Cigna Medical Coverage Policy

Effective Date 2/15/2016
Next Review Date 6/15/2016
Coverage Policy Number 0089

Subject Infertility Services

Table of Contents
Coverage Policy 1
General Background 4
Coding/Billing Information 17
References 24

Related Coverage Resources
Genetic Testing for Reproductive Carrier Screening and Prenatal Diagnosis
Hyperbaric Oxygen Therapy, Systemic & Topical Infertility Injectables
Recurrent Pregnancy Loss: Diagnosis and Treatment

INSTRUCTIONS FOR USE
The following Coverage Policy applies to health benefit plans administered by Cigna companies. Coverage Policies are intended to provide guidance in interpreting certain standard Cigna benefit plans. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations. Proprietary information of Cigna. Copyright ©2016 Cigna

Coverage Policy

Coverage of diagnostic and treatment services associated with infertility is dependent upon medical and prescription drug benefit plan language. Infertility services benefit plan language differs significantly across plans. Coverage for any infertility-related service is subject to the terms, conditions, and limitations of the applicable benefit plan document and schedule of copayments. In addition, state mandates may apply. Please refer to the applicable benefit plan document to determine benefit availability and the terms, conditions, and limitations of coverage.

Once an individual meets the definition of infertility as outlined in the benefit plan or as listed below, Cigna generally covers services associated with establishing the etiology of infertility under the core medical benefits of the plan. However, once the cause of infertility is established, no further infertility diagnostic testing is covered under the core medical benefits.

When not clearly specified in the benefit plan, infertility is defined as ONE of the following:

- The inability of opposite-sex partners to achieve conception after at least one year of unprotected intercourse.
- The inability of a woman to achieve conception after six trials of medically supervised artificial insemination over a one-year period.
- The inability of opposite-sex partners to achieve conception after six months of unprotected intercourse for a woman over the age of 35 years.

In the absence of a diagnosis of infertility, Cigna considers IVF services to be not medically necessary.
DIAGNOSTIC TESTING TO ESTABLISH THE ETIOLOGY OF INFERTILITY
The following services are covered as medically necessary, when performed solely to establish the underlying etiology of infertility:

Evaluation of the female factor:
- history and physical examination
- laboratory tests: thyroid stimulating hormone (TSH), prolactin, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone
- ultrasound of the pelvis
- hysteroscopy
- hysterosalpingography
- sonohysterography
- diagnostic laparoscopy with or without chromotubation

Evaluation of the male factor:
- history and physical examination
- semen analysis: two specimens at least one month apart, to evaluate semen volume, concentration, motility, pH, fructose, leukocyte count, microbiology, and morphology.
- additional laboratory tests: endocrine evaluation (including FSH, total and free testosterone, prolactin, LH, TSH), antisperm antibodies, post-ejaculatory urinalysis
- transrectal ultrasound (TRUS), scrotal ultrasound
- vasography and testicular biopsy in individuals with azoospermia
- scrotal exploration

TREATMENT OF INFERTILITY
If benefit coverage for infertility treatment is available, the following treatment services may be considered for coverage as medically necessary. Benefit availability for specific treatment modalities, medications and associated infertility services varies by plan and the specific plan options selected. The treatments, medications and associated services listed below may not be covered or may be subject to limitations under specific plans, even if benefits are otherwise available for infertility treatment. Please refer to the applicable medical benefit and prescription drug benefit plan document and schedules to determine benefit availability and the terms, conditions and limitations of coverage:

Female infertility treatment services:
- U.S. Food and Drug Administration (FDA)-approved ovulation induction medications
- ovulation monitoring studies such as ultrasound and endocrine evaluation
- tubal recanalization, fluoroscopic/hysteroscopic selective tube cannulation, tuboplasty, salpingostomy, fimbrioplasty, tubal anastomosis, and salpingectomy (NOTE: Procedures performed to reverse female voluntary sterilization are not covered, even if benefits are available for infertility treatment.)
- surgical laparoscopy, therapeutic hysteroscopy, cervical recanalization, lysis of adhesions, myomectomy, removal of tumors and cysts, septate uterus repair, ovarian wedge resection, ovarian drilling
- artificial insemination, including intrauterine or intracervical insemination
- ovarian reserve testing using anti-mullerian hormone (AMH) level, cycle day 3 FSH, ultrasonography for antral follicle assessment, or clomiphene challenge test when ANY of the following criteria is met:
 - women over age 35
 - family history of early menopause
 - single ovary or history or previous ovarian surgery, chemotherapy, or pelvic radiation therapy
 - unexplained infertility
 - previous poor response to gonadotropin stimulation
 - planning treatment with assisted reproductive technologies (e.g., IVF)
- in vitro fertilization with embryo transfer (IVF-ET), in vitro with elective single embryo transfer (eSET), tubal embryo transfer (TET), low tubal ovum transfer (LTOT), pronuclear stage transfer (PROST), or
natural cycle IVF, and associated services, including the following: ovulation induction, oocyte retrieval, sperm preparation and washing, associated laboratory tests and ultrasounds, mock embryo transfer, embryo assessment and transfer, and embryologist services

- assisted embryo hatching for women with **ANY** of the following criteria:
 - individuals 38 years of age or older
 - elevated day-3 FSH
 - increased zona thickness on microscopy
 - three or more IVF-attempt failures related to failed implantation

- cryopreservation of embryos, only while the individual is currently under active infertility treatment

- gamete intrafallopian transfer (GIFT) and associated services

- zygote intrafallopian transfer (ZIFT) and associated services

- intracytoplasmic sperm injection* (ICSI) and associated services, including sperm extraction and retrieval procedures

Male infertility treatment services:

- semen analysis
- Kruger strict criteria for sperm morphology
- pharmacologic treatment of endocrinopathies including hypogonadotropic hypogonadism with FDA-approved drugs such as human chorionic gonadotropins, human menopausal gonadotropin or pulsatile gonadotropin-releasing hormone, corticosteroids, and androgens
- surgical/microsurgical reconstruction or repair of the vas and/or epididymis or other epididymis surgery, such as vasovasostomy, epididymovasostomy, and epididymectomy (**NOTE**: Procedures performed to reverse voluntary male sterilization are not covered, even if benefits are available for infertility treatment.)
- transurethral resection of the ejaculatory ducts (TURED) for the treatment of ejaculatory duct obstruction
- repair of varicocele, excision of tumors (e.g., epididymal), testicular biopsy, orchiopexy, spermatic vein ligation, and excision of spermatocele
- seminal tract washout
- sperm extraction and retrieval procedures such as: electroejaculation, microsurgical epididymal sperm aspiration (MESA), testicular sperm aspiration (TESA), testicular fine needle aspiration (TEFNA), testicular sperm extraction (TESE), microscopic-TESE, percutaneous epididymal sperm aspiration (PESA), vasal sperm aspiration, and seminal vesicle sperm aspiration

NOT COVERED

Cigna does not cover **ANY** of the following infertility services or tests because they are considered experimental, investigational, or unproven:

- immunological testing (e.g., antiprothrombin antibodies, embryotoxicity assay, circulating natural killer cell measurement, antiphospholipid antibodies, reproductive immunophenotype [RIP])
- immune treatments (e.g., peri-implantation glucocorticoids, anti-tumor necrosis factor agents, leukocyte immunization, IV immunoglobulins)
- computer-assisted sperm motion analysis
- cryopreservation, storage, and thawing of ovarian and testicular reproductive tissue
- culture of oocyte(s), embryo(s), less than 4 days with co-culture (i.e., co-culturing of embryos/oocytes)
- direct intraperitoneal insemination, intrafallopian insemination, fallopian tube sperm transfusion
- endometrial receptivity testing (e.g., Endometrial Function Test™ [EFT®], integrin testing, Beta-3 integrin test, E-tegrity®, endometrial receptivity array [ERA])
- fine needle aspiration mapping
- hemizona test
- hyaluronan binding assay (HBA)
- serum inhibin B
- sperm viability test (e.g., hypo-osmotic swelling test), when performed as a diagnostic test
- the use of sperm precursors (i.e., round or elongated spermatid nuclei, immature sperm) in the treatment of infertility
- manual soft tissue therapy for the treatment of pelvic adhesions (WURN Technique®, Clear Passage Therapy)
• laser-assisted necrotic blastomere removal from cryopreserved embryos
• reactive oxygen species testing (ROS)
• in vitro maturation (IVM) of oocyte
• time-lapse monitoring/imaging of embryos (e.g., EmbryoScope)

Many benefit plans administered by Cigna do not cover any of the following, even when benefits are available for infertility treatment, because they are specifically excluded. In addition, all of these services are considered not medically necessary:

• services associated with the reversal of voluntary sterilization
• infertility services when the infertility is caused by or related to voluntary sterilization
• donor charges, fees and services, including services associated with donor sperm and donor oocytes
• infertility services rendered to a surrogate and surrogate fees
• commercially available over-the-counter home ovulation prediction test kits or pregnancy test kits
• cryopreservation, storage, and thawing of EITHER of the following:
 ➢ embryos when not undergoing covered active infertility treatment
 ➢ sperm and/or oocytes

General Background

Infertility is defined as the failure to achieve pregnancy after 12 months of regular unprotected intercourse (Agency for Healthcare Research and Quality [AHRQ], 2008; American Society of Reproductive Medicine [ASRM], 2013). Earlier evaluation and treatment may be warranted based on medical history and physical findings and is reasonable after six months for women over the age of 35 years (ASRM, 2013). In addition, the inability of a woman to achieve conception after six trials of medically supervised artificial insemination over a one-year period may necessitate evaluation for infertility.

Infertility can affect one or both reproductive partners. Some underlying factors are reversible through medical intervention; the major underlying causes of infertility include: ovulatory, tubal, cervical, uterine/endometrial, and male partner factors.

Diagnostic Testing To Establish the Etiology of Infertility

Formal evaluation of infertility is generally initiated in women attempting pregnancy who fail to conceive after one year or more of regular, unprotected intercourse. However, there are an increasing number of women over the age of 35 who are seeking infertility services. Since reproductive potential decreases in the early to mid-thirties, for this age group formal evaluation typically begins earlier. For couples over age 35 it is generally recommended that infertility testing begins after 6 months of unsuccessful attempts at conception (ACOG, 2014; ASRM, 2012d; Williams, Elam, 2007; Institute for Clinical Systems Improvement [ICSI], 2004). In some cases, an evaluation may be warranted prior to one year if there is a known male infertility risk factor such as bilateral cryptorchidism or known female risk factor (AUA, 2011a).

The preliminary approach to infertility typically begins with the evaluation of ovulatory, tubal, and male factors, and involves physical examination, laboratory studies and diagnostic testing. Other potential contributing causes that may be explored include genetic factors and immunological factors.

The female infertility diagnostic workup to determine the underlying etiology includes basic evaluation of ovulatory dysfunction including basal body temperature recordings, laboratory studies and hormone levels, Additional studies are performed when the initial workup fails to provide definitive information. Tests may include:

• ultrasound
• hysteroscopy
• hysterosalpingography
• diagnostic laparoscopy with or without chromotubation
• sonohysterography
In 2012 the ASRM published updated recommendations for evaluation of the infertile female. Within these recommendations although post coital testing is often performed to evaluate cervical factor infertility, it is no longer recommended as part of the evaluation of an infertile female (ASRM, 2012d). The practice committee concluded “the test is subjective, has poor reproducibility, typically does not impact clinical management, and does not predict inability to conceive”. Similarly, endometrial biopsy has been used evaluate secretory development of the endometrium, dating, and to assess the quality of luteal function (e.g., luteal phase deficiency). However, this test is no longer recommended by the ASRM as it is not considered a valid diagnostic tool; the test lacks accuracy and precision, and cannot distinguish between fertile and infertile women (ASRM, 2012d). According to the ASRM recommendations, its’ use should be reserved for conditions where endometrial pathology is strongly suspected.

Following the physical examination, evaluation of the male begins with the semen analysis, considered the primary screening test for male factor infertility. Semen analysis is generally done through the examination of two specimens at least one month apart, and generally precedes invasive testing of the female partner. The semen analysis provides detailed information on semen volume, sperm concentration, motility, pH, fructose, leukocytes, and morphology. Depending on the clinical situation, repeat semen analyses may be performed every one to three months, up to a total of five. Performing greater than five semen analyses provides little additional diagnostic value. Other laboratory studies include an endocrine evaluation, antisperm antibodies, post-ejaculatory urinalysis, urine culture and semen culture. Additional testing includes:

- transrectal ultrasound in individuals with azoospermia or oligospermia
- scrotal ultrasound for individuals in whom testicular mass is suspected or for who physical exam is difficult/conclusive
- vasography or testicular biopsy in individuals with azoospermia
- scrotal exploration

Genetic testing for cystic fibrosis is performed in males with congenital absence of vas deferens or for males with azoospermia or severe oligospermia (i.e., < 5 million sperm/millimeter) with palpable vas deferens. Karyotyping for chromosomal abnormalities and Y-chromosome deletion testing may be done in individuals with nonobstructive azoospermia or severe oligospermia.

Immunological factors may adversely affect fertility. As a result, various testing and treatment modalities have been proposed including, but not limited to, natural killer cell testing, antiphospholipid antibodies, antiprothrombin antibodies, embryotoxicity assay, and immune treatments such as pre-implantation glucocorticoids, anti-tumor necrosis factor agents (infliximab, etanercept), leukocyte immunization and IV immunoglobulin therapy. Nonetheless, evidence in the published, scientific literature is insufficient to support improved individual clinical outcomes (Royal College of Obstetricians and Gynaecologists [RCOG], 2003; RCOG, 2008).

Categories of other immunological tests such as immunophenotype measuring are also under investigation. Reproductive immunophenotype identifies the percentage of lymphocyte types in the blood. Analysis of subsets of lymphocyte types, such as CD-3, CD-4, CD-8, CD-19, CD-5, CD56, CD16 may be recommended for women with unexplained infertility or who fail to conceive after IVF. In theory, disturbances in the proportions of lymphocyte types may be related to reproductive failure. Evidence in the published scientific literature however evaluating the immunophenotype measurements is insufficient and the predictive value these tests are not clearly established (Baczkowski, et al., 2007; Ghazeeri and Kutteh, 2001).

Methods of predicting fertility potential continue to be researched. Oocyte quality and number decrease with age and determining ovarian reserve may add prognostic value for couples seeking assisted reproductive technologies. Early follicular phase FSH remains the most commonly used marker for determining ovarian reserve, other tests such as antral follicle count, and clomid challenge tests are well-established. Serum inhibin B is an enzyme immunoassay being investigated as a method of evaluating function of the antral follicles of the ovaries in women or the Sertoli cells of the testes in men. However, it has been reported in the literature that there is no international assay standard, and both follicular and recombinant standards are used, and that testing is not readily available (Creus, et al., 2000). The role of inhibin B for predicting pregnancy is unclear. At present, there is insufficient evidence in the published literature to support serum inhibin B testing as a

Anti-mullerian hormone (AMH), produced by granulosa cells from preantral and early antral follicles, has also been evaluated as a predictor of ovarian reserve (Lukaszuk, et al., 2013; Brodin, et al., 2013; Ankaert, et al., 2012; Kunt, et al., 2011; A La Marca, et al., 2011; Steiner, et al., 2011; Tremellen, et al., 2010; Kini, et al., 2010; Steiner, 2009; Kaya, et al., 2010; Guerif, et al., 2009). Authors generally agree the decline of ovarian reserve with aging is associated with a decrease in anti-mullerian hormone levels. Nonetheless there appears to be little consensus regarding a specific value of serum anti-mullerian hormone for defining those women who may respond poorly to assisted reproductive technologies such as in vitro fertilization. According to the ASRM (2012d) serum concentrations of anti-mullerian hormone remain consistent within and between menstrual cycles in both young ovulating and infertile women and levels can be obtained on any day of the menstrual cycle. Levels lower than 1 ng/ml have been associated with less than optimal responses to stimulation of the ovaries, poor embryo quality and poor pregnancy outcomes in IVF (ASRM, 2012d). Evidence supporting improved clinical outcomes as a result of testing is mixed; some authors have reported strong predictive value, sensitivity and specificity, while others have not. According to the ASRM (2012d) there is evidence to support that low levels of AMH have high specificity for poor ovarian response, therefore testing may help predict response to ovarian stimulation. However evidence to support use for screening of a woman’s ability to conceive is lacking. Serum AMH testing is recommended for select woman at increased risk of ovarian reserve, including any of the following:

- women over age 35
- family history of early menopause
- women with a single ovary or history of previous ovarian surgery, chemotherapy, or pelvic radiation therapy, woman who have unexplained infertility
- woman who have had a poor response to gonadotropin stimulation
- woman who are planing treatment with assisted reproductive technologies (e.g., IVF).

Endometrial receptivity and the relationship to infertility, particularly for IVF cycles, is another area that is being investigated. Traditionally, researchers have used the endometrial biopsy as a method of assessing components of the endometrium. Researchers have evaluated a series of markers that can potentially be used to assess the functional state of the endometrium. The endometrial receptivity array (ERA), a genomic diagnostic tool based on microarray technology, is under investigation as an endometrial receptivity marker (Diaz-Gimeno, et al., 2011). Cyclin E and p27 have been identified as markers of endometrial receptivity and predictors of successful implantation (Dubowy, et al., 2003; Kliman, et al., 2000). A test recently developed that can assess the expression of cyclin E and p27 is the Endometrial Function Test™ (EFT®) (Yale University School of Medicine, New Haven, CT). While some authors contend these tests may have a role in evaluating the endometrial receptivity, studies are limited, and the benefits of endometrial function testing in predicting pregnancy outcomes have not been established. Expression of integrins has been studied by some authors and may be associated with endometriosis and unexplained infertility; although the data is limited, it is not conclusive, and further study is needed (Thomas, et al, 2003, Bourgain and Devroey, 2003).

The clinical utility of the tests noted below has not been demonstrated in the medical literature. These studies have been proposed for a select subset of patients to identify a male factor contributing to unexplained infertility or in the treatment of infertility to select specific interventions. In general, they are reserved for those individuals for whom identification of the underlying cause of male infertility will direct specific treatment modalities.

- Sperm viability test (hypo-osmotic swelling test): This test is used to determine if non-motile sperm are viable and may be done to determine if intracytoplasmic sperm injection (ICSI) is an option for treatment. The role of assessing sperm viability using the hypo-osmotic method in the diagnosis or treatment of infertility has not been established in the published, peer-reviewed scientific literature.

- Zona-free hamster oocyte test (sperm penetration assay): This test is generally reserved for patients in whom results will influence treatment strategy (American Urological Association [AUA] 2011[a]). It is used to assess the ability of spermatozoa to undergo capacitation (egg penetration) and achieve fertilization (Bradshaw, 1998). Evidence in the scientific literature has suggested a correlation between results of this test and in both vitro fertilization (IVF) cycles and intracytoplasmic sperm injection (ICSI).
• Hyaluronan binding assay (HBA): This test has been proposed as an additional evaluation tool to determine the maturity of sperm in a fresh semen sample. The assay is based on the ability of the mature sperm to bind to hyaluronan, a component of the external coating of the ova. It has been suggested that HBA may prove useful in determining a need for intracytoplasmic sperm injection; however, evidence in the published literature has not confirmed HBA can provide additional information over standard semen analysis for sperm-fertilizing ability.

• Hemizona test: This test assesses the ability of the sperm to bind to the zona pellucida. Like the sperm penetration assay, preliminary studies have suggested a correlation with in vitro fertilization outcomes. The role of this test in the diagnosis or treatment of infertility has not been established in the published, peer-reviewed scientific literature.

• Computer-assisted motion analysis: Time-lapsed photography, video micrography and computer-assisted motion analysis are techniques used to determine sperm velocity and linearity. Proponents of the computer-based method contend that it allows for the measurement of more sophisticated parameters such as lateral head displacement and flagellar beat frequency. There is insufficient evidence in the published, peer-reviewed scientific literature to support the use of this technology in the diagnosis or treatment of infertility.

• Sperm DNA integrity testing: It is theorized that sperm DNA damage may affect reproductive outcomes in select couples, and several tests for sperm DNA integrity are now available (e.g., Sperm Chromatin Structure Assay [SCSA], TUNEL assay, Comet assay). Another test to assess sperm DNA is the Sperm DNA Decondensation test (e.g., Human Sperm Activation Assay [HSAA], SDD™). The Practice Committee of the ASRM (2008g) reported that up to 8% of infertile men will have abnormal DNA integrity despite a normal semen analysis—current methods for evaluating sperm DNA integrity do not reliably predict treatment outcomes, and no treatment for abnormal DNA integrity has proven clinical value. The AUA (2011a) reported that the assays demonstrate low sensitivity and high specificity.

• Reactive oxygen species: Reactive oxygen species (ROS) may interfere with sperm function and are generated by both seminal leukocytes and sperm cells. ROS have a normal physiological role in the capacitation and acrosome reaction and as such have been implicated as a cause of male factor infertility. Controversy exists regarding best methods of testing, the role of excess ROS in natural conception as well as reproductive technologies, and whether therapies are effective for improving clinical outcomes. Furthermore, there is insufficient published data to support ROS testing in the management of male factor infertility (AUA, 2011[a]).

Treatment of Female Infertility Factors

Treatment of infertility typically begins with the confirmed diagnosis of infertility. Treatment is determined by the specific diagnosis and may involve oral or injectable medication, surgery, assisted reproductive technologies, or a combination of these. Infertility may be the result of endometriosis, tubal factors, uterine and endometrial factors, cervical factors, ovulatory factors, or from unexplained factors. Pharmacologic and other medical treatment is typically attempted before more invasive interventions are sought.

Endometriosis: Endometriosis is the presence and growth of glands and stroma identical to the lining of the uterus in an unusual location. It is often associated with pelvic pain and infertility, although some individuals may be asymptomatic. The short-term goals of treatment include reduction of pelvic pain and promotion of fertility while long-term goals include halting the progression or recurrence of disease. Treatment usually consists of pharmacologic therapy, surgery or a combination of both. Pharmacologic therapy includes oral contraceptives, danazol, medroxyprogesterone acetate, and gonadotropin releasing hormone agonists. Surgical treatment involves the resection or destruction of endometrial implants, lysis of adhesions, and attempts to restore normal pelvic anatomy either through a laparoscopic approach or open laparotomy (Lobo, 2012a). Pelvic adhesions can lead to decreased mobility and function, affecting the biomechanics of the pelvic organs and may lead to infertility. Manual soft-tissue therapy (e.g., Wurn Technique®, Clear passage therapy) has been proposed as a method of breaking down the adhesions and improving elasticity, increasing pregnancy rates. The published data evaluating this technique is limited (Wurn, et al, 2008; Wurn, et al., 2004) and the safety and efficacy of soft-tissue therapy as a method of treatment for infertility has not been established in the peer-reviewed medical literature.
Tubal Factors: There are numerous causes of tubal disorders, including: prior salpingitis (pelvic inflammatory disease and other causes), endometriosis, adhesions from prior surgery, complications of intrauterine devices, and prior ectopic pregnancy. Lysis of mild peritubal adhesions may be performed during laparoscopy; however, many patients will only achieve pregnancy after tuboplasty or in vitro fertilization and embryo transfer. Tubal infertility factors can also be related to previous voluntary sterilization procedures, such as tubal ligation.

Several methods are available to treat infertility related to tubal factors. Tubal recanalization is performed when adhesions or endometriosis occlude the fallopian tubes. Other treatments include salpingostomy, fimbrioplasty, tubal anastomosis, fluoroscopic/hysteroscopic selective tube cannulation, and salpingectomy. While this method is rather obsolete, low tubal ovum transfer (LTOT) is a method in which an ovum is retrieved from the ovary and inserted in the uterus near the uterotubal junction bypassing the blocked fallopian tube. These procedures are also performed to treat infertility that is the result of voluntary sterilization.

Uterine and Endometrial Factors: Uterine and endometrial factors which may contribute to infertility include tumors/myomas, congenital malformations such as septate uterus, endometriosis and adhesions.

Treatments of uterine and endometrial factors include the following:

- treatment of myomas: hysteroscopic removal of submucous myoma; myomectomy for intramural or other myomas
- repair of congenital malformations: repair of septate uterus may be performed via hysteroscopy or laparotomy
- treatment of uterine adhesions: lysis of adhesions performed via dilatation and curettage or hysteroscopy

Cervical Factors: Cervical factors may also account for infertility, and primarily consist of abnormalities of the cervical mucus or a cervical stenosis. The quality of cervical mucus in many cases cannot be corrected through the use of pharmacologic agents (e.g., estrogen) and intrauterine insemination is recommended. In cases involving cervical infections, antibiotics are prescribed. Cervical stenosis may be corrected by hysteroscopy and cervical recanalization.

Ovulatory Factors: Ovulatory dysfunction is a frequent cause of female infertility. Ovulation may be absent or occur irregularly due to ovary abnormalities or abnormal secretion of the hormones needed to support ovulation. Typically, fertility begins to decrease in women during the early- to mid-30s. The standard test for determining decreased ovarian function is a day-3 follicle stimulating hormone (FSH) level. Normal day-3 FSH values vary among laboratories and specific assays; however, decreased ovarian function is seen with a level greater than 10–15 IU/L. Although some women with elevated day-3 FSH levels may become pregnant, the chance of establishing a pregnancy even with the use of in vitro fertilization (IVF) is markedly reduced.

Ovulatory dysfunction may also be related to diseases not directly linked to the reproductive system, such as medications, addictive drugs, weight loss, obesity, and psychological factors. Induction of ovulation through the use of pharmacotherapeutic agents is generally the first-line approach to treat conditions that prevent ovulation. Ovulation induction is also used as an adjunct to assisted reproductive techniques and intrauterine insemination. Originally, ovarian wedge resection was performed for patients with polycystic ovarian (PCO) syndrome who did not respond to drug treatment. Currently, surgical treatment of PCO with partial ovarian destruction utilizing electrocautery or laser, referred to as ovarian drilling, has been utilized in women when clomid has failed to induce ovulation. During this procedure, several punctures are made through the surface of the ovary with a needle and coagulated. Ovulatory cycles generally resume and androgen levels become normal. If ovulation does not occur spontaneously, most anovulatory women will ovulate with clomid.

The following drugs have been shown to induce ovulation:

- Clomiphene citrate, an oral synthetic nonsteroidal estrogen agonist-antagonist, enhances the release of pituitary gonadotropins resulting in follicular development and rupture.
- Gonadotropins, including human menopausal gonadotropins (hMG) (Pergonal®, Repronex®, LH and FSH), human chorionic gonadotropin (HCG) (Pregnyl®, Novarel™), human FSH, and recombinant...
FSH/follitropins (Follistim®, Gonal-F®) may be administered to patients who have not responded to clomiphene

- Gonadotropin-releasing hormone (GnRH) (leuprolide, goserelin) is an alternative to gonadotropins in cases of low gonadotropin and estrogen levels. The drug is delivered intravenously or subcutaneously with the use of a computerized pump. One advantage of this pulsatile GnRH therapy over gonadotropin therapy is the reduced risk for multiple conception and ovarian hyperstimulation.
- Bromocriptine is an oral dopamine agonist used as the initial intervention for women with hyperprolactinemia and anovulation, oligo-ovulation, or luteal phase insufficiency.
- Metformin, an insulin sensitizing drug, may be considered in women with polycystic ovarian syndrome although its use should be restricted to those with glucose intolerance.

Treatment of Male Infertility Factors

Obstructive/Nonobstructive Azoospermia: Azoospermia is defined as a complete absence of sperm from at least two separate centrifuged semen samples (AUA, 2011[b]). It may be caused by obstruction of the extratesticular ductal system (obstructive azoospermia) or defects in spermatogenesis (nonobstructive azoospermia). Obstructive azoospermia may be caused by epididymal, vasal, or ejaculatory pathology. Previous vasectomy is a common cause of vasal obstruction. Other causes include genitourinary infection, scrotal or inguinal injury and congenital anomalies. Treatment of obstructive azoospermia, when performed in order to achieve pregnancy, includes: surgical correction of the obstruction, which provides the ability to produce pregnancy by intercourse; or retrieval of sperm from the male reproductive system for IVF and ICSI.

Surgical repair of obstruction can be achieved by:

- surgical/microsurgical reconstruction of the vas and/or epididymis, including vasectomy reversal, epididymovasostomy, epididymectomy, vasovasostomy; or
- transurethral resection of the ejaculatory ducts (TURED) when there is ejaculatory duct obstruction

Sperm retrieval and cryopreservation may be performed at the time of microsurgical reconstruction in order to avoid a second procedure in the event that the microsurgical reconstruction does not reverse a patient's azoospermia (AUA, ASRM, 2001).

Males with nonobstructive azoospermia should have genetic testing before proceeding to assisted reproductive technologies, such as in vitro fertilization with intracytoplasmic sperm injection. Genetic disorders may be characterized as karyotype abnormalities. In some men, microdeletions of the Y chromosome contribute to azoospermia. Male offspring born to fathers of Y-chromosome microdeletion are expected to inherit these deletions. As such, genetic/clinical counseling regarding genetic issues should be considered a critical part of the male evaluation (Brugh, 2003; Society of Obstetricians and Gynaecologists of Canada (SOGC), Okun, Sierra, 2014).

Abnormalities of Ejaculation: Ejaculatory dysfunction may be associated with male factor infertility. Abnormalities of ejaculation may be caused by neurologic, anatomic or psychological abnormalities. Retrograde ejaculation is caused by incomplete closure of the bladder neck. For this condition, sperm may be obtained from the postejaculatory urine. Anejaculation is often due to spinal cord injury or other neurologic impairment (e.g., retroperitoneal surgery, trauma, diabetes). Treatment options may be medical or surgical. Options for sperm retrieval may include vibratory stimulation, electroejaculation or surgical retrieval. These techniques are often associated with poor sperm quality and, in most cases recovered sperm are used for intrauterine insemination (IUI), IVF or ICSI cycles (Schuster, Ohl, 2002).

Seminal Tract Washout (STW): STW is a technique involving the cannulation of the vas deferens and subsequent antegrade washing of the vas with collection of sperm from the bladder. STW may be used in situations where male infertility is due to incomplete voiding of the distal seminal tract, and spermatozoa can be retained downstream of the epididymis. Common conditions include diabetes, spinal cord injury, and extended retroperitoneal lymph node dissection.

Other Procedures: Other procedures used to treat male factor infertility include:
• repair of varicocele (dilatation of the pampiniform plexus of the scrotal veins), including spermatic vein ligation (retroperitoneal, inguinal, laparoscopic or scrotal), spermatic vein embolization (balloon, coils, sclerosing agents, or transcather/transvenous occlusion), excision of spermatocele, orchiopexy
• treatment of endocrinopathies including:
 ✓ hypogonadotropic hypogonadism: stimulation of secondary sexual characteristics and normal spermatogenesis through the use of HCG and hMG or pulsatile GnRH
 ✓ disorders of LH or FSH function: treatment includes replacement of FSH and HCG
 ✓ disorders of androgen function: treatment includes corticosteroids, mineralcorticosteroids, or androgens
 ✓ medical and surgical treatment of adenomas of the pituitary gland
• excision of epididymal tumor

Sperm Precursors: There is insufficient evidence in the published, peer-reviewed scientific literature to support the use of sperm precursors (round or elongated spermatid nuclei, immature sperm) in the treatment of infertility with ICSI.

Treatment of Unexplained Infertility
In approximately 5–10% of couples, the infertility workup will not reveal any abnormalities. There is no specific treatment for unexplained infertility, but assisted reproductive technologies are sometimes pursued.

Treatment for unexplained infertility includes: pharmacologic treatment, intrauterine insemination, superovulation with oral or injectable medications, combinations of intrauterine insemination with superovulation, and assisted reproductive technologies.

Assisted Reproductive Technologies
Assisted reproductive technologies (ART) describe a group of infertility treatment procedures that involve the extracorporeal manipulation of oocytes, sperm and embryos. Techniques include: artificial insemination, in vitro fertilization with embryo transfer (IVF-ET), gamete intrafallopian transfer (GIFT), zygote intrafallopian transfer (ZIFT), and intracytoplasmic sperm injection (ICSI). In addition, technologies such as co-culturing of embryos, assisted embryo hatching and Kruger's "strict criteria" for assessing sperm morphology may be recommended as part of the IVF cycle.

Artificial Insemination: Artificial insemination (AI) is a procedure in which sperm are placed in the cervix or high in the uterine cavity through a transcervical catheter. The rationale is to deposit sperm as close to the oocyte as possible. AI, intrauterine insemination (IUI), or intracervical insemination (ICI) may be performed using either the partner's sperm or donor sperm. Artificial insemination may be preceded by ovarian stimulation with gonadotropins or clomiphene to encourage multiple oocyte development, especially in cases of unexplained infertility. In general, AI techniques are attempted for up to six cycles before proceeding to more complex interventions such as in vitro fertilization.

Other methods of insemination less frequently employed include direct intraperitoneal insemination (DIPI), intrafollicular insemination, (IFI), and fallopian tubal sperm perfusion (FSP). DIPI has not been shown to be more effective than IUI/ICI and is a more invasive method. IFI is a method of injecting motile sperm directly into the pre-ovulatory follicle. It is suggested that fertilization occurs prior to ovulation and the presence of follicular factors may provide stability to the fertilized egg. FSP increases the number of motile sperm in the fallopian tube. These methods are not widely used, and there is insufficient evidence in the published literature regarding efficacy. Reported outcomes have been inconsistent, and they have not been proven in large, well-designed studies to increase pregnancy rates compared to AI.

Superovulation with intrauterine insemination involves the intentional development and ovulation of multiple follicles.

Indications for artificial insemination:
• pharmacologic treatment alone has not been successful
• unexplained infertility
• abnormal cervical mucus
• donor insemination
• presence of antisperm antibodies
• low sperm counts with normal motility

In Vitro Fertilization with Embryo Transfer (IVF-ET): The success rate of IVF has been reported to be approximately 22.8% live births per egg retrieval. This is similar to the 20% chance that a healthy couple has of achieving a pregnancy that results in a live birth in a given month.

The steps involved in IVF are as follows:

1. Ovarian stimulation/hyperstimulation and monitoring.

2. Egg retrieval: After the follicle has ruptured, the physician removes multiple eggs transvaginally or by laparoscopy.

3. Fertilization: A semen sample from the male partner or donor is processed using sperm washing, in which active sperm are selected. Mature egg cells are combined with the selected sperm and cultured for approximately forty hours. Forty-six to fifty hours after egg retrieval, fertilization and cell division are evaluated. Two to six fertilized embryos are selected. Embryos may also be cryopreserved at this point for later use.

4. Embryo transfer: The selected fertilized embryos are placed in a catheter, combined with a transfer growth medium, and inserted through the patient's vagina and cervix into the uterus. It is believed the transfer medium promotes implantation of the embryo and varies according to clinic; however, the most common protein used is synthetic albumin; other additives have been investigated (e.g., hyaluronan, EmbryoGlue®), but improvement in embryo development and implantation has not been clearly established in the published literature.

5. Embryo cryopreservation: If there are embryos that are not needed for transfer in the current cycle, cryopreservation may be used. This is a process in which the embryos are frozen in liquid nitrogen and may be thawed for future use. A significant percentage of embryos do not survive the process of freezing and thawing, however. Cryopreservation may result in hardening of the zona pellucida which may affect hatching and implantation of blastocyst (Liu, et al. 2007). Some embryos lose one or more blastomeres after thawing and are referred to as “partially damaged” embryos. While partially damaged embryos can give rise to term pregnancy, authors agree that the developmental potential of these embryos is inferior to those that are fully intact. Some authors have reported that laser-assisted removal of necrotic blastomeres from partially damaged cryopreserved embryos before embryo transfer increases embryo development potential (Liu, et al., 2007; Nagy, et al., 2005; Rienzi, et al; 2005, Rienzi 2002). However, while outcomes are encouraging regarding implantation and pregnancy rates, there is insufficient evidence in the peer-reviewed scientific literature regarding the safety and efficacy of the use of laser-assisted necrotic blastomere removal from cryopreserved embryos.

In many cases, assessment of the cervical canal and uterus is performed prior to an actual embryo transfer. A mock embryo transfer employs the use of a thin plastic catheter, without an embryo, that is passed through the cervix and into the uterus to evaluate the potential for embryo transfer. A second method, uterine sounding, employs the use of an instrument referred to as a uterine sound to determine depth and direction of the uterus prior to embryo transfer.

In natural cycle IVF or natural oocyte retrieval IVF, there is no hyperstimulation with ovulation induction drugs. Ovulation is allowed to occur naturally without intervention.

For standard IVF cycles, when fertilization occurs, the developing embryos are incubated for 2–3 days in culture and then placed into the uterus. In some cycles, embryos are cultured for 5–6 days (i.e., extended culture) and then transferred into the uterus at the blastocyst stage using a single medium, or in some cases two distinct media. During the natural process of embryo development, when the embryo reaches the blastocyst stage (i.e., 6–7 days after fertilization) it is ready for implantation. Although reliable criteria to identify embryos that may develop to blastocyst stage has not been established, according to the ASRM Practice Committee, some of the
theoretical advantages of growing embryos to the blastocyst stage include higher implantation rates, a decrease in the number of embryos transferred, the opportunity to select more viable embryos, better synchronization of embryo and endometrial readiness, and the opportunity to perform preimplantation genetic diagnosis as a result of increased culture time (ASRM, 2008a). Evidence in the published literature indicates that transfer on day two or three and day five or six appear to be equally effective in terms of increased pregnancy and live birth rates per cycle started (Blake, et al., 2006; National Institute of Health and Clinical Excellence [NHS], 2004). Evidence can also be found suggesting (more specifically) that when an equal number of embryos are transferred, the probability of live birth rate after fresh IVF is significantly higher after blastocyst-stage transfer compared to cleavage-stage transfer (Papanikolaou, et al., 2008). Conclusions from the ASRM Practice Committee (2013b) indicate the following:

- In patients with good prognosis, the transfer of blastocysts has been observed to yield higher live birth rates than those achieved with transfer of equal numbers of cleavage-stage embryos. Transfer of multiple blastocysts results in a high multiple pregnancy rate.
- In poor prognosis patients, blastocyst transfer does not increase live birth rates compared with cleavage-stage transfer.
- Blastocyst or cleavage-stage embryos can be used for unselected or poor prognosis patients as the pregnancy/live birth rates are not significantly different.

Tubal embryo transfer (TET) or pronuclear stage transfer (PROST), and tubal embryo stage transfer (TEST), are also considered variations of standard IVF-ET and involve transfer of embryos into the fallopian tubes at different stages. TET is similar to ZIFT, except the embryos are transferred 8–72 hours after fertilization.

Indications for IVF include the following:

- blocked or severely damaged fallopian tubes
- endometriosis
- male factor infertility
- failed six cycles of ovarian stimulation with intrauterine insemination
- unexplained infertility of long duration with failure of other treatments

Methods proposed for improving IVF success rates include the following:

- Co-culture of Embryos: Co-culturing of embryos is the culturing of embryos on a layer of cells that in theory, removes toxic substances produced by the embryo. It is a technique currently under investigation aimed at improving the quality of embryos and involves the use of various cell-lines. It may be recommended for individuals who have un-successful IVF cycles and poor quality embryos. Authors have identified various techniques of co-culturing of embryos (Kervancioglu, et al., 1997; Wiemer, et al., 1998; Rubio, et al., 2000). However, co-culturing of embryos using feeder cells (e.g., granulosa, endometrial, tubal) in order to improve implantation success has not been demonstrated in the published, peer-reviewed scientific literature to improve implantation or pregnancy rates. The role of this technique in the treatment of infertility has not been established.

- Assisted Embryo Hatching: Assisted zona hatching is the artificial thinning or breachment of the zona pellucida such that an embryo that develops to the blastocyst stage can expand through the confines of the pellucida; this allows the otherwise normal embryo to make contact with the endometrial lining and implant (Penzias & DeCherney, 1994). It has been suggested by some studies that thick and hardened zona may prevent or reduce the efficiency of hatching of otherwise normal developing embryos. Thick or hardened zona may result from gonadotropin stimulation, the laboratory environment, culture techniques, age > 38, or with elevated day-3 FSH levels (Richlin, et al, 2003). The use of assisted hatching has been proposed as a method to facilitate implantation and pregnancy rates. The procedure is typically performed on day three and involves creating a gap in the zona by drilling with an acidified medium, partial zona dissection with a glass microneedle, laser photoablation, or use of a piezo-micromanipulator. Evidence in the published, peer-reviewed scientific literature has yielded few randomized clinical studies, inconsistent success rates, and no specific patient selection criteria. Although assisted hatching may facilitate implantation it is used selectively for cases of poor prognosis.
(repeated IVF failure, embryos of poor quality, thick zona, etc.). The Practice Committee of the ASRM (2008f) reported, "Assisted hatching may be clinically useful and individual ART programs should evaluate their own patient populations in order to determine which subgroups may benefit from the procedure. The routine use of assisted hatching in the treatment of all IVF patients appears at this point to be unwarranted. Assisted hatching may be clinically useful in patients with a poor prognosis, including those with ≥ 2 failed IVF cycles and poor embryo quality and older women (≥ 38 years of age)." According to published text (Richlin, et al., 2003), the indications for assisted hatching include: age greater than 38, elevated day-3 FSH, a prior failed IVF cycle with suspected implantation failure, increased zona thickness on microscopy, and excess oocyte fragmentation.

- **Kruger's Strict Criteria for Sperm Morphology**: Sperm morphology has become a useful indicator of successful fertilization with IVF. Kruger coined the term "strict criteria," which involves the identification and use of only those sperm which are determined to be morphologically normal. In studies using strict morphologic criteria, men with greater than 14% normal forms had normal fertilization rates in vitro. Patients with 4–14% normal forms had intermediate fertilization rates, while men with less than 4% normal forms had fertilization rates of 7–8%. The identification of sperm morphology using Kruger's strict criteria is considered an integral part of the sperm analysis prior to IVF. According to the AUA (2011a) strict criteria should not be used in isolation to make prognostic or therapeutic decisions.

- **Time-lapse Monitoring**: Time-lapse monitoring/imaging is a noninvasive method of embryo evaluation that allows 24-hour monitoring of embryo development. Although stable, controlled incubation systems are necessary for embryo development, conventional methods to assess embryos in IVF cycles are based on daily evaluation of morphology via a microscope, after removal from standard incubators at a defined point in time. Authors hypothesize time-lapsed monitoring, embryo assessment conducted without disturbance to the culture conditions and removal from the incubator, improves the quality and quantity of information regarding embryonic cleavages and morphologic assessment. Time-lapsed monitoring is purported to refine embryo selection, and thereby improve IVF clinical pregnancy rates (Rubio, et al., 2014). One device, the EmbryoScope® Time-Lapse System (Vitrolife, Inc., Englewood, CO) provides a time-lapse video with thousands of snapshots of each embryo over three to five days of in vitro culture. While time-lapse monitoring may allow more detailed observations of embryonic development, there is insufficient evidence in the peer-reviewed published scientific literature supporting clinical utility, improved IVF outcomes, and improved pregnancy rates with the use of this technology.

In Vitro Maturation (IVM) of Oocytes: In vitro maturation of oocytes is a procedure where immature oocytes are retrieved from follicles which may or may not have been exposed to exogenous FSH, have not been exposed to exogenous LH or HCG, and are then allowed to mature in culture. Theoretically, the oocytes mature and can be fertilized. Potential candidates for IVM include women with PCOS or PCO type ovaries, women with estrogen sensitive cancers or who are undergoing gonadotoxic treatments. A committee opinion by the ASRM indicates there are no RCT comparisons evaluating AVM. The procedure is in early stages of development with implantation and pregnancy rates that are less compared to retrieval of mature oocytes. It is the opinion of the ASRM that the procedure should only be performed as an experimental procedure in specialized centers (ASRM, 2013).

Gamete Intrafallopian Transfer (GIFT): The GIFT procedure is similar to IVF. In GIFT, the egg cells are retrieved laparoscopically and transferred to the fallopian tubes using a catheter containing 2–3 egg cells and approximately 100,000 sperm. Unfertilized oocytes are mixed with sperm and transferred back into the tubes. Fertilization occurs in the body as in unassisted reproduction, as compared to IVF in which fertilization occurs outside the body. Indications for GIFT are the same as for IVF, except that the woman must have one patent fallopian tube. Reported pregnancy rates are comparable to those associated with IVF.

Zygote Intrafallopian Transfer (ZIFT): ZIFT is a variation of IVF and GIFT without clear proven advantages. Following fertilization, which occurs in vitro, a one-cell zygote or pre-embryo is transferred into the fallopian tube. The pre-embryo then moves to the uterus by natural processes. ZIFT may be an option in rare situations when abnormality of the cervical canal prevents passage of an embryo transfer catheter into the uterus. Although this procedure is performed less frequently than GIFT, the indications are similar to those for GIFT and IVF.
Intracytoplasmic Sperm Injection (ICSI): ICSI is a laboratory procedure developed to assist couples who are undergoing IVF for severe male factor infertility. The ICSI procedure is used in conjunction with IVF, GIFT and ZIFT. This procedure has replaced two previously developed micromanipulation techniques, partial zona dissection (PZD) and subzonal insertion (SUZI) because it achieves higher fertilization rates. ICSI involves the injection of a single sperm directly into the cytoplasm of an oocyte. Several studies have demonstrated efficacy and short-term safety of ICSI (ASRM, 2008d).

It should be noted that in the United States, the reported risk of multiple gestations after ICSI is 30–35% for twin gestations and 5–10% for triplet or higher-order gestations. Some conditions may carry an increased risk for transmission of genetic abnormalities to offspring via ICSI (ASRM, 2008c). Whether the increased prevalence is related to the procedure or to the characteristics of couples who require ICSI is unclear. In general, due to the increased risk all couples who undergo ICSI should undergo genetic counseling.

The ICSI process is as follows:

1. **Ovarian stimulation and monitoring:** This step is similar to the process used in IVF.

2. **Sperm extraction:** The sperm sample is evaluated and processed to select healthy, viable sperm for fertilization. If there is an absence of sperm, surgical extraction procedures are performed. Microsurgical epididymal sperm aspiration (MESA) is used when sperm are unable to move through the genital tract. In this procedure, sperm are extracted directly from the epididymides. Sperm may also be extracted from the testes in a procedure called testicular sperm aspiration (TESA) or testicular fine needle aspiration (TFENA). Although studies are few, some authors have proposed an FNA map prior to TESA to determine sperm location and availability of sperm in men with nonobstructive azoospermia considering TESA. (Turek, et al, 1999; Turek et al., 2000; Meng, et al., 2000). However, evidence is insufficient to support whether a map that shows no sperm is truly predictive of TESA failure. Consequently, the role of FNA mapping in the management of nonobstructive azoospermia is limited. Other techniques include: testicular sperm extraction (TESE), microscopic TESE, percutaneous epididymal sperm aspiration (PESA), vasal sperm aspiration, and seminal vesicle sperm aspiration aided by transrectal ultrasonography. Indications for MESA and PESA include: bilateral congenital absence of vas deferentia (CAVD), cystic fibrosis, vasectomy of failed vasectomy reversal, inoperable ejaculatory ducts or distal vasal obstruction, post-inflammatory obstructions (e.g., gonorrhea), and radical cystoprostatectomy. Indications for TESA, TFENA and TESE include: nonobstructive azoospermia (e.g., maturation arrest, hypospermatogenesis), obstructive azoospermia, anejaculation, complete terato/necrozoospermia, and complete sperm immobility. Microscopic TESE involves the use of a high magnification microscope for individuals with extremely low sperm production.

3. **Egg retrieval:** This step is similar to the IVF retrieval process.

4. **Micromanipulation and fertilization with ICSI:** Cumulus cells are removed from the oocyte, allowing the embryologist and/or physician to view the oocytes' maturity and suitability to undergo ICSI. A single sperm is injected directly into the cytoplasm of a mature egg using a microinjection pipette. This procedure may be repeated with several sperm and oocytes. ICSI can enhance fertilization of sperm which will not bind to or penetrate an egg. Attempts at ICSI may fail due to egg damage, eggs that are difficult to pierce, and fertilized eggs that fail to divide or stop developing.

5. **Embryo transfer via IVF, GIFT, or ZIFT:** Eggs may be transferred into the uterus or fallopian tube using IVF, GIFT, or ZIFT.

Indications for ICSI:
- very low numbers of motile sperm
- severe teratospermia (abnormal sperm)
- problems with sperm binding to and penetrating the egg
- antisperm antibodies of sufficient quality to prevent fertilization
- prior or repeated fertilization failure with standard IVF and fertilization methods
- frozen sperm collected prior to cancer treatment which may be limited in number and quality
• absence of sperm secondary to blockage or abnormality of the ejaculatory ducts (in this case, TESA or MESA is used)

Miscellaneous Issues Associated With ARTs

Ovarian Hyperstimulation Syndrome (OHS): Ovarian hyperstimulation syndrome is a potential complication of controlled ovarian hyperstimulation with gonadotropin medications. It may be classified as mild, moderate or severe. Mild cases are not usually clinical relevant, although severe cases can be life-threatening. Severe cases may be characterized by extreme ovarian enlargement, ascites, elevated serum creatine, pleural effusions, oliguria, hemoconcentration and thromboembolic phenomena. Identification of high risk patients includes endocrine monitoring and follicular monitoring. The syndrome is triggered by HCG and if there is potential to develop severe OHS, HCG injections are withheld and the cycle may be cancelled; in IVF cycles the embryos may be frozen (Lobo, 2012b). Other measures of preventing OHS such as coasting and administering HCG when endocrine levels decrease; the use of intravenous albumin at oocyte retrieval; and the use of GnRh antagonist protocols are debatable. Once the condition develops, treatment is supportive and includes correction of electrolyte imbalances and maintenance of urine output.

Preimplantation Genetic Diagnosis: Preimplantation genetic diagnosis is a technique that allows embryos to be tested for genetic disorders prior to implantation and pregnancy. It is a diagnostic procedure that provides an alternative to traditional prenatal genetic diagnosis. The procedure is recommended when embryos may be affected by certain genetic conditions. One or two cells are removed from the embryos by biopsy during IVF procedures and examined for genetic analysis. Embryos with normal biopsy results are available for transfer into the uterus while additional normal embryos may be frozen. Only normal, healthy embryos are transferred into the uterus, reducing the risk of adverse pregnancy outcomes such as birth defects and miscarriages and possible pregnancy termination after prenatal diagnosis.

Elective Single Embryo Transfer (eSET): Multiple gestations are associated with increased risk of complications in both the fetuses and the mother. Growing concern over this increased incidence of multiple pregnancies has led some countries to mandate limitations of the number of embryos used for transfer. Based on a report published by the Centers for Disease Control and Prevention (CDC), approximately 35% of ART cycles that used fresh nondonor eggs or embryos and progressed to the embryo transfer stage in 2009 involved the transfer of three or more embryos, about 12% of cycles involved the transfer of four or more, and approximately 4% of cycles involved the transfer of five or more embryos (CDC, 2009). In the United States, there has never been a formal or regulated restriction on the number of embryos that a particular clinic may place in a woman’s uterus. Clinical outcomes of women undergoing ESET with blastocyst or cleavage stage transfer have been investigated. Study results have demonstrated a decrease in multiple gestations and improved cryopreservation rates (Csokmay, et al, 2011), decreased risks of pre-term birth and low birth-weight (Grady, et al., 2012), and improved live-birth rates (Kresowik, et al., 2011). In 2012 the ASRM published a practice committee opinion regarding eSET. Within this publication they note eSET has been advocated as the only effective means of avoiding a multiple pregnancy in IVF cycles and defines eSET as “the transfer of a single embryo at either the cleavage stage or blastocyst stage of development, and that is selected from a large number of embryos.” According to the committee opinion the ASRM recommends consideration of eSET for women with a good prognosis which includes the following (ASRM, 2012a):

- age less than 35 years
- more than one top quality embryo available for transfer
- first or second treatment cycle
- previous successful IVF cycle
- recipient of embryos from donated eggs

Elective SET may be an option for women aged 35-40 years if they have top quality blastocyst-stage embryos available for transfer (ASRM, 2012).

Number of Embryos to Use in Transfers: The ASRM has issued updated practice guidelines (ASRM, 2009) on the appropriate number of embryos to transfer in ART practice. According to the ASRM guidelines, depending on the women’s age and prognosis, the recommended number of embryos to transfer ranges from two to five. More embryos may be transferred in select cases, depending on individual circumstances and after appropriate counseling.
The current guidelines are as follows (ASRM, 2009):

- For patients under the age of 35 who have a more favorable prognosis, consideration should be given to transferring only a single embryo. No more than two embryos (cleavage stage [two to three days after fertilization] or blastocyst stage [five to six days after fertilization]) should be transferred. (Favorable prognosis factors include: patients undergoing their first cycle of IVF; those who have had previous success with IVF; those with embryos of sufficient quality and quantity for cryopreservation; and improved embryo quality as judged by morphologic features.)

- For patients between the ages of 35–37 and having a more favorable prognosis, no more than two cleavage-stage embryos should be transferred. All others in this age group should have no more than three cleavage-stage embryos transferred. If extended culture is performed, no more than two blastocysts should be transferred to women in this age group.

- For patients between the ages of 38–40 who have a more favorable prognosis, no more than three cleavage-stage embryos should be transferred or no more than two blastocysts. All other women in this group should have no more than four cleavage-stage embryos or three blastocysts transferred.

- For patients 41-42 years of age, no more than five cleavage stage embryos or three blastocysts should be transferred.

- In each of the above age groups, for patients with two or more previous failed fresh IVF cycles or less favorable prognosis, one additional embryo according to individual circumstances. The patient must be counseled regarding the risk of multifetal pregnancy; both counseling and justification for exceeding the limits must be documented in the patient’s permanent record.

- In women > 43 years of age, there are insufficient data to recommend a limit on the number of embryos to transfer.

- In donor egg cycles, the age of the donor should be used in determining the number of embryos to transfer.

- In frozen embryo transfer cycles, the number of good quality thawed embryos transferred should not exceed the recommended limit on the number of fresh embryos transferred for each age group.

In addition to the above ASRM recommendations, since all oocytes may not fertilize when GIFT is performed, one more oocyte than embryo may be transferred for each prognostic category.

Low Birth-Weight and Multiple Births: The use of assisted reproductive technology has been reported to be a contributor to the rate of low birth-weight in the United States, as it has been associated with a higher rate of multiple births. Multiple gestations are associated with increased risk for preterm delivery, low birth weight and increased perinatal mortality (Alukal and Lamb, 2008). Additionally, evidence suggests that there is a higher rate of low birth-weight among singleton infants conceived with assisted reproductive technology than among naturally conceived singleton infants or among all infants in the general population (CDC, 2009; McDonald, et al., 2009; Schieve, et al., 2002).

Birth Defects: Hansen et al. (2014) reported the results of a systematic review and meta-analysis (n=45 cohort studies) evaluating the risk of increased birth defects in ART and non-ART infants, and further assessed whether the risk differed between single or multiple births. The published results indicate that the risk of birth defects was higher in ART births compared to non-ART births and the risk further increased when limited to major birth defects or to single births; results regarding multiple births were not clear according to the authors. In general, several studies, systematic reviews, and meta analyses have been published evaluating the occurrence of birth defects in children after the use of ART. Currently, the literature is inconsistent in reported outcomes and in defining a clear relationship to the assisted reproductive technology. Criteria to define birth defects vary among countries making the analysis of ART safety data difficult to analyze (Alukal and Lamb, 2008). In addition, maternal factors may be the cause of birth defects rather than factors associated with the ART. While some authors suggest that there is an increased risk of birth defects with ART compared to spontaneous conceptions, it should be noted that other studies have not shown an increased risk of birth defects with either ICSI or standard IVF. As a result, large population-based studies are needed to address the exact etiology. Overall, the underlying biological mechanism by which ART affects adverse development remains unclear and couples considering ART should be informed of all potential risks and benefits.

Cryopreservation: Cryopreservation may be employed as a method to preserve fertility or as part of assisted reproductive technologies. In general, preservation of fertility is considered not medically necessary. When employed as part of assisted reproductive technologies cryopreservation of some reproductive cells/tissue have
been proven safe and effective, although some remain under investigation. Cryopreservation of semen and embryos have been proven safe and effective; however the cryopreservation, storage and thawing of testicular tissue and ovarian tissue is considered unproven in the treatment of infertility (ASRM, 2014).

Cryopreservation of immature oocytes, with in vitro maturation before or after freezing, remains under investigation. The ASRM published a practice committee guideline (ASRM, 2013) for mature oocyte cryopreservation. According to this guideline, the ASRM no longer considers cryopreservation of mature oocytes using conventional methods or vitrification experimental (ASRM, 2013). Although the data is limited, according to the Committee Guideline, while oocyte cryopreservation may be recommended with appropriate counseling for individuals undergoing chemotherapy or other gonadotoxic therapies, the following are not recommended:

- oocyte cryopreservation in donor populations/donor banking
- oocyte cryopreservation performed solely to defer childbearing
- oocyte cryopreservation routinely used in lieu of embryo cryopreservation.

The American Board of Internal Medicine’s (ABIM) Foundation Choosing Wisely® Initiative (2014): The ASRM does not recommend performance of any of the following as part of the evaluation of infertility:

- routine diagnostic laparoscopy for the evaluation of unexplained infertility
- advanced sperm function testing, such as sperm penetration or hemizona assays, in the initial evaluation of the infertile couple
- postcoital test (PCT) for the evaluation of infertility.
- routinely order thrombophilia testing on patients undergoing a routine infertility evaluation.
- immunological testing as part of the routine infertility evaluation.

Use Outside of the US: Various guidelines and recommendations are available from organizations outside the U.S. For example, the Australian Government National Health and Medical Research Council, the Society of Obstetricians and Gynaecologists of Canada, and the National Institute for Health and Care Excellence (NICE) (United Kingdom) have published guidelines for infertility related testing and treatment. In addition, regulation of assisted reproductive technologies outside the U.S. varies. For example, the European Commission indicates that reproductive techniques such as IVF are regulated by the Member States and similar to the U.S. organizations, the European Society of Human Reproduction and Embryology collects and periodically reports data from existing registries regarding the use of ART.

Summary
The diagnosis and treatment of infertility involves a systematic approach. Prognosis depends on the cause of infertility. In many cases, multiple factors contribute to the cause often involving both partners. In some cases, the cause remains unknown. Most hormonal imbalances can be effectively treated with medication. Anatomic abnormalities can be corrected through various surgical procedures, and several assisted reproductive techniques are available as treatment options.

Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Covered when medically necessary:

Diagnostic Testing

Diagnostic tests generally covered under core medical benefits when medically necessary and performed solely to establish the etiology of infertility:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>49320</td>
<td>Laparoscopy, abdomen, peritoneum, and omentum, diagnostic, with or without collection of specimen(s) by brushing or washing (separate procedure)</td>
</tr>
<tr>
<td>HCPCS Codes</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>G0027</td>
<td>Semen analysis; presence and/or motility of sperm excluding huhner</td>
</tr>
</tbody>
</table>
Antisperm antibodies test (immunobead)

Treatment of Infertility

If benefits are available for infertility treatment, the following may be considered for coverage. Coverage of all of the following is subject to the specific terms, conditions, and limitations of the applicable benefit plan. Services listed below will not be covered if they are not covered under the applicable plan or if they are associated with the treatment of infertility due to voluntary sterilization, even if benefits are available for infertility treatment:

<table>
<thead>
<tr>
<th>CPT* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>37241</td>
<td>Vascular embolization or occlusion, inclusive of all radiological supervision and interpretation, intraprocedural roadmapping, and imaging guidance necessary to complete the intervention; venous, other than hemorrhage (eg, congenital or acquired venous malformations, venous and capillary hemangiomas, varices, varicoceles)</td>
</tr>
<tr>
<td>49321</td>
<td>Laparoscopy, surgical; with biopsy (single or multiple)</td>
</tr>
<tr>
<td>52402</td>
<td>Cystourethroscopy with transurethral resection or incision of ejaculatory ducts</td>
</tr>
<tr>
<td>54500</td>
<td>Biopsy of testis, needle (separate procedure)</td>
</tr>
<tr>
<td>54505</td>
<td>Biopsy of testis, incisional (separate procedure)</td>
</tr>
<tr>
<td>54640</td>
<td>Orchiopexy, inguinal approach, with or without hernia repair</td>
</tr>
<tr>
<td>54650</td>
<td>Orchiopexy, abdominal approach, for intra-abdominal testis (eg, Fowler Stephens)</td>
</tr>
<tr>
<td>54800</td>
<td>Biopsy of epididymis, needle</td>
</tr>
<tr>
<td>54840</td>
<td>Excision of spermatocele, with or without epididymectomy</td>
</tr>
<tr>
<td>54860</td>
<td>Epididymectomy; unilateral</td>
</tr>
<tr>
<td>54861</td>
<td>Epididymectomy; bilateral</td>
</tr>
<tr>
<td>54900</td>
<td>Epididymovasostomy, anastomosis of epididymis to vas deferens; unilateral</td>
</tr>
<tr>
<td>54901</td>
<td>Epididymovasostomy, anastomosis of epididymis to vas deferens; bilateral</td>
</tr>
<tr>
<td>55530</td>
<td>Excision of varicocele or ligation of spermatic veins for varicocele; (separate procedure)</td>
</tr>
<tr>
<td>55535</td>
<td>Excision of varicocele or ligation of spermatic veins for varicocele; abdominal approach</td>
</tr>
<tr>
<td>55540</td>
<td>Excision of varicocele or ligation of spermatic veins for varicocele; with hernia repair</td>
</tr>
<tr>
<td>55500</td>
<td>Excision of hydrocele of spermatic cord, unilateral (separate procedure)</td>
</tr>
<tr>
<td>55550</td>
<td>Laparoscopy, surgical, with ligation of spermatic veins for varicocele</td>
</tr>
<tr>
<td>55870</td>
<td>Electroejaculation</td>
</tr>
<tr>
<td>58140</td>
<td>Myomectomy, excision of fibroid tumor(s) of uterus, 1 to 4 intramural myoma(s) with total weight of 250 g or less and/or removal of surface myomas; abdominal approach</td>
</tr>
<tr>
<td>58145</td>
<td>Myomectomy, excision of fibroid tumor(s) of uterus, 1 to 4 intramural myoma(s) with total weight of 250 g or less and/or removal of surface myomas; vaginal approach</td>
</tr>
<tr>
<td>58146</td>
<td>Myomectomy, excision of fibroid tumor(s) of uterus, 5 or more intramural myomas and/or intramural myomas with total weight greater than 250 g, abdominal approach</td>
</tr>
<tr>
<td>58321</td>
<td>Artificial insemination; intra-cervical</td>
</tr>
<tr>
<td>58322</td>
<td>Artificial insemination; intra-uterine</td>
</tr>
<tr>
<td>58323</td>
<td>Sperm washing for artificial insemination</td>
</tr>
<tr>
<td>58345</td>
<td>Transcervical introduction of fallopian tube catheter for diagnosis and/or re-establishing patency (any method), with or without hysterosalpingography</td>
</tr>
<tr>
<td>58545</td>
<td>Laparoscopy, surgical, myomectomy, excision; 1 to 4 intramural myomas with total weight of 250 g or less and/or removal of surface myomas</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>58546</td>
<td>Laparoscopy, surgical, myomectomy, excision; 5 or more intramural myomas and/or intramural myomas with total weight greater than 250 g</td>
</tr>
<tr>
<td>58558</td>
<td>Hysteroscopy, surgical; with sampling (biopsy) of endometrium and/or polypectomy, with or without D & C</td>
</tr>
<tr>
<td>58559</td>
<td>Hysteroscopy, surgical; with lysis of intrauterine adhesions (any method)</td>
</tr>
<tr>
<td>58560</td>
<td>Hysteroscopy, surgical; with division or resection of intrauterine septum (any method)</td>
</tr>
<tr>
<td>58561</td>
<td>Hysteroscopy, surgical; with removal of leiomyomata</td>
</tr>
<tr>
<td>58660</td>
<td>Laparoscopy, surgical; with lysis of adhesions (salpingolysis, ovariolysis) (separate procedure)</td>
</tr>
<tr>
<td>58662</td>
<td>Laparoscopy, surgical; with fulguration or excision of lesions of the ovary, pelvic viscera, or peritoneal surface by any method</td>
</tr>
<tr>
<td>58670</td>
<td>Laparoscopy, surgical; with fulguration of oviducts (with or without transection)</td>
</tr>
<tr>
<td>58672</td>
<td>Laparoscopy, surgical; with fimbrioplasty</td>
</tr>
<tr>
<td>58673</td>
<td>Laparoscopy, surgical; with salpingostomy (salpingoneostomy)</td>
</tr>
<tr>
<td>58700</td>
<td>Salpingectomy, complete or partial, unilateral or bilateral (separate procedure)</td>
</tr>
<tr>
<td>58740</td>
<td>Lysis of adhesions (salpingolysis, ovariolysis)</td>
</tr>
<tr>
<td>58752</td>
<td>Tubouterine implantation</td>
</tr>
<tr>
<td>58760</td>
<td>Fimbrioplasty</td>
</tr>
<tr>
<td>58770</td>
<td>Salpingostomy (salpingoneostomy)</td>
</tr>
<tr>
<td>58800</td>
<td>Drainage of ovarian cyst(s), unilateral or bilateral (separate procedure); vaginal approach</td>
</tr>
<tr>
<td>58805</td>
<td>Drainage of ovarian cyst(s), unilateral or bilateral (separate procedure); abdominal approach</td>
</tr>
<tr>
<td>58920</td>
<td>Wedge resection or bisection of ovary, unilateral or bilateral</td>
</tr>
<tr>
<td>58925</td>
<td>Ovarian cystectomy, unilateral or bilateral</td>
</tr>
<tr>
<td>58970</td>
<td>Follicle puncture for oocyte retrieval, any method</td>
</tr>
<tr>
<td>58974</td>
<td>Embryo transfer, intrauterine</td>
</tr>
<tr>
<td>58976</td>
<td>Game, zygote, or embryo intrafallopian transfer, any method</td>
</tr>
<tr>
<td>74440</td>
<td>Vasography, vesiculography, or epididymography, radiological supervision and interpretation</td>
</tr>
<tr>
<td>74742</td>
<td>Transcervical catheterization of fallopian tube, radiological supervision and interpretation</td>
</tr>
<tr>
<td>76830</td>
<td>Ultrasound, transvaginal</td>
</tr>
<tr>
<td>76856</td>
<td>Ultrasound, pelvic (nonobstetric), real time with image documentation; complete</td>
</tr>
<tr>
<td>76857</td>
<td>Ultrasound, pelvic (nonobstetric), real time with image documentation; limited or follow-up (eg, for follicles)</td>
</tr>
<tr>
<td>76948</td>
<td>Ultrasonic guidance for aspiration of ova, imaging and supervision</td>
</tr>
<tr>
<td>82670</td>
<td>Estradiol</td>
</tr>
<tr>
<td>83001</td>
<td>Gonadotropin; follicle stimulating hormone (FSH)</td>
</tr>
<tr>
<td>83002</td>
<td>Gonadotropin; luteinizing hormone (LH)</td>
</tr>
<tr>
<td>84144</td>
<td>Progesterone</td>
</tr>
<tr>
<td>84830</td>
<td>Ovulation tests, by visual color comparison methods for human luteinizing hormone</td>
</tr>
<tr>
<td>89250</td>
<td>Culture of oocyte(s)/embryo(s), less than 4 days</td>
</tr>
<tr>
<td>89253</td>
<td>Assisted embryo hatching, microtechniques (any method)</td>
</tr>
<tr>
<td>89254</td>
<td>Oocyte identification from follicular fluid</td>
</tr>
<tr>
<td>89255</td>
<td>Preparation of embryo for transfer (any method)</td>
</tr>
<tr>
<td>89257</td>
<td>Sperm identification from aspiration (other than seminal fluid)</td>
</tr>
<tr>
<td>89258</td>
<td>Cryopreservation; embryo(s)</td>
</tr>
<tr>
<td>89260</td>
<td>Sperm isolation; simple prep (eg, sperm wash and swim-up) for insemination or diagnosis with semen analysis</td>
</tr>
<tr>
<td>89261</td>
<td>Sperm isolation; complex prep (eg, Percoll gradient, albumin gradient) for insemination or diagnosis with semen analysis</td>
</tr>
<tr>
<td>89264</td>
<td>Sperm identification from testis tissue, fresh or cryopreserved</td>
</tr>
<tr>
<td>89268</td>
<td>Insemination of oocytes</td>
</tr>
</tbody>
</table>
89272 Extended culture of oocyte(s)/embryo(s), 4-7 days
89280 Assisted oocyte fertilization, microtechnique; less than or equal to 10 oocytes
89281 Assisted oocyte fertilization, microtechnique; greater than 10 oocytes
89290 Biopsy, oocyte polar body or embryo blastomere, microtechnique (for pre-implantation genetic diagnosis); less than or equal to 5 embryos
89291 Biopsy, oocyte polar body or embryo blastomere, microtechnique (for pre-implantation genetic diagnosis); greater than 5 embryos
89300 Semen analysis; presence and/or motility of sperm including Huhner test (post-coital)
89310 Semen analysis; motility and count (not including Huhner test)
89320 Semen analysis; volume, count, motility, and differential
89321 Semen analysis, sperm presence and motility of sperm, if performed
89322 Semen analysis; volume, count, motility, and differential using strict morphologic criteria (eg, Kruger)
89330 Sperm evaluation; cervical mucus penetration test, with or without spinnbarkeit test
89342 Storage (per year); embryo(s)
89352 Thawing of cryopreserved; embryo(s)

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4011</td>
<td>In vitro fertilization; including but not limited to identification and incubation of mature oocytes, fertilization with sperm, incubation of embryo(s), and subsequent visualization for determination of development</td>
</tr>
<tr>
<td>S4013</td>
<td>Complete cycle, gamete intrafallopian transfer (GIFT), case rate</td>
</tr>
<tr>
<td>S4014</td>
<td>Complete cycle, zygote intrafallopian transfer (ZIFT), case rate</td>
</tr>
<tr>
<td>S4015</td>
<td>Complete in vitro fertilization cycle, case rate not otherwise specified</td>
</tr>
<tr>
<td>S4016</td>
<td>Frozen in vitro fertilization cycle, case rate</td>
</tr>
<tr>
<td>S4017</td>
<td>Incomplete cycle, treatment canceled prior to stimulation, case rate</td>
</tr>
<tr>
<td>S4018</td>
<td>Frozen embryo transfer procedure canceled before transfer, case rate</td>
</tr>
<tr>
<td>S4020</td>
<td>In vitro fertilization procedure canceled before aspiration, case rate</td>
</tr>
<tr>
<td>S4021</td>
<td>In vitro fertilization procedure canceled after aspiration, case rate</td>
</tr>
<tr>
<td>S4022</td>
<td>Assisted oocyte fertilization, case rate</td>
</tr>
<tr>
<td>S4027</td>
<td>Storage of previously frozen embryos</td>
</tr>
<tr>
<td>S4028</td>
<td>Microsurgical epididymal sperm aspiration (mesa)</td>
</tr>
<tr>
<td>S4035</td>
<td>Stimulated intrauterine insemination (IU), case rate</td>
</tr>
<tr>
<td>S4037</td>
<td>Cryopreserved embryo transfer, case rate</td>
</tr>
<tr>
<td>S4040</td>
<td>Monitoring and storage of cryopreserved embryos, per 30 days</td>
</tr>
<tr>
<td>S4042</td>
<td>Management of ovulation induction (interpretation of diagnostic tests and studies, non face-to-face medical management of the patient), per cycle</td>
</tr>
</tbody>
</table>

Covered when benefits are available for infertility treatment, as medically necessary, when used to report micro-dissection testicular sperm extraction (micro-TESE) or percutaneous testicular sperm extraction (PESA):

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55899</td>
<td>Unlisted procedure, male genital system</td>
</tr>
</tbody>
</table>

Covered when benefits are available for infertility treatment, as medically necessary, when used to represent mock embryo transfer prior to a medically necessary IVF procedure:

<table>
<thead>
<tr>
<th>CPT®® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>58999</td>
<td>Unlisted procedure, female genital system (nonobstetrical)</td>
</tr>
</tbody>
</table>

Covered when benefits are available for infertility treatment, as medically necessary, when used to report anti-mullerian hormone testing:
<table>
<thead>
<tr>
<th>CPT™ Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83516</td>
<td>Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; qualitative or semiquantitative, multiple step method</td>
</tr>
<tr>
<td>83520</td>
<td>Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; quantitative, not otherwise specified</td>
</tr>
</tbody>
</table>

Not Covered

Experimental/Investigational/Unproven/Not Covered:

Immunological testing:

<table>
<thead>
<tr>
<th>CPT™ Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83519</td>
<td>Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; quantitative, by radioimmunoassay (eg, RIA)</td>
</tr>
<tr>
<td>86148</td>
<td>Anti-phosphatidylserine (phospholipid) antibody</td>
</tr>
<tr>
<td>86357</td>
<td>Natural killer (NK) cells, total count</td>
</tr>
</tbody>
</table>

Antiprothrombin (phospholipid cofactor) antibody:

<table>
<thead>
<tr>
<th>CPT™ Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>86849</td>
<td>Unlisted immunology procedure</td>
</tr>
</tbody>
</table>

Embryotoxicity assay:

<table>
<thead>
<tr>
<th>CPT™ Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>86849</td>
<td>Unlisted immunology procedure</td>
</tr>
</tbody>
</table>

Reproductive Immunophenotype (RIP):

<table>
<thead>
<tr>
<th>CPT™ Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>88182</td>
<td>Flow cytometry, cell cycle or DNA analysis</td>
</tr>
<tr>
<td>88189</td>
<td>Flow cytometry, interpretation, 16 or more markers</td>
</tr>
</tbody>
</table>

Cryopreservation, storage, and thawing of ovarian* and testicular reproductive tissue:

<table>
<thead>
<tr>
<th>CPT™ Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>89240*</td>
<td>Unlisted miscellaneous pathology test</td>
</tr>
<tr>
<td>89335</td>
<td>Cryopreservation, reproductive tissue, testicular</td>
</tr>
<tr>
<td>89344</td>
<td>Storage, (per year); reproductive tissue, testicular/ovarian</td>
</tr>
<tr>
<td>89354</td>
<td>Thawing of cryopreserved; reproductive tissue, testicular/ovarian</td>
</tr>
<tr>
<td>0058T</td>
<td>Cryopreservation; reproductive tissue, ovarian</td>
</tr>
</tbody>
</table>

Media preparation for storage of oocytes, sperm or embryos:

<p>| CPT™ Codes | Description |</p>
<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>89251</td>
<td>Culture of oocyte(s)/embryo(s), less than 4 days; with co-culture of oocyte(s)/embryos</td>
</tr>
</tbody>
</table>

Hyaluronan Binding Assay (HBA):

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>89398</td>
<td>Unlisted reproductive medicine laboratory procedure</td>
</tr>
</tbody>
</table>

Serum Inhibin B:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83520</td>
<td>Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; quantitative, not otherwise specified</td>
</tr>
</tbody>
</table>

Sperm viability test:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>89398</td>
<td>Unlisted reproductive medicine laboratory procedure</td>
</tr>
</tbody>
</table>

Manual soft tissue therapy for the treatment of pelvic adhesions (WURN Technique®, Clear Passage Therapy):

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>97140</td>
<td>Manual therapy techniques (eg, mobilization/manipulation, manual lymphatic drainage, manual traction), 1 or more regions, each 15 minutes</td>
</tr>
</tbody>
</table>

Reactive Oxygen Species Testing (ROS):

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>82397</td>
<td>Chemiluminescent assay</td>
</tr>
</tbody>
</table>

In vitro maturation of oocytes, including cryopreservation, storage, and thawing of immature oocytes:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>89250</td>
<td>Culture of oocyte(s)/embryo(s), less than 4 days</td>
</tr>
<tr>
<td>0357T</td>
<td>Cryopreservation; immature oocyte(s)</td>
</tr>
</tbody>
</table>

Time-lapse monitoring/imaging of embryos:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
</table>
84999 Unlisted chemistry procedure
89398 Unlisted reproductive medicine laboratory procedure

Not Covered, Not Medically Necessary

Not covered, Not medically necessary, even if benefits are available for infertility treatment:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55400</td>
<td>Vasovasostomy, vasovasorrhaphy</td>
</tr>
<tr>
<td>58750</td>
<td>Tubotubal anastomosis</td>
</tr>
<tr>
<td>81025</td>
<td>Urine pregnancy test, by visual color comparison methods</td>
</tr>
<tr>
<td>89259</td>
<td>Cryopreservation; sperm</td>
</tr>
<tr>
<td>89337</td>
<td>Cryopreservation, mature oocyte(s)</td>
</tr>
<tr>
<td>89343</td>
<td>Storage, (per year); sperm/semen</td>
</tr>
<tr>
<td>89346</td>
<td>Storage, (per year); oocyte(s)</td>
</tr>
<tr>
<td>89353</td>
<td>Thawing of cryopreserved; sperm/semen, each aliquot</td>
</tr>
<tr>
<td>89356</td>
<td>Thawing of cryopreserved; oocytes, each aliquot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4023</td>
<td>Donor egg cycle, incomplete, case rate</td>
</tr>
<tr>
<td>S4025</td>
<td>Donor services for in vitro fertilization (sperm or embryo), case rate</td>
</tr>
<tr>
<td>S4026</td>
<td>Procurement of donor sperm from sperm bank</td>
</tr>
<tr>
<td>S4030</td>
<td>Sperm procurement and cryopreservation services; initial visit</td>
</tr>
<tr>
<td>S4031</td>
<td>Sperm procurement and cryopreservation services; subsequent visit</td>
</tr>
</tbody>
</table>

References

10. American College of Obstetricians and Gynecologists (ACOG), ACOG Committee on Obstetric Practice; ACOG Committee on Gynecologic Practice; ACOG Committee on Genetics. ACOG Committee Opinion #324: Perinatal risks associated with assisted reproductive technology. Obstet Gynecol. 2005 Nov;106(5 Pt 1):1143-6.

68. Dicky RP. The relative contribution of assisted reproductive technologies and ovulation induction to multiple births in the United States 5 years after the Society for Assisted Reproductive Technology/American Society for Reproductive Medicine recommendation to limit the number of embryos transferred. Fertil Steril. 2007 May.

141. Song WY, Sun YP, Jin HX, Su YC, Chian RC. Clinical outcome of emergency egg vitrification for women when sperm extraction form the testicular tissue s of the male partner is not successful. Syst Biol Reprod 2011;57:210-3.

146. Sunderam S, Kissin DM, Crawford S, Anderson JE, Folger SG, Jamieson DJ, Barfield WD; Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, CDC.

