Oklahoma driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OK or Oklahoma.

Driver’s license pattern: 1 Alphabetic, 8 Numeric; or 9 Numeric; or Social Security Number, Formatted

Ontario Drivers Licence Content Blade

The content blade looks for matches to the Ontario driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as ON or Ontario in a close proximity.

License pattern rules: 1 letter followed by 14 digits

Driver’s license pattern: LDDDDDDDDDDDDDD

Oregon License Number Content Blade

The content blade looks for matches to the Oregon driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OR or Oregon.

Driver’s license pattern: 6 -7 Numeric

Patient Identification Numbers Content Blade

This is a content blade that requires customization. To use this content blade, add a regular expression for a company-specific Patient Identification Number pattern. The content blade looks for matches to words and phrases such as patient id or a name, U.S. address or U.S. date in combination with the custom regular expression.

Pennsylvania License Number Content Blade

The content blade looks for matches to the Pennsylvania driver’s license pattern and words and phrases such as driver’s license and license number and terms such as PA or Pennsylvania.

Driver’s license pattern: 8 Numeric

Prince Edward Island Drivers Licence Content Blade

The content blade looks for matches to the Prince Edward Island driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as PE or Prince Edward Island in a close proximity.

License pattern rules: 5 - 6 digits

Driver’s license pattern:
- DDDD
- DDDDDD

Protected Health Information Terms Content Blade

The content blade looks for words and phrases related to personal health records and health insurance claims.

The content blade will match with a combination of the following pieces of information, either:

1. More than one match to the Protected Health Information dictionary
2 A single match to the Protected Health Information dictionary plus two of either a name, U.S. Address or U.S. Date
3 A single match to the Protected Health Information dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)

Quebec Drivers Licence Content Blade
The content blade looks for matches to the Quebec driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as QC or Quebec in a close proximity.
License pattern rules: 1 letter followed by 12 digits
Driver’s license pattern: LDDDDDDDDDDDD

Rhode Island License Number Content Blade
The content blade looks for matches to the Rhode Island driver’s license pattern and words and phrases such as driver’s license and license number and terms such as RI or Rhode Island.
Driver’s license pattern: 7 Numeric

Saskatchewan Drivers Licence Content Blade
The content blade looks for matches to the Saskatchewan driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as SK or Saskatchewan in a close proximity.
License pattern rules: 8 digits
License pattern: DDDDDDDD

SIN Formatted Content Blade
The content blade looks for formatted patterns of the Canadian Social Insurance number (SIN).
The content blade will match with a combination of the following pieces of information in medium proximity, either:
1 More than one match to a formatted SIN
2 A single match to a formatted SIN plus a driver’s license or date of birth word or phrase
3 A single match to a formatted SIN with word or phrase for Social Security number (e.g. Social Security, SSN)

SIN Unformatted Content Blade
The content blade looks for unformatted patterns of the Canadian Social Insurance (SIN). The content blade will match if an unformatted SIN is found within close proximity of a word or phrase for Social Security number (e.g. Social Insurance, SIN) or driver’s license or date of birth.

SSN Formatted Content Blade
The content blade will match with a combination of the following pieces of information in medium proximity, either:
- More than one match to a formatted SSN
- A single match to a formatted SSN plus two of either a name, U.S. Address or U.S. Date
- A single match to a formatted SSN with word or phrase for a Social Security number (e.g. Social Security, SSN)
SSN Unformatted Content Blade

The content blade looks for unformatted patterns of the U.S. Social Security number (SSN). The content blade will match if an unformatted SSN is found within close proximity of a word or phrase for a Social Security number (e.g. Social Security, SSN).

South Carolina License Number Content Blade

The content blade looks for matches to the South Carolina driver’s license pattern and words and phrases such as driver’s license and license number and terms such as SC or South Carolina.

Driver’s license pattern: 9 Numeric

South Dakota License Number Content Blade

The content blade looks for matches to the South Dakota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as SD or South Dakota.

Driver’s license pattern: 8 Numeric; or Social Security Number

Spain National Identification Number Content Blade

The content blade looks for matches to the Spain National Identification Number entity and words and phrases such as Documento Nacional de Identidad and Número de Identificación de Extranjeros. It also uses regular expressions to differentiate between telephone numbers and to prevent double counting of DNIs and NIEs without check letters.

Spain Passport Number Content Blade

The content blade looks for matches to the Spain Passport Number and words and phrases such as pasaporte or passport.

Passport Rule: 8 alphanumeric characters -- 2 letters followed by 6 digits.

Pattern:

LLDDDDDD

LL-DDDDDD

LL DDDDDD

Spain Social Security Number Content Blade

The content blade requires the following to match for a Spain Social Security number in a close proximity.

1 Spain Social Security number

2 Words or phrases for a social security number (e.g. número de la seguridad social, social security number)

Sweden IBAN Number Content Blade

The content blade requires the following to match for a Sweden IBAN number in a close proximity.

1 IBAN words and phrases (e.g. International Bank Account Number, IBAN

2 Sweden IBAN number pattern
IBAN Rule: SE country code followed by 22 digits.
Pattern: SE DDDDDDDDDDDDDDDDDDDDDD

Sweden Passport Number Content Blade
The content blade looks for matches to the Sweden Passport Number regular expression with the following possible combinations of supporting evidence.
1. Words and phrases for passport such as Passnummer
2. Words and phrases for the country Sweden, nationality and expiry dates
Passport Rule: 8 digits
Pattern:
DDDDDDDD
DD-DDDDDD
LL-DDDDDD

Tennessee License Number Content Blade
The content blade looks for matches to the Texas driver's license pattern and words and phrases such as driver's license and license number and terms such as TX or Texas.
Driver's license pattern: 8 Numeric

UK BIC Number Content Blade
The content blade scans for UK BIC numbers by requiring matches for both rules.
1. European BIC number format
2. UK format of the BIC number
BIC rule: 8 or 11 alphanumeric characters. Letters 5th and 6th will always have “GB” as the ISO 3166-1 alpha-2 country code.
Pattern:
LLLLLLAAA
LLLLLLLAAAA
LLLLLLAA-AAA
LLLLLAA AAA
LLLLLL AA AAA
LLLL LL AA AAA
LLLL LL AA-AAA

UK Driving License Number Content Blade
The content blade requires the following to match for a UK driving license in a close proximity.
1. UK driving license pattern
2. Either words or phrases for a driving license (e.g. driving license) or personal identification (e.g. date of birth, address, telephone)
Driving license rule: 16 - 18 alphanumeric characters and begins with a letter.
Pattern:
LAAAADDDEDDLLDLLDD
Some digits are limited in the values accepted.

UK IBAN Number Content Blade
The content blade requires the following to match for a UK IBAN number in a close proximity.
1 European IBAN number format
2 UK IBAN number pattern
IBAN Rule: "GB" country code followed by 20 characters.
GB, ISO country code
2 Digits (numeric characters 0 to 9 only), Check Digits (IBAN)
4 Upper case letters (A-Z only), Bank Identifier Digits
6 Digits (numeric characters 0 to 9 only), Bank branch code
8 Digits (numeric characters 0 to 9 only), Account number
Pattern:
GBDDLLLLDDDDDDDDDDDDDD
GB DD LLLL DDDD DDDD DDDD DD
GB DD LLLL DDDDDD DDDDDDDD

UK National Health Service Number Content Blade
The content blade requires the following to match for a UK National Health Service number in a close proximity.
1 UK National Health Service number format
2 Words and phrases relating to the National Health Service or patient identification or date of birth

UK NINO Formal Content Blade
The content blade looks for the formal pattern of the UK National Insurance number (NINO).
The content blade will match with a combination of the following pieces of information in high proximity, either:
1 More than one match to a NINO formal pattern
2 A single match to a NINO formal with word or phrase for a National Insurance number (e.g. NINO, taxpayer number)

UK Passport Number Content Blade
The content blade looks for matches to one of the U.K. passport number entities with the following supporting evidence.
1 Words and phrases for passport such as passport or a national passport code preceding a passport number
2 Words and phrases for the country, U.K, or the date of issue (optional match)
Utah License Number Content Blade
The content blade looks for matches to the Utah driver’s license pattern and words and phrases such as driver’s license and license number and terms such as UT or Utah.
Driver’s license pattern: 6 - 10 Numeric

Virginia License Number Content Blade
The content blade looks for matches to the Virginia driver’s license pattern and words and phrases such as driver’s license and license number and terms such as VA or Virginia.
Driver’s license pattern: 1 Alphabetic, 8 Numeric

Visa Card Number Content Blade
The content blade looks for a combination of the following pieces of information, either:
1 More than one JCB credit card number
2 A single credit card number plus words and phrases such as ccn, credit card, expiration date
3 A single credit card number plus an expiration date

Washington License Number Content Blade
The content blade looks for matches to the Washington driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WA or Washington.
Driver’s license pattern: 5 Alphabetic (last name), 1 Alphabetic (first name), 1 Alphabetic (middle name), 3 Numeric, 2 Alphanumeric. If last or middle name field falls short, fill with *s.

Wisconsin License Number Content Blade
The content blade looks for matches to the Wisconsin driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WI or Wisconsin.
Driver’s license pattern: 1 Alphabetic, 13 Numeric

Wyoming License Number Content Blade
The content blade looks for matches to the Wyoming driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WY or Wyoming.
Driver’s license pattern: 9 - 10 Numeric
Data Security Content Blades

This sections lists the available content blades for NSX regulations.

This chapter includes the following topics:
- “ABA Routing Number Content Blade,” on page 252
- “Admittance and Discharge Dates Content Blade,” on page 252
- “Alabama Drivers License Content Blade,” on page 252
- “Alaska Drivers License Content Blade,” on page 253
- “Alberta Drivers License Content Blade,” on page 253
- “Alaska Drivers License Content Blade,” on page 253
- “Alberta Drivers Licence Content Blade,” on page 253
- “American Express Content Blade,” on page 253
- “Arizona Drivers License Content Blade,” on page 253
- “Arkansas Drivers License Content Blade,” on page 254
- “Australia Bank Account Number Content Blade,” on page 254
- “Australia Business Number Content Blade,” on page 254
- “Australia Company Number Content Blade,” on page 254
- “Australia Medicare Card Number Content Blade,” on page 254
- “Australia Tax File Number Content Blade,” on page 254
- “California Drivers License Number Content Blade,” on page 255
- “Canada Drivers License Number Content Blade,” on page 255
- “Canada Social Insurance Number Content Blade,” on page 255
- “Colorado Drivers License Number Content Blade,” on page 255
- “Connecticut Drivers License Number Content Blade,” on page 255
- “Credit Card Number Content Blade,” on page 255
- “Credit Card Track Data Content Blade,” on page 255
- “Custom Account Number Content Blade,” on page 256
- “Delaware Drivers License Number Content Blade,” on page 256
- “EU Debit Card Number Content Blade,” on page 256
“Florida Drivers License Number Content Blade,” on page 256
“France Driving License Number Content Blade,” on page 256
“France BIC Number Content Blade,” on page 256
“France IBAN Number Content Blade,” on page 256
“France National Identification Number Content Blade,” on page 257
“France VAT Number Content Blade,” on page 257
“Georgia Drivers License Number Content Blade,” on page 257
“Germany BIC Number Content Blade,” on page 257
“Germany Driving License Number Content Blade,” on page 257
“Germany IBAN Number Content Blade,” on page 257
“Germany National Identification Numbers Content Blade,” on page 257
“Germany Passport Number Content Blade,” on page 258
“Germany VAT Number Content Blade,” on page 258
“Group Insurance Numbers Content Blade,” on page 258
“Hawaii Drivers License Number Content Blade,” on page 258
“Italy National Identification Numbers Content Blade,” on page 258
“Health Plan Beneficiary Numbers,” on page 259
“Idaho Drivers License Number Content Blade,” on page 259
“Illinois Drivers License Number Content Blade,” on page 259
“Indiana Drivers License Number Content Blade,” on page 259
“Iowa Drivers License Number Content Blade,” on page 259
“Index of Procedures Content Blade,” on page 259
“Italy Driving License Number Content Blade,” on page 260
“Italy IBAN Number Content Blade,” on page 260
“ITIN Unformatted Content Blade,” on page 260
“Kansas Drivers License Number Content Blade,” on page 261
“Kentucky Drivers License Number Content Blade,” on page 261
“Louisiana Drivers License Number Content Blade,” on page 261
“Maine Drivers License Number Content Blade,” on page 261
“Manitoba Drivers Licence Content Blade,” on page 261
“Maryland Drivers License Number Content Blade,” on page 262
“Massachusetts Drivers License Number Content Blade,” on page 262
“Michigan Drivers License Number Content Blade,” on page 262
“Minnesota Drivers License Number Content Blade,” on page 262
“Mississippi Drivers License Number Content Blade,” on page 262
“Missouri Drivers License Number Content Blade,” on page 262
“Montana Drivers License Number Content Blade,” on page 262
“NDC Formulas Dictionary Content Blade,” on page 262
“Nebraska Drivers License Number Content Blade,” on page 263
“Netherlands Driving Licence Number Content Blade,” on page 263
“Netherlands IBAN Number Content Blade,” on page 263
“Netherlands National Identification Numbers Content Blade,” on page 263
“Netherlands Passport Number Content Blade,” on page 264
“Nevada Drivers License Number Content Blade,” on page 264
“New Brunswick Drivers Licence Content Blade,” on page 264
“New Hampshire Drivers License Number Content Blade,” on page 264
“New Jersey Drivers License Number Content Blade,” on page 264
“New Mexico Drivers License Number Content Blade,” on page 264
“New York Drivers License Number Content Blade,” on page 264
“New Zealand Health Practitioner Index Number Content Blade,” on page 265
“New Zealand Inland Revenue Department Number,” on page 265
“New Zealand National Health Index Number Content Blade,” on page 265
“Newfoundland and Labrador Drivers Licence Content Blade,” on page 265
“North Carolina Drivers License Number Content Blade,” on page 265
“North Dakota Drivers License Number Content Blade,” on page 265
“Nova Scotia Drivers Licence Content Blade,” on page 265
“Ohio Drivers License Number Content Blade,” on page 265
“Oklahoma License Number Content Blade,” on page 266
“Ontario Drivers Licence Content Blade,” on page 266
“Oregon License Number Content Blade,” on page 266
“Patient Identification Numbers Content Blade,” on page 266
“Pennsylvania License Number Content Blade,” on page 266
“Prince Edward Island Drivers Licence Content Blade,” on page 266
“Protected Health Information Terms Content Blade,” on page 266
“Quebec Drivers Licence Content Blade,” on page 267
“Rhode Island License Number Content Blade,” on page 267
“Saskatchewan Drivers Licence Content Blade,” on page 267
“SIN Formatted Content Blade,” on page 267
“SIN Unformatted Content Blade,” on page 267
“SSN Formatted Content Blade,” on page 267
“SSN Unformatted Content Blade,” on page 268
“South Carolina License Number Content Blade,” on page 268
“South Dakota License Number Content Blade,” on page 268
“Spain National Identification Number Content Blade,” on page 268
ABA Routing Number Content Blade

The content blade looks for matches to 3 pieces of information in close proximity of each other.

The content blade looks for:

- ABA routing number
- Banking words and phrases (e.g. aba, routing number, checking, savings)
- Personally identifiable information (e.g. name, address, phone number)

Words and phrases related to banking are implemented in order to increase precision. A routing number is 9-digits and may pass for many different data types, for example, a valid US Social Security number, Canadian Social Insurance number or international telephone number.

Since routing numbers themselves are not sensitive, personally identifiable information is necessary for a violation to occur.

Admittance and Discharge Dates Content Blade

The content blade looks for matches to the U. S. Date Format entity and words and phrases such as admit date, admittance date, date of discharge, discharge date in close proximity to each other.

Alabama Drivers License Content Blade

The content blade looks for matches to the Alabama driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AL or Alabama.

Driver's license pattern

7 Numeric or 8 Numeric
Alaska Drivers License Content Blade

The content blade looks for matches to the Alaska driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alaska.

Driver’s license pattern:

7 Numeric

Alberta Drivers Licence Content Blade

The content blade looks for matches to the Alberta driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alberta.

Driver’s license pattern

7 Numeric

Alaska Drivers License Content Blade

The content blade looks for matches to the Alaska driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alaska.

Driver's license pattern:

7 Numeric

Alberta Drivers Licence Content Blade

The content blade looks for matches to the Alberta driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alberta.

Driver's license pattern

7 Numeric

American Express Content Blade

The content blade looks for a combination of the following pieces of information.

- More than one American Express credit card number
- A single credit card number plus words and phrases such as ccn, credit card, expiration date
- A single credit card number plus an expiration date

Arizona Drivers License Content Blade

The content blade looks for matches to the Arizona driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AZ or Arizona.

The Driver's license pattern can be 1 Alphabetic, 8 Numeric; or 9 Numeric (SSN); or 9 Numeric (Unformatted SSN).
Arkansas Drivers License Content Blade

The content blade looks for matches to the Arkansas driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AR or Arkansas.

Driver’s license pattern can be 9, 8 Numeric.

Australia Bank Account Number Content Blade

The Australian bank account number itself is not sensitive, but identifies a bank account, without identifying the bank branch. Therefore, both the account number and branch information must exist for the document to be considered sensitive.

The content blade looks for matches to both:
- An Australian bank account number
- Words and phrases related to bank state branch or BSB.

It also uses a regular expression rule to differentiate between telephone numbers of the same length.

An Australian bank account number is 6 to 10-digits without any embedded meaning. It has no check digit routine.

Australia Business Number Content Blade

The content blade looks for matches to both pieces of information in close proximity to each other.
- Australia Business Number
- ABN words and phrases (e.g. ABN, Australia business number)

Australia Company Number Content Blade

The content blade looks for matches to both pieces of information in close proximity to each other.
- Australia Company Number
- ACN words and phrases (e.g. ACN, Australia Company Number)

Australia Medicare Card Number Content Blade

The content blade will match if one of the following combinations of information appears in a document.
- More than one Australia Medicare Card Number
- One Medicare card number plus Medicare or patient identification terms (e.g. patient identifier, patient number)
- One Medicare card number plus two of either a name, expiration date or expiration terms

Australia Tax File Number Content Blade

The content blade looks for matches to both pieces of information in high proximity to each other.
- Australia Tax File Number (refer to entity description)
- Tax file number words and phrases (e.g. TFN, tax file number)
California Drivers License Number Content Blade

The content blade looks for matches to the California driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CA or California.

The Driver’s license pattern is 1 Alphabetic, 7 Numeric.

Canada Drivers License Number Content Blade

The content blade is only a container file for child content blades. The content blades assigned to it separately look for driver’s licenses in individual providences and territories.

Canada Social Insurance Number Content Blade

The content blade is only a container file for child content blades. The content blades assigned to it separately look for formatted and unformatted versions of the Canadian Social Insurance numbers plus personal information so different rules may be assigned to them. The formatted version of the Social Insurance number is a more specific pattern, so the rules are less strict for retuning a match. However, the unformatted version is very general and matches to many common numbers.

Colorado Drivers License Number Content Blade

The content blade looks for matches to the Colorado driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CO or Colorado.

The driver’s license pattern is 9 Numeric.

Connecticut Drivers License Number Content Blade

The content blade looks for matches to the Connecticut driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CT or Connecticut.

Driver’s license pattern: 9 Numeric, 1st two positions are month of birth in odd or even year. 01-12 Jan-Dec odd years, 13-24 Jan-Dec even years, 99 unknown.

Credit Card Number Content Blade

The content blade looks for a combination of the following pieces of information.

- More than one credit card number
- A single credit card number plus words and phrases such as ccn, credit card, expiration date
- A single credit card number plus an expiration date

Credit Card Track Data Content Blade

Track data is the information encoded and stored on two tracks located within the magnetic stripe on the back of a credit card (debit card, gift card, etc). There are three tracks on the magstripe (magnetic strip on the back of a credit card).

Each track is .110-inch wide. The ISO/IEC standard 7811, which is used by banks, specifies:

- Track one is 210 bits per inch (bpi), and holds 79 six-bit plus parity bit read-only characters.
- Track two is 75 bpi, and holds 40 four-bit plus parity bit characters.
- Track three is 210 bpi, and holds 107 four-bit plus parity bit characters.
Your credit card typically uses only tracks one and two. Track three is a read/write track (that includes an encrypted PIN, country code, currency units, amount authorized), but its usage is not standardized among banks.

This content blade requires a match to the Credit Card Track Data entity.

Custom Account Number Content Blade

The Custom Accounts content blade is an editable blade and should contain a regular expression for an organization’s custom account patterns.

Delaware Drivers License Number Content Blade

The content blade looks for matches to the Delaware driver’s license pattern and words and phrases such as driver’s license and license number and terms such as DE or Delaware.

EU Debit Card Number Content Blade

The content blade looks for patterns of the major European Union debit card numbers. The content blade will match with a combination of the following pieces of information in close proximity, if either:

- More than one match to a EU debit card number
- A single match to a EU debit card number plus two of either a word or phrase for credit card (e.g. card number or cc#), credit card security, expiration date or name
- A single match to a EU debit card number with an expiration date

Florida Drivers License Number Content Blade

The content blade looks for matches to the Florida driver’s license pattern and words and phrases such as driver’s license and license number and terms such as FL or Florida.

Driver’s license pattern: 1 Alphabetic, 12 Numeric.

France Driving License Number Content Blade

The content blade requires the following to match for a French driving license in a close proximity.

- French driving license pattern
- Either words or phrases for a driving license (e.g. driving license, permis de conduire) or E.U. date format

France BIC Number Content Blade

The content blade scans for French BIC numbers by requiring matches for both the following rules.

- European BIC number format
- French format of the BIC number

France IBAN Number Content Blade

The content blade requires the following to match for a French IBAN number in a close proximity.

- European IBAN number format
- French IBAN number pattern
France National Identification Number Content Blade

The content blade requires the following to match for a French National Identification number in a close proximity.

- More than one match to the French National Identification pattern
- One match to the French National Identification pattern plus either words or phrases for a social security number

France VAT Number Content Blade

The content blade requires a match for a French value added tax (VAT) number pattern in a close proximity to the abbreviation FR.

Georgia Drivers License Number Content Blade

The content blade looks for matches to the Georgia driver’s license pattern and words and phrases such as driver’s license and license number and terms such as GA or Georgia.

Driver’s license pattern: 7-9 Numeric; or Formatted SSN.

Germany BIC Number Content Blade

The content blade scans for German BIC numbers by requiring matches for both the following rules.

- European BIC number format
- German format of the BIC number

Germany Driving License Number Content Blade

The content blade requires the following to match for a German driving license in a close proximity.

- German driving license pattern
- Words or phrases related to a driving license (e.g. driving license, ausstellungsdatum)

Germany IBAN Number Content Blade

The content blade requires the following to match for a German IBAN number in a close proximity.

- European IBAN number format
- German IBAN number pattern

The German IBAN rule: "DE" country code followed by 22 digits.

Germany National Identification Numbers Content Blade

The content blade requires the following to match for a German National Identification number in a close proximity.

- Either a German National Identification number or a machine-readable version of the number
- Words or phrases for a German National Identification number (e.g. personalausweis, personalausweisnummer)
Germany Passport Number Content Blade

The content blade requires the following to match for a German passport number in a close proximity.

- Either a German passport number or a machine-readable version of the number
- Words or phrases for a German passport number or issuance date (e.g. reisepass, ausstellungsdatum)

Germany VAT Number Content Blade

The content blade requires a match for a German value added tax (VAT) number pattern (refer to entity description) in a close proximity to the abbreviation DE.

Group Insurance Numbers Content Blade

This is a content blade that requires customization. To use this content blade, add a regular expression to match the number pattern for an organization’s Group Insurance Number. The content blade looks for matches to words and phrases such as group insurance or a name, U.S. address or U.S. date in combination with the custom regular expression.

Hawaii Drivers License Number Content Blade

The content blade looks for matches to the Hawaii driver’s license pattern and words and phrases such as driver’s license and license number and terms such as HI or Hawaii.

Driver’s license pattern: H Alphabetic, 8 Numeric; or SSN.

Italy National Identification Numbers Content Blade

The content blade requires the following to match for an Italy National Identification number in a close proximity.

1. Italy National Identification number pattern
2. Words or phrases for an Italy National Identification number (e.g. codice fiscale, national identification)

National Identification Rule: 16 character alphanumeric code. where:

- SSS are the first three consonants in the family name (the first vowel and then an X are used if there are not enough consonants)
- NNN is the first name, of which the first, third and fourth consonants are used—exceptions are handled as in family names
- YY are the last digits of the birth year
- M is the letter for the month of birth—letters are used in alphabetical order, but only the letters A to E, H, L, M, P, R to T are used (thus, January is A and October is R)
- DD is the day of the month of birth—in order to differentiate between genders, 40 is added to the day of birth for women (thus a woman born on May 3 has ...E43...)
- ZZZZ is an area code specific to the municipality where the person was born—country-wide codes are used for foreign countries, a letter followed by three digits
X is a parity character as calculated by adding together characters in the even and odd positions, and dividing them by 26. Numerical values are used for letters in even positions according to their alphabetical order. Characters in odd positions have different values. A letter is then used which corresponds to the value of the remainder of the division in the alphabet.

Pattern:
- LLLLLDLDLDDDL
- LLL LDDULLDDDL

Health Plan Beneficiary Numbers

This is a content blade that requires customization. To use this content blade, add a regular expression to identify recipients of health plan benefits and payments. The content blade looks for matches to words and phrases such as beneficiary or a name, U.S. address or U.S. date in combination with the custom regular expression.

Idaho Drivers License Number Content Blade

The content blade looks for matches to the Idaho driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ID or Idaho.

Driver’s license pattern: 2 Alphabetic, 6 Numeric, 1 Alphabetic.

Illinois Drivers License Number Content Blade

The content blade looks for matches to the Illinois driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IL or Illinois.

Driver’s license pattern: 1 Alphabetic, 11 Numeric.

Indiana Drivers License Number Content Blade

The content blade looks for matches to the Indiana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IN or Indiana.

Driver’s license pattern: 10 Numeric.

Iowa Drivers License Number Content Blade

The content blade looks for matches to the Iowa driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IA or Iowa.

Driver’s license pattern can be 3 numeric, 2 alphabetic, 3 numeric; or Social Security Number.

Index of Procedures Content Blade

The content blade looks for words and phrases related to medical procedures based on the International Classification of Diseases (ICD).

The content blade will match with a combination of the following pieces of information, either:
- More than one match to the Index of Procedures dictionary
- A single match to the Index of Procedures dictionary plus two of either a name, U.S. Address or U.S. Date
- A single match to the Index of Procedures dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)
Italy Driving License Number Content Blade

The content blade requires the following to match for an Italy driving license in a close proximity.

- Italy driving license pattern
- Words or phrases for a driving license (e.g. driving license, patente di guida)

Driver's License Rule: 10 alphanumeric characters -- 2 letters, 7 numbers and a final letter. The first letter may only be characters A-V.

Driver's License Pattern:
- LLDDDDDDDL
- LL DDDDDDD L
- LL-DDDDDD-L
- LL - DDDDDDD - L

Italy IBAN Number Content Blade

The content blade requires the following to match for a Italy IBAN number in a close proximity.

1. IBAN words and phrases (e.g. International Bank Account Number, IBAN)
2. Italy IBAN number pattern

IBAN Rule: IT country code followed by 25 alphanumeric characters.

Pattern:
- ITDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
- IT DDDDDDDDDDDDDDDDDDDDDDDDDDDDD
- IT DD LDDDDDDDDDDDDDDDDDDDDDDDDDDDD
- IT DDLDDDDDDDDDDDDDDDDDDDDDDDDDDDD
- IT DDLDDDDDDDDDDDDDDDDDDDDDDDDDDDD
- IT DDLDDDDDDDDDDDDDDDDDDDDDDDDDDDD
- IT DDLDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Spaces may be substituted with dashes, forward slashes or colons.

ITIN Unformatted Content Blade

The content blade looks for unformatted patterns of the U.S. Taxpayer Identification Number (ITIN). The content blade will match if an unformatted ITIN is found within close proximity of a word or phrase for an ITIN number (e.g. tax identification, ITIN).

ITIN Rule: 9-digit number that always begins with the number 9 and has a range of 70-88 in the fourth and fifth digit.

Pattern: DDDDDDDDD
Kansas Drivers License Number Content Blade

The content blade looks for matches to the Kansas driver’s license pattern and words and phrases such as driver’s license and license number and terms such as KS or Kansas.

Driver’s license pattern: 1 Alphabetic (K), 8 Numeric; or Social Security Number.

Kentucky Drivers License Number Content Blade

The content blade looks for matches to the Kentucky driver’s license pattern and words and phrases such as driver’s license and license number and terms such as KY or Kentucky.

Driver’s license pattern: 1 Alphabetic, 8 Numeric; or Social Security Number.

Louisiana Drivers License Number Content Blade

The content blade looks for matches to the Louisiana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as LA or Louisiana.

Driver’s license pattern: 2 Zeros, 7 Numeric.

Maine Drivers License Number Content Blade

The content blade looks for matches to the Maine driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ME or Maine.

Driver's license pattern: 7 Numeric, optional alphabetic X.

Manitoba Drivers Licence Content Blade

The content blade looks for matches to the Manitoba driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as MB or Manitoba in a close proximity.

License pattern rules: 12 alphanumeric characters that may be hyphen-separated, where:

- 1st character is a letter
- 2nd - 5th characters are a letter or asterisk
- 6th character is a letter
- 7th - 10th characters are digits
- 11th character is a letter
- 12th character is a letter or digit

or

- 1st character is a letter
- 2nd - 4th characters are a letter or asterisk
- 5th - 6th characters are digits
- 7th - 12th characters are a letter or digit

Driver's license pattern:

- LLLLLDDDDLA
- LLLLLDDAAAAAA
Maryland Drivers License Number Content Blade

The content blade looks for matches to the Maryland driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MD or Maryland.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Massachusetts Drivers License Number Content Blade

The content blade looks for matches to the Massachusetts driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MA or Massachusetts.

Driver’s license pattern: 1 Alphabetic (S), 8 Numeric; or Social Security Number

Michigan Drivers License Number Content Blade

The content blade looks for matches to the Michigan driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MI or Michigan.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Minnesota Drivers License Number Content Blade

The content blade looks for matches to the Minnesota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MN or Minnesota.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Mississippi Drivers License Number Content Blade

The content blade looks for matches to the Mississippi driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MS or Mississippi.

Driver’s license pattern: 9 Numeric; or Formatted Social Security Number

Missouri Drivers License Number Content Blade

The content blade looks for matches to the Missouri driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MO or Missouri.

Driver’s license pattern: 1 Alphabetic, 6-9 Numeric; or 9 Numeric; or Formatted Social Security Number

Montana Drivers License Number Content Blade

The content blade looks for matches to the Montana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MT or Montana.

Driver’s license pattern: 9 Numeric (SSN); or 1 Alphabetic, 1 Numeric, 1 Alphanumeric, 2 Numeric, 3 Alphabetic and 1 Numeric; or 13 Numeric

NDC Formulas Dictionary Content Blade

The content blade looks for words and phrases related to formulas based on the National Drug Codes (NDC).

The content blade will match with a combination of the following pieces of information, either:

1. More than one match to the NDC Formulas dictionary
2 A single match to the NDC Formulas dictionary plus two of either a name, U.S. Address or U.S. Date

3 A single match to the NDC Formulas dictionary with a patient or doctor identification word or phrase
 (e.g. patient ID, physician name)

Nebraska Drivers License Number Content Blade

The content blade looks for matches to the Nebraska driver’s license pattern and words and phrases such as
driver’s license and license number and terms such as NE or Nebraska.

Driver’s license pattern: 1 Alphabetic, 8 Numeric

Netherlands Driving Licence Number Content Blade

The content blade requires the following to match for a Netherlands driving license in a close proximity.

1 Netherlands driving license pattern (refer to entity description)

2 Words or phrases for a driving license (e.g. driving license, rijbewijs)

Netherlands IBAN Number Content Blade

The content blade requires the following to match for a Netherlands IBAN number in a close proximity.

1 IBAN words and phrases (e.g. International Bank Account Number, IBAN)

2 Netherlands IBAN number pattern

IBAN Rule: NL country code followed by 16 alphanumeric characters.

Pattern:
- `nLDDLLLLDDDDDDDDDD
- `nL DDLLLLDDDDDDDDDD
- `nL-DD LLLL DDDDDDDDDD
- `nL-DD LLLL DDDD DDDD DD
- `nL-DD LLLL DDDD DDDD DD
- `nL-DDLLLLDDDDDDDDDD
- `nL-DD LLLL DDDD DDDDDD
- `nL-DD LLLL DDDD DDDD DD
- `nL-DDLLLLDDDDDDDDDD

Spaces may be substituted with dashes

Netherlands National Identification Numbers Content Blade

The content blade requires the following to match for a Netherlands National Identification number in a
close proximity.

1 Netherlands National Identification number (refer to entity description)

2 Words or phrases for a Netherlands National Identification number (e.g. sofinummer,
burgerservicenummer)
Netherlands Passport Number Content Blade

The content blade requires the following to match for a Netherlands passport number in a close proximity.

1. Netherlands passport number (refer to entity description)
2. Words or phrases for a Netherlands passport number (e.g. paspoort, Noodpaspoort)

Nevada Drivers License Number Content Blade

The content blade looks for matches to the Nevada driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NV or Nevada.

Driver’s license pattern: 9 Numeric (SSN); or 12 Numeric (last 2 are year of birth), or 10 numeric

New Brunswick Drivers Licence Content Blade

The content blade looks for matches to the New Brunswick driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NB or New Brunswick in a close proximity.

License pattern rules: 5 - 7 digits

Driver’s license pattern:
- DDDDD
- DDDDDDD
- DDDDDDD

New Hampshire Drivers License Number Content Blade

The content blade looks for matches to the New Hampshire driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NH or New Hampshire.

Driver’s license pattern: 2 Numeric, 3 Alphabetic, 5 Numeric

New Jersey Drivers License Number Content Blade

The content blade looks for matches to the New Jersey driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NJ or New Jersey.

Driver’s license pattern: 1 Alphabetic, 14 Numeric

New Mexico Drivers License Number Content Blade

The content blade looks for matches to the New Mexico driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NM or New Mexico.

Driver’s license pattern: 9 Numeric

New York Drivers License Number Content Blade

The content blade looks for matches to the New York driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NY or New York.

Driver’s license pattern: 9 Numeric
New Zealand Health Practitioner Index Number Content Blade

The content blade looks for matches to the New Zealand Health Practitioner Index entity and corroborative terms such as hpi-cpn or health practitioner index.

New Zealand Inland Revenue Department Number

The content blade looks for matches to the New Zealand Inland Revenue Department Number entity and words and phrases such as IRD Number or Inland Revenue Department Number.

New Zealand National Health Index Number Content Blade

The content blade looks for matches to the New Zealand National Health Index entity and corroborative terms such as nhi or National Health index.

Newfoundland and Labrador Drivers Licence Content Blade

The content blade looks for matches to the Newfoundland and Labrador driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NL or Labrador in a close proximity.

License pattern rules: 1 letter followed by 9 digits

Driver’s license pattern: LDDDDDDDDDD

North Carolina Drivers License Number Content Blade

The content blade looks for matches to the North Carolina driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NC or North Carolina.

Driver’s license pattern: 6 - 8 Numeric

North Dakota Drivers License Number Content Blade

The content blade looks for matches to the North Dakota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ND or North Dakota.

Driver’s license pattern: 9 Numeric; or 3 Alphabetic, 6 Numeric

Nova Scotia Drivers Licence Content Blade

The content blade looks for matches to the Nova Scotia driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NS or Nova Scotia in a close proximity.

License pattern rules: 5 letters followed by 9 digits

Driver’s license pattern: LLLLDDDDDDDD

Ohio Drivers License Number Content Blade

The content blade looks for matches to the Ohio driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OH or Ohio.

Driver’s license pattern: 2 Alphabetic, 6 Numeric
Oklahoma License Number Content Blade

The content blade looks for matches to the Oklahoma driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OK or Oklahoma.

Driver’s license pattern: 1 Alphabetic, 8 Numeric; or 9 Numeric; or Social Security Number, Formatted

Ontario Drivers Licence Content Blade

The content blade looks for matches to the Ontario driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as ON or Ontario in a close proximity.

License pattern rules: 1 letter followed by 14 digits

Driver’s license pattern: LDDDDDDDDDDDDDD

Oregon License Number Content Blade

The content blade looks for matches to the Oregon driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OR or Oregon.

Driver’s license pattern: 6 -7 Numeric

Patient Identification Numbers Content Blade

This is a content blade that requires customization. To use this content blade, add a regular expression for a company-specific Patient Identification Number pattern. The content blade looks for matches to words and phrases such as patient id or a name, U.S. address or U.S. date in combination with the custom regular expression.

Pennsylvania License Number Content Blade

The content blade looks for matches to the Pennsylvania driver’s license pattern and words and phrases such as driver’s license and license number and terms such as PA or Pennsylvania.

Driver’s license pattern: 8 Numeric

Prince Edward Island Drivers Licence Content Blade

The content blade looks for matches to the Prince Edward Island driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as PE or Prince Edward Island in a close proximity.

License pattern rules: 5 - 6 digits

Driver’s license pattern:
- DDDD
- DDDDDD

Protected Health Information Terms Content Blade

The content blade looks for words and phrases related to personal health records and health insurance claims.

The content blade will match with a combination of the following pieces of information, either:

1. More than one match to the Protected Health Information dictionary
2 A single match to the Protected Health Information dictionary plus two of either a name, U.S. Address or U.S. Date
3 A single match to the Protected Health Information dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)

Quebec Drivers Licence Content Blade
The content blade looks for matches to the Quebec driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as QC or Quebec in a close proximity.
License pattern rules: 1 letter followed by 12 digits
Driver’s license pattern: LDDDDDDDDDDDDDDDDDDDDDD

Rhode Island License Number Content Blade
The content blade looks for matches to the Rhode Island driver’s license pattern and words and phrases such as driver’s license and license number and terms such as RI or Rhode Island.
Driver’s license pattern: 7 Numeric

Saskatchewan Drivers Licence Content Blade
The content blade looks for matches to the Saskatchewan driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as SK or Saskatchewan in a close proximity.
License pattern rules: 8 digits
License pattern: DDDDDDDDD

SIN Formatted Content Blade
The content blade looks for formatted patterns of the Canadian Social Insurance number (SIN).
The content blade will match with a combination of the following pieces of information in medium proximity, either:
1 More than one match to a formatted SIN
2 A single match to a formatted SIN plus a driver’s license or date of birth word or phrase
3 A single match to a formatted SIN with word or phrase for a Social Security number (e.g. Social Security, SSN)

SIN Unformatted Content Blade
The content blade looks for unformatted patterns of the Canadian Social Insurance (SIN). The content blade will match if an unformatted SIN is found within close proximity of a word or phrase for a Social Insurance number (e.g. Social Insurance, SIN) or driver’s license or date of birth.

SSN Formatted Content Blade
SSN Formatted Content Blade
The content blade will match with a combination of the following pieces of information in medium proximity, either:
- More than one match to a formatted SSN
- A single match to a formatted SSN plus two of either a name, U.S. Address or U.S. Date
- A single match to a formatted SSN with word or phrase for a Social Security number (e.g. Social Security, SSN)
SSN Unformatted Content Blade

The content blade looks for unformatted patterns of the U.S. Social Security number (SSN). The content blade will match if an unformatted SSN is found within close proximity of a word or phrase for a Social Security number (e.g. Social Security, SSN).

South Carolina License Number Content Blade

The content blade looks for matches to the South Carolina driver’s license pattern and words and phrases such as driver’s license and license number and terms such as SC or South Carolina.

Driver’s license pattern: 9 Numeric

South Dakota License Number Content Blade

The content blade looks for matches to the South Dakota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as SD or South Dakota.

Driver’s license pattern: 8 Numeric; or Social Security Number

Spain National Identification Number Content Blade

The content blade looks for matches to the Spain National Identification Number entity and words and phrases such as Documento Nacional de Identidad and Número de Identificación de Extranjeros. It also uses regular expressions to differentiate between telephone numbers and to prevent double counting of DNIs and NIEs without check letters.

Spain Passport Number Content Blade

The content blade looks for matches to the Spain Passport Number and words and phrases such as pasaporte or passport.

Passport Rule: 8 alphanumeric characters -- 2 letters followed by 6 digits.

Pattern:

LLDDDDDDD
LL-DDDDDD
LL DDDDDD

Spain Social Security Number Content Blade

The content blade requires the following to match for a Spain Social Security number in a close proximity.

1 Spain Social Security number
2 Words or phrases for a social security number (e.g. número de la seguridad social, social security number)

Sweden IBAN Number Content Blade

The content blade requires the following to match for a Sweden IBAN number in a close proximity.

1 IBAN words and phrases (e.g. International Bank Account Number, IBAN
2 Sweden IBAN number pattern
IBAN Rule: SE country code followed by 22 digits.
Pattern: SE DDDDDDDDDDDDDDDDDDDDDD

Swedish Passport Number Content Blade

The content blade looks for matches to the Sweden Passport Number regular expression with the following possible combinations of supporting evidence.
1. Words and phrases for passport such as Passnummer
2. Words and phrases for the country Sweden, nationality and expiry dates

Passport Rule: 8 digits
Pattern:
DDDDDDDD
DD-DDDDDD
LL-DDDDDD

Tennessee License Number Content Blade

The content blade looks for matches to the Texas driver’s license pattern and words and phrases such as driver’s license and license number and terms such as TX or Texas.

Driver’s license pattern: 8 Numeric

UK BIC Number Content Blade

The content blade scans for UK BIC numbers by requiring matches for both rules.
1. European BIC number format
2. UK format of the BIC number

BIC rule: 8 or 11 alphanumeric characters. Letters 5th and 6th will always have “GB” as the ISO 3166-1 alpha-2 country code.

Pattern:
LLLLLLLAAA
LLLLLLLLAAA
LLLLLLAA-AAA
LLLLLLAA AAA
LLLLLL AA AAA
LLLL LL AA AAA
LLLL LL AA-AAA

UK Driving License Number Content Blade

The content blade requires the following to match for a UK driving license in a close proximity.
1. UK driving license pattern
2. Either words or phrases for a driving license (e.g. driving license) or personal identification (e.g. date of birth, address, telephone)

Driving license rule: 16 - 18 alphanumeric characters and begins with a letter.
Pattern:
LAAAADDLLDLLDD
Some digits are limited in the values accepted.

UK IBAN Number Content Blade
The content blade requires the following to match for a UK IBAN number in a close proximity.

1. European IBAN number format
2. UK IBAN number pattern

IBAN Rule: "GB" country code followed by 20 characters.

GB, ISO country code
2 Digits (numeric characters 0 to 9 only), Check Digits (IBAN)
4 Upper case letters (A-Z only), Bank Identifier Digits
6 Digits (numeric characters 0 to 9 only), Bank branch code
8 Digits (numeric characters 0 to 9 only), Account number

Pattern:
GBDDLLLLDDDDDDDDDDDDDD
GB DD LLLL DDDD DDDD DDDD DD
GB DD LLLL DDDDDD DDDDDDDD

UK National Health Service Number Content Blade
The content blade requires the following to match for a UK National Health Service number in a close proximity.

1. UK National Health Service number format
2. Words and phrases relating to the National Health Service or patient identification or date of birth

UK NINO Formal Content Blade
The content blade looks for the formal pattern of the UK National Insurance number (NINO).

The content blade will match with a combination of the following pieces of information in high proximity, either:

1. More than one match to a NINO formal pattern
2. A single match to a NINO formal with word or phrase for a National Insurance number (e.g. NINO, taxpayer number)

UK Passport Number Content Blade
The content blade looks for matches to one of the U.K. passport number entities with the following supporting evidence.

1. Words and phrases for passport such as passport or a national passport code preceding a passport number
2. Words and phrases for the country, U.K, or the date of issue (optional match)
Utah License Number Content Blade
The content blade looks for matches to the Utah driver’s license pattern and words and phrases such as driver’s license and license number and terms such as UT or Utah.
Driver’s license pattern: 6 - 10 Numeric

Virginia License Number Content Blade
The content blade looks for matches to the Virginia driver’s license pattern and words and phrases such as driver’s license and license number and terms such as VA or Virginia.
Driver’s license pattern: 1 Alphabetic, 8 Numeric

Visa Card Number Content Blade
The content blade looks for a combination of the following pieces of information, either:
1. More than one JCB credit card number
2. A single credit card number plus words and phrases such as ccn, credit card, expiration date
3. A single credit card number plus an expiration date

Washington License Number Content Blade
The content blade looks for matches to the Washington driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WA or Washington.
Driver’s license pattern: 5 Alphabetic (last name), 1 Alphabetic (first name), 1 Alphabetic (middle name), 3 Numeric, 2 Alphanumeric. If last or middle name field falls short, fill with *s.

Wisconsin License Number Content Blade
The content blade looks for matches to the Wisconsin driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WI or Wisconsin.
Driver’s license pattern: 1 Alphabetic, 13 Numeric

Wyoming License Number Content Blade
The content blade looks for matches to the Wyoming driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WY or Wyoming.
Driver’s license pattern: 9 - 10 Numeric
NSX Data Security can detect the following file formats.

Table 18-1. Archive Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-Zip 4.57</td>
<td>7Z</td>
</tr>
<tr>
<td>BinHex</td>
<td>HQX</td>
</tr>
<tr>
<td>BZIP2</td>
<td>BZ2</td>
</tr>
<tr>
<td>Expert Witness (EnCase)Compression Format</td>
<td>E0, E101 etc</td>
</tr>
<tr>
<td>GZIP 2</td>
<td>GZ</td>
</tr>
<tr>
<td>ISO-9660 CD Disc Image Format</td>
<td>ISO</td>
</tr>
<tr>
<td>Java Archive</td>
<td>JAR</td>
</tr>
<tr>
<td>Legato EMailXtender Archive</td>
<td>EMX</td>
</tr>
<tr>
<td>MacBinary</td>
<td>BIN</td>
</tr>
<tr>
<td>Mac Disk copy Disk Image</td>
<td>DMG</td>
</tr>
<tr>
<td>Microsoft Backup File</td>
<td>BKF</td>
</tr>
<tr>
<td>Microsoft Cabinet Format 1.3</td>
<td>CAB</td>
</tr>
<tr>
<td>Microsoft Compressed Folder</td>
<td>LZH</td>
</tr>
<tr>
<td>Microsoft Entourage</td>
<td></td>
</tr>
<tr>
<td>Microsoft Outlook Express</td>
<td>DBX</td>
</tr>
<tr>
<td>Microsoft Outlook Offline Store 2007</td>
<td>OST</td>
</tr>
<tr>
<td>Microsoft Outlook Personal Store 2007</td>
<td>PST</td>
</tr>
<tr>
<td>OASIS Open Document Forma</td>
<td>ODC</td>
</tr>
<tr>
<td></td>
<td>SXC</td>
</tr>
<tr>
<td></td>
<td>STC</td>
</tr>
<tr>
<td></td>
<td>ODT</td>
</tr>
<tr>
<td></td>
<td>SXW</td>
</tr>
<tr>
<td></td>
<td>STW</td>
</tr>
<tr>
<td>Open eBook Publication Structure</td>
<td>EPUB</td>
</tr>
<tr>
<td>PKZIP</td>
<td>ZIP</td>
</tr>
<tr>
<td>RAR archive</td>
<td>RAR</td>
</tr>
<tr>
<td>Self-extracting Archives</td>
<td>SEA</td>
</tr>
</tbody>
</table>
Table 18-1. Archive Formats (Continued)

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Scrap Object File</td>
<td>SHS</td>
</tr>
<tr>
<td>Tape Archive</td>
<td>TAR</td>
</tr>
<tr>
<td>UNIX Compress</td>
<td>Z</td>
</tr>
<tr>
<td>UUEncoding</td>
<td>UUE</td>
</tr>
<tr>
<td>WinZip</td>
<td>ZIP</td>
</tr>
</tbody>
</table>

Table 18-2. Computer-Aided Design Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATIA formats 5</td>
<td>CAT</td>
</tr>
<tr>
<td>MicroStation 7, 8</td>
<td>DGN</td>
</tr>
<tr>
<td>Omni Graffle</td>
<td>GRAFFLE</td>
</tr>
</tbody>
</table>

Table 18-3. Database Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
</table>

Table 18-4. Display Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe PDF 1.1 to 1.7</td>
<td>PDF</td>
</tr>
</tbody>
</table>

Table 18-5. Mail Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domino XML Language</td>
<td>DXL</td>
</tr>
<tr>
<td>Legato Extender</td>
<td>ONM</td>
</tr>
<tr>
<td>Lotus Notes database 4, 5, 6.0, 6.5, 7.0, and 8.0</td>
<td>NSF</td>
</tr>
<tr>
<td>Mailbox Thunderbird 1.0 and Eudora 6.2</td>
<td>MBX</td>
</tr>
<tr>
<td>Microsoft Outlook Express Windows 6 and Macintosh 5</td>
<td>EML</td>
</tr>
<tr>
<td>Microsoft Outlook Personal Folder 97, 2000, 2002, and 2003</td>
<td>PST</td>
</tr>
<tr>
<td>Text Mail (MIME)</td>
<td>Various</td>
</tr>
</tbody>
</table>

Table 18-6. Multimedia Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Streaming Format 1.2</td>
<td>DXL</td>
</tr>
</tbody>
</table>

Table 18-7. Presentation Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple iWork Keynote 2, 3, ’08, and ’09</td>
<td>GZ</td>
</tr>
<tr>
<td>Applix Presents 4.0, 4.2, 4.3, 4.4</td>
<td>AG</td>
</tr>
</tbody>
</table>
Table 18-7. Presentation Formats (Continued)

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corel Presentations 6, 7, 8, 9, 10, 11, 12, and X3</td>
<td>SHW</td>
</tr>
<tr>
<td>Lotus Freelance Graphics 2</td>
<td>PRE</td>
</tr>
<tr>
<td>Lotus Freelance Graphics 96, 97, 98, R9, and 9.8</td>
<td>PRZ</td>
</tr>
<tr>
<td>Macromedia Flash through 8.0</td>
<td>SWF</td>
</tr>
<tr>
<td>Microsoft PowerPoint PC 4</td>
<td>PPT</td>
</tr>
<tr>
<td>Microsoft PowerPoint Windows 95, 97, 2000, 2002, and 2003</td>
<td>PPT, PPS, POT</td>
</tr>
<tr>
<td>Microsoft PowerPoint Windows XML 2007</td>
<td>PPTX, PPTM, POTX, POTM, PPSX, and PPSM</td>
</tr>
<tr>
<td>OpenOffice Impress 1 and 1.1</td>
<td>SXP</td>
</tr>
<tr>
<td>StarOffice Impress 6 and 7</td>
<td>SXP</td>
</tr>
</tbody>
</table>

Table 18-8. Spreadsheet Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple iWork Numbers '08 and 2009</td>
<td>GZ</td>
</tr>
<tr>
<td>Applix Spreadsheets 4.2, 4.3, and 4.4</td>
<td>AS</td>
</tr>
<tr>
<td>Comma Separated Values</td>
<td>CSV</td>
</tr>
<tr>
<td>Corel Quattro Pro 5, 6, 7, 8, X4</td>
<td>WB2, WB3, QPW</td>
</tr>
<tr>
<td>Data Interchange Format</td>
<td>DIF</td>
</tr>
<tr>
<td>Lotus 1-2-3 96, 97, R9, 9.8, 2, 3, 4, 5</td>
<td>123, WK4</td>
</tr>
<tr>
<td>Lotus 1-2-3 Charts 2, 3, 4, 5</td>
<td>123</td>
</tr>
<tr>
<td>Microsoft Excel Windows 2.2 through 2003</td>
<td>XLS, XLW, XLT, XLA</td>
</tr>
<tr>
<td>Microsoft Excel Windows XML 2007</td>
<td>XLSX, XLTX, XLSM, XLTM, XLAM</td>
</tr>
<tr>
<td>Microsoft Excel Charts 2, 3, 4, 5, 6, 7</td>
<td>XLS</td>
</tr>
<tr>
<td>Microsoft Office Excel Binary Format 2007</td>
<td>XLSB</td>
</tr>
<tr>
<td>Microsoft Works Spreadsheet 2, 3, 4</td>
<td>S30 S40</td>
</tr>
<tr>
<td>Oasis Open Document Format 1, 2</td>
<td>ODS, SXC, STC</td>
</tr>
<tr>
<td>OpenOffice Calc 1, 1.1</td>
<td>SXC, ODS, OTS</td>
</tr>
<tr>
<td>StarOffice Calc 6, 7</td>
<td></td>
</tr>
</tbody>
</table>

Table 18-9. Text and Markup Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>TXT</td>
</tr>
<tr>
<td>ASCII</td>
<td>TXT</td>
</tr>
<tr>
<td>Extensible Forms Description Language</td>
<td>XFDL, XFD</td>
</tr>
<tr>
<td>HTML 3, 4</td>
<td>HTM, HTML</td>
</tr>
<tr>
<td>Microsoft Excel Windows XML 2003</td>
<td>XML</td>
</tr>
<tr>
<td>Microsoft Word Windows XML 2003</td>
<td>XML</td>
</tr>
<tr>
<td>Microsoft Visio XML 2003</td>
<td>vdx</td>
</tr>
</tbody>
</table>
Table 18-9. Text and Markup Formats (Continued)

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME HTML</td>
<td>MHT</td>
</tr>
<tr>
<td>Rich Text Format 1 through 1.7</td>
<td>RTF</td>
</tr>
<tr>
<td>Unicode Text 3, 4</td>
<td>TXT</td>
</tr>
<tr>
<td>XHTML 1.0</td>
<td>HTM, HTML</td>
</tr>
<tr>
<td>XML (generic)</td>
<td>XML</td>
</tr>
</tbody>
</table>

Table 18-10. Word Processing Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe FrameMaker InterchangeFormat 5, 5.5, 6, 7</td>
<td>MIF</td>
</tr>
<tr>
<td>Apple iChat Log AV, AV 2, AV 2.1, AV 3</td>
<td>LOG</td>
</tr>
<tr>
<td>Apple iWork Pages '08, 2009</td>
<td>GZ</td>
</tr>
<tr>
<td>Applix Words 3.11, 4, 4.1, 4.2, 4.3, 4.4</td>
<td>AW</td>
</tr>
<tr>
<td>Corel WordPerfect Linux 6.0, 8.1</td>
<td>WPS</td>
</tr>
<tr>
<td>Corel WordPerfect Macintosh 1.02, 2, 2.1, 2.2, 3, 3.1</td>
<td>WPS</td>
</tr>
<tr>
<td>Corel WordPerfect Windows 5, 5.1, 6, 7, 8, 9, 10, 11, 12, X3</td>
<td>WO, WPD</td>
</tr>
<tr>
<td>DisplayWrite 4</td>
<td>IP</td>
</tr>
<tr>
<td>Folio Flat File 3.1</td>
<td>FFF</td>
</tr>
<tr>
<td>Founder Chinese E-paper Basic 3.2.1</td>
<td>CEB</td>
</tr>
<tr>
<td>Fujitsu Oasys 7</td>
<td>OA2</td>
</tr>
<tr>
<td>IBM DCA/RFT (Revisable Form Text) SC23-0758 -1</td>
<td>DC</td>
</tr>
<tr>
<td>JustSystems Ichitaro 8 through 2009</td>
<td>JTD</td>
</tr>
<tr>
<td>Lotus AMI Pro 2, 3</td>
<td>SAM</td>
</tr>
<tr>
<td>Lotus AMI Professional Write Plus 2.1</td>
<td>AMI</td>
</tr>
<tr>
<td>Lotus Word Pro</td>
<td>96, 97, R9</td>
</tr>
<tr>
<td>Lotus SmartMaster 96, 97</td>
<td>MWP</td>
</tr>
<tr>
<td>Microsoft Word PC 4, 5, 5.5, 6</td>
<td>DOC</td>
</tr>
<tr>
<td>Microsoft Word Windows 1.0 and 2.0, 6, 7, 8, 9, 95, 97, 2000, 2002, 2003</td>
<td>DOC</td>
</tr>
<tr>
<td>Microsoft Word Windows XML 2007</td>
<td>DOCX, DOTX, DOTM</td>
</tr>
<tr>
<td>Microsoft Works 2, 3, 4, 6, 2000</td>
<td>WPS</td>
</tr>
<tr>
<td>Microsoft Windows Write 1, 2, 3</td>
<td>WRI</td>
</tr>
<tr>
<td>Oasis Open Document Format 1, 2</td>
<td>ODT, SXW, STW</td>
</tr>
<tr>
<td>OpenOffice Writer 1, 1.1</td>
<td>SXW, ODT</td>
</tr>
<tr>
<td>Omni Outliner 3</td>
<td>OPML, O3, OPLM, OOUTLINE</td>
</tr>
<tr>
<td>Skype Log File</td>
<td>DBB</td>
</tr>
<tr>
<td>StarOffice Writer 6, 7</td>
<td>SXW, ODT</td>
</tr>
<tr>
<td>WordPad through 2003</td>
<td>RTF</td>
</tr>
</tbody>
</table>
Table 18-10. Word Processing Formats (Continued)

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML Paper Specification</td>
<td>XPS</td>
</tr>
<tr>
<td>XyWrite 4.12</td>
<td>XY4</td>
</tr>
</tbody>
</table>
Index

A
activity monitoring about 173
AD groups that accessed a server 181
disable 182
enable data collection for multiple VMs 176
enable data collection for single VM 176
inbound activity 177
interaction between inventory containers 180
outbound activity 178
virtual machine activity 177
add, service 32
alarms for vShield Endpoint 183
App Firewall, adding L4 rules 56
appliance
add 159
delete 160
edit 159
Audit Logs 30, 150
audit messages for vShield Endpoint 184

B
backups 166

C
content blades
ABA Routing Number 228, 252
Admittance and Discharge Dates Content Blade 228, 252
Alabama Drivers License Content Blade 228, 229, 252
Alaska Drivers License Content Blade 228, 229, 253
Alberta Drivers Licence Content Blade 229, 253
American Express Content Blade 229, 253
Arizona Drivers License Content Blade 229, 253
Arkansas Drivers License Content Blade 228, 229, 249, 254
Australia Bank Account Number Content Blade 230, 254
Australia Business Number Content Blade 230, 254
Australia Company Number Content Blade 230, 254
Australia Medicare Card Number Content Blade 230, 254
Australia Tax File Number Content Blade 230, 254
California Drivers License Number Content Blade 230, 255
Canada Drivers License Number Content Blade 231, 255
Canada Social Insurance Number Content Blade 231, 255
Colorado Drivers License Number Content Blade 231, 255
Connecticut Drivers License Number Content Blade 231, 255
Credit Card Track Data Content Blade 231, 255
Custom Account Number Content Blade 232, 256
Delaware Drivers License Number Content Blade 232, 256
EU Debit Card Number Content Blade 232, 256
Florida Drivers License Number Content Blade 232, 256
France BIC Number Content Blade 232, 256
France Driving License Number Content Blade 232, 256
France National Identification Number Content Blade 233, 257
France VAT Number Content Blade 233, 257
Georgia Drivers License Number Content Blade 233, 257
Germany Driving License Number Content Blade 233, 257
Germany BIC Number Content Blade 233, 257
Germany National Identification Numbers Content Blade 233, 257
Germany Passport Number Content Blade 234, 258
Germany VAT Number Content Blade 234, 258
Group Insurance Numbers Content Blade 234, 258
Hawaii Drivers License Number Content Blade 234, 258
Idaho Drivers License Number Content Blade 235, 259
Illinois Drivers License Number Content Blade 235, 259
Index of Procedures Content Blade 235, 259
Indiana Drivers License Number Content Blade 235, 259
Iowa Drivers License Number Content Blade 235, 259
Italy Driving License Number Content Blade 236, 260
Italy IBAN Number Content Blade 236, 260
Italy National Identification Numbers Content Blade 234, 258
ITIN Unformatted Content Blade 236, 260
Kansas Drivers License Number Content Blade 237, 261
Kentucky Drivers License Number Content Blade 237, 261
Louisiana Drivers License Number Content Blade 237, 261
Maine Drivers License Number Content Blade 237, 261
Manitoba Drivers Licence Content Blade 237, 261
Maryland Drivers License Number Content Blade 238, 262
Michigan Drivers License Number Content Blade 238, 262
Minnesota Drivers License Number Content Blade 238, 262
Mississippi Drivers License Number Content Blade 238, 262
Missouri Drivers License Number Content Blade 238, 262
Montana Drivers License Number Content Blade 238, 262
NDC Formulas Dictionary Content Blade 238, 262
Nebraska Drivers License Number Content Blade 239, 263
Netherlands Driving Licence Number Content Blade 239, 263
Netherlands IBAN Number Content Blade 239, 263
Netherlands National Identification Numbers Content Blade 239, 263
Netherlands Passport Number Content Blade 240, 264
New Brunswick Drivers Licence Content Blade 240, 264
New Hampshire Drivers License Number Content Blade 240, 264
New Jersey Drivers License Number Content Blade 240, 264
New Mexico Drivers License Number Content Blade 240, 264
New York Drivers License Number Content Blade 240, 264
New Zealand Health Practitioner Index Number Content Blade 241, 265
New Zealand Inland Revenue Department Number 241, 265
New Zealand National Health Index Number Content Blade 241, 265
Newfoundland and Labrador Drivers Licence Content Blade 241, 265
North Carolina Drivers License Number Content Blade 241, 265
North Dakota Drivers License Number Content Blade 241, 265
Nova Scotia Drivers Licence Content Blade 241, 265
Ohio Drivers License Number Content Blade 241, 265
Oklahoma License Number Content Blade 242, 266
Ontario Drivers Licence Content Blade 242, 266
Oregon License Number Content Blade 242, 266
Patient Identification Numbers Content Blade 242, 266
Pennsylvania License Number Content Blade 242, 266
Prince Edward Island Drivers Licence Content Blade 242, 266
Protected Health Information Terms Content Blade 242, 266
Quebec Drivers Licence Content Blade 243, 267
Rhode Island License Number Content Blade 243, 267
Saskatchewan Drivers License Number Content Blade 243, 267
SIN Formatted Content Blade 243, 267
SIN Unformatted Content Blade 243, 267
Spain National Identification Number Content Blade 244, 268
Spain Passport Number Content Blade 244, 268
Spain Social Security Number Content Blade 244, 268
SSN Formatted Content Blade 243, 267
SSN Unformatted Content Blade 244, 268
Sweden IBAN Number Content Blade 244, 268
Sweden Passport Number Content Blade 245, 269
Tennessee License Number Content Blade 245, 269
UK Driving License Number Content Blade 245, 269
UK IBAN Number Content Blade 246, 270
UK NINO Formal Content Blade 246, 270
UK Passport Number Content Blade 246, 270
Utah License Number Content Blade 247, 271
Virginia License Number Content Blade 247, 271
Visa Card Number Content Blade 247, 271
Washington License Number Content Blade 247, 271
Wisconsin License Number Content Blade 247, 271
Wyoming License Number Content Blade 247, 271

D
Data Security, policy, regulations 143
Data Security, user roles 143
date 151
DHCP 120
domain 154, 155

E
events, syslog format 150
events for vShield Endpoint 184

F
firewall
 add rule 56
 add section 61
 adding L4 rules 56
 change rule order 60
 delete rule 60
 exclude virtual machines 63
 export configuration 62
 import configuration 62
 load configuration 63
 merge sections 61
 select section 62
flow monitoring
 date range 171
 live flows 172
Flow Monitoring
 enable 168
 exclude flows 168
 firewall rules 172
 flow monitoring data 169

G
GUI, logging in 151

H
high availability 163
host alarms for vShield Endpoint 183

I
install, partner appliance 189
introduction
 NSX 15
 NSX Edge 16
 NSX Manager 16
IPSec VPNS 98
IPSec service
 delete 101
 disable 101
IPSec VPN
 add 99
 configuration examples 191
 edit 100
 enable 98
 global configuration 99
 logging 99
 overview 98

L
L2 bridge 47, 48
L2 VPN
 client 103
 enable 102
 overview 101
 server 102
 statistics 103
L4 rules, adding 56
live traffic flows 172
load balancer, add pool 109
logging in to the GUI 151
logical network 36, 40
logical switch
 about 35
 add 37
 connect to NSX Edge 37
 connect VMs to 38
 deploy services on 38
 edit 39
 ping test 38
 prevent spoofing on 39
 scenario 42
 logs, audit 30, 150
<table>
<thead>
<tr>
<th>Supported File Formats</th>
<th>Page 273</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Roles</td>
<td>Page 143</td>
</tr>
<tr>
<td>NSX Edge Firewall Rules, Change Default Settings</td>
<td>Page 67</td>
</tr>
<tr>
<td>NSX Edge Interface</td>
<td>Page 160</td>
</tr>
<tr>
<td>NSX Edge, DHCP Binding Edit</td>
<td>Page 122</td>
</tr>
<tr>
<td>NSX Edge, DHCP Pool Edit</td>
<td>Page 120</td>
</tr>
<tr>
<td>NSX Ticket Logger</td>
<td>Page 149</td>
</tr>
<tr>
<td>Partner Solution, Register</td>
<td>Page 187</td>
</tr>
<tr>
<td>Redeploy NSX Edge</td>
<td>Page 165</td>
</tr>
<tr>
<td>Regulations</td>
<td></td>
</tr>
<tr>
<td>ABA Routing Numbers</td>
<td>Page 213</td>
</tr>
<tr>
<td>Arizona SB-1338</td>
<td>Page 213</td>
</tr>
<tr>
<td>Australia Bank Account Numbers</td>
<td>Page 213</td>
</tr>
<tr>
<td>Australia Medicare Card Numbers</td>
<td>Page 214</td>
</tr>
<tr>
<td>Australia Tax File Numbers</td>
<td>Page 214</td>
</tr>
<tr>
<td>California AB-1298</td>
<td>Page 214</td>
</tr>
<tr>
<td>California SB-1386</td>
<td>Page 215</td>
</tr>
<tr>
<td>Canada Drivers License Numbers</td>
<td>Page 215</td>
</tr>
<tr>
<td>Canada Social Insurance Numbers</td>
<td>Page 215</td>
</tr>
<tr>
<td>Colorado HB-1119</td>
<td>Page 216</td>
</tr>
<tr>
<td>Connecticut SB-650</td>
<td>Page 216</td>
</tr>
<tr>
<td>Credit Card Numbers</td>
<td>Page 216</td>
</tr>
<tr>
<td>Custom Account Numbers</td>
<td>Page 216</td>
</tr>
<tr>
<td>EU Debit Card Numbers</td>
<td>Page 217</td>
</tr>
<tr>
<td>FERPA (Family Educational Rights and Privacy Act)</td>
<td>Page 217</td>
</tr>
<tr>
<td>Florida HB-481</td>
<td>Page 217</td>
</tr>
<tr>
<td>France IBAN Numbers Policy</td>
<td>Page 217</td>
</tr>
<tr>
<td>France National Identification Numbers Policy</td>
<td>Page 217</td>
</tr>
<tr>
<td>Georgia SB-230 Policy</td>
<td>Page 218</td>
</tr>
<tr>
<td>Germany BIC Numbers Policy</td>
<td>Page 218</td>
</tr>
<tr>
<td>Germany Driving License Numbers Policy</td>
<td>Page 218</td>
</tr>
<tr>
<td>Germany IBAN Numbers Policy</td>
<td>Page 218</td>
</tr>
<tr>
<td>Germany National Identification Numbers Policy</td>
<td>Page 218</td>
</tr>
<tr>
<td>Germany VAT Numbers Policy</td>
<td>Page 218</td>
</tr>
<tr>
<td>Hawaii SB-2290 Policy</td>
<td>Page 219</td>
</tr>
<tr>
<td>HIPPA (Healthcare Insurance Portability and Accountability Act) Policy</td>
<td>Page 219</td>
</tr>
<tr>
<td>Idaho SB-1374 Policy</td>
<td>Page 219</td>
</tr>
<tr>
<td>Illinois SB-1633</td>
<td>Page 220</td>
</tr>
<tr>
<td>Indiana HB-1101 Policy</td>
<td>Page 220</td>
</tr>
<tr>
<td>Italy Driving License Numbers Policy</td>
<td>Page 220</td>
</tr>
<tr>
<td>Italy IBAN Numbers Policy</td>
<td>Page 220</td>
</tr>
<tr>
<td>Italy National Identification Numbers Policy</td>
<td>Page 220</td>
</tr>
<tr>
<td>Kansas SB-196 Policy</td>
<td>Page 221</td>
</tr>
</tbody>
</table>
Louisiana SB-205 Policy 221
Maine LD-1671 Policy 221
Massachusetts CMR-201 222
Minnesota HF-2121 222
Montana HB-732 Policy 222
Netherlands Driving Licence Numbers 222
Nevada SB-347 223
New Hampshire HB-1660 223
New Jersey A-4001 223
New York AB-4254 224
New Zealand Inland Revenue Department Numbers 224
New Zealand Ministry of Health Numbers 224
Ohio HB-104 224
Oklahoma HB-2357 225
Patient Identification Numbers 225
Payment Card Industry Data Security Standard (PCI-DSS) 225
Texas SB-122 225
UK BIC Numbers 226
UK Driving Licence Numbers 226
UK IBAN Numbers 226
UK National Health Service Numbers 226
UK National Insurance Numbers (NIINO) 226
UK Passport Numbers 226
US Drivers License Numbers Policy 227
US Social Security Numbers 227
Utah SB-69 227
Vermont SB-284 227
Washington SB-6043 228
reports, audit log 30, 150
restore a backup 167
rules, adding L4 rules to App Firewall 56

security groups, add 30
security policy create 127
delete 137
edit 137
manage priority 137
map to security group 129
view effective services 135
security group create in Service Composer 125
edit in Service Composer 138
server pool delete 117
edit 116
service, add 32
Service Composer about 124
canvas view 130

export configuration 132
import configuration 133
scenarios 138
security group create 125
edit 138
security policy delete 137
edit 137
manage priority 137
map to security group 129
view effective services 135
view effective services on VM 136
view service failures 136
security tag add 134
assign 134
delete 135
edit 135
view 133
security policy create 127
single sign on 19
spoofGuard about 64
approve IP address 65
create policy 64
edit IP address 66
system policy 64
spoofGuard, clear IP address 66
SSL VPN-plus, authentication, add 78, 85
SSL VPN client configuration 89
edit general settings 90
edit portal design 90
login/logoff script add 83, 89
delete 96
disable 97
edit 96
enable 97
login/logoff scripts, change the order of 97
logs 89
web resource 84
SSL VPN-Plu, IP pool, change order of 92
SSL VPN-Plus add installation package 81
add IP pool 77
add private network 77
add user 82, 84
enable 82, 88

VMware, Inc.
283
installation package
 add 81
 delete 95
IP pool
 add 77
 delete 91
 disable 92
 edit 30, 91, 92
private network
 change order of 94
 delete 93
users
 add 82, 84
 change password 96
 delete 95
 edit 95
SSL VPN, overview 75
static route, add 50
status
 NSX Edge 165
 vShield Endpoint 183
supported file formats 273
SVM alarms for vShield Endpoint 184
syslog, NSX Edge 164
syslog server 151
syslog format 150
system events 149

t
 technical support logs
 NSX Edge 165
 NSX Manager 153
test 110
transport zone 36, 40, 41

U
user account
 about user roles 20
 assign role to 21
 change role 24
 delete 24
 disable 24
 edit 23
 enable 24
 manage default account 21
 single sign on 19

V
 vCenter Server, change for NSX Manager 152
 view, VM activity 177
virtual server
 delete 117
 edit 117
virtual wire, create 36
VPN, configure service 99
vShield Endpoint
 alarms 183
 audit messages 184
 events 184
 host alarms 183
 status 183
 SVM alarms 184
vShield Edge, HA 164