BRANCH III

M.Sc.

CHEMISTRY
FOREWORD

I feel highly privileged in presenting the revised curricula and syllabi of Branch III M.Sc. Chemistry for favour of approval by the Faculty and Academic Council of the University.

As per Mahatma Gandhi University PG Programme Regulations for Credit Semester System 2011(MGU-CSS-PG) it has been decided to introduce the Credit Semester System for all the PG courses which are being offered by the affiliated colleges/institutions of the University with effect from the academic year 2012-2013 admission onwards. The PG Board of Studies in Chemistry was entrusted with the duty of preparing the revised curricula and syllabi for all the five M.Sc. Programmes in Chemistry currently approved by the University and offered in the affiliated colleges.

The BOS prepared draft proposals of revised curricula and syllabi for all the M.Sc. courses in Chemistry in conformity with the broad guidelines issued by the University to suit the Credit Semester System. The draft curricula and syllabi for all the five M.Sc. Programmes were discussed in a very effective manner with active participation of Resource Persons and Teacher Representatives from all the colleges in a three-day workshop. The workshop was a grand success and the BOS could incorporate many of the suggestions while finalizing the proposal of the Restructured Curricula and Syllabi.

The BOS feel that appreciable updating could be done in keeping with the current developments and trends in chemistry education. The task of preparing the Curricula and Syllabi and bringing it out in the present form for all the five M.Sc. courses was not a simple task but it was possible with dedicated efforts and wholehearted support and involvement of all the members of the BOS. I would like to express my sincere thanks to all my fellow members of the BOS for all their whole hearted time-bound help, cooperation and encouragement. It has been a pleasure for me to work with them. I am also thankful to all Resource Persons and Teacher Representatives of the colleges for their active participation and useful suggestions during the three-day workshop.

Prof. (Dr.) P. K. Radhakrishnan
Chairman, PG Board of Studies in Chemistry
PG Board of Studies in Chemistry

1. Dr. P.K. Radhakrishnan (Chairman)
 Professor, School of Chemical Sciences
 Mahatma Gandhi University
 Kottayam-686560

2. Dr. S. Sugunan
 Professor, Department of Applied Chemistry
 CUSAT
 Kochi-682022

3. Dr. Baby Thomas
 Associate Professor, Department of Chemistry
 St. Dominic’s College
 Kanjirappally-686512

4. Dr. Varghese Philip
 Associate Professor, Department of Chemistry
 St. Thomas College
 Kozhenchery-689641

5. K.C. Joseph
 Associate Professor, Department of Chemistry
 St. Joseph’s College
 Moolamattom-685591

6. Dr. Sunny Kuriakose
 Associate Professor, Department of Chemistry
 St. Thomas College
 Pala-686574

7. Dr. Ibnu Saud
 Associate Professor, School of Chemical Sciences
 Mahatma Gandhi University
 Kottayam-686560

8. J.L. Rajan
 Associate Professor, Department of Chemistry
 KE College
 Mannanam-686561

9. Dr. K. Sreevalsan
 Associate Professor, Department of Chemistry
 SN College
 Kollam-691001
<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Hours/Week</th>
<th>Total Hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1C01</td>
<td>Organometallics and Nuclear Chemistry</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH1C02</td>
<td>Structural and Molecular Organic Chemistry</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH1C03</td>
<td>Quantum Chemistry and Group Theory</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH1C04</td>
<td>Classical and Statistical Thermodynamics</td>
<td>3</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>CH2P01</td>
<td>Inorganic Chemistry Practical-1</td>
<td>3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>CH2P02</td>
<td>Organic Chemistry Practical-1</td>
<td>3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>CH2P03</td>
<td>Physical Chemistry Practical-1</td>
<td>4</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25</td>
<td>450</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Hours/Week</th>
<th>Total Hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH2C05</td>
<td>Coordination Chemistry</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH2C06</td>
<td>Organic Reaction Mechanisms</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH2C07</td>
<td>Chemical Bonding and Computational Chemistry</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH2C08</td>
<td>Molecular Spectroscopy</td>
<td>3</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>CH2P01</td>
<td>Inorganic Chemistry Practical-1</td>
<td>3</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>CH2P02</td>
<td>Organic Chemistry Practical-1</td>
<td>3</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>CH2P03</td>
<td>Physical Chemistry Practical-1</td>
<td>4</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25</td>
<td>450</td>
<td>24</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Hours/Week</th>
<th>Total Hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH3C09</td>
<td>Structural Inorganic Chemistry</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH3C10</td>
<td>Organic Syntheses</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH3C11</td>
<td>Chemical Kinetics, Surface Chemistry and Photochemistry</td>
<td>4</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>CH3C12</td>
<td>Spectroscopic Methods in Chemistry</td>
<td>3</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>CH4P04</td>
<td>Inorganic Chemistry Practical-2</td>
<td>3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>CH4P05</td>
<td>Organic Chemistry Practical-2</td>
<td>3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>CH4P06</td>
<td>Physical Chemistry Practical-2</td>
<td>4</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25</td>
<td>450</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Hours/Week</th>
<th>Total Hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elective 1</td>
<td>5</td>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective 2</td>
<td>5</td>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective 3</td>
<td>5</td>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>CH4P04</td>
<td>Inorganic Chemistry Practical-2</td>
<td>3</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>CH4P05</td>
<td>Organic Chemistry Practical-2</td>
<td>3</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>CH4P06</td>
<td>Physical Chemistry Practical-2</td>
<td>4</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>CH4D01</td>
<td>Project</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4V01</td>
<td>Viva</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25</td>
<td>450</td>
<td>26</td>
</tr>
</tbody>
</table>

Grand Total

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Hours/Week</th>
<th>Total Hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>
SEMESTER 1

CH1C01 ORGANOMETALLICS AND NUCLEAR CHEMISTRY

Credit: 4

Contact Lecture Hours: 72

Unit 1: Organometallic Compounds-Synthesis, Structure and Bonding (18 Hours)

1.1 Organometallic compounds with linear pi donor ligands-olefins, acetylenes, dienes and allyl complexes-synthesis, structure and bonding.

1.2 Complexes with cyclic pi donors-metalloccenes and cyclic arene complexes-structure and bonding. Hapto nomenclature. Carbene and carbyne complexes.

1.3 Preparation, properties, structure and bonding of simple mono and binuclear metal carbonyls, metal nitrosyls, metal cyanides and dinitrogen complexes. Polynuclear metal carbonyls with and without bridging. Carbonyl clusters-LNCCS and HNCCS, Isoelectronic and isolobal analogy, Wade-Mingos rules, cluster valence electrons.

Unit 2: Reactions of Organometallic Compounds (9 Hrs)

2.1 Substitution reactions-nucleophilic ligand substitution, nucleophilic and electrophilic attack on coordinated ligands.

2.2 Addition and elimination reactions-1,2 additions to double bonds, carbonylation and decarbonylation, oxidative addition and reductive elimination, insertion (migration) and elimination reactions.

2.3 Rearrangement reactions, redistribution reactions, fluxional isomerism.

Unit 3: Catalysis by Organometallic Compounds (9 Hrs)

3.1 Homogeneous and heterogeneous organometallic catalysis-alkene hydrogenation using Wilkinson catalyst, Tolman catalytic loops.

3.2 Reactions of carbon monoxide and hydrogen-the water gas shift reaction, the Fischer-Tropsch reaction(synthesis of gasoline).

3.3 Hydroformylation of olefins using cobalt or rhodium catalyst.

3.4 Polymerization by organometallic initiators and templates for chain propagation-Ziegler Natta catalysts.

3.5 Carbonylation reactions-Monsanto acetic acid process, carbonylation of butadiene using Co₂(CO)₈ catalyst in adipic ester synthesis.

Unit 4: Organometallic Polymers (9 Hrs)

4.1 Polymers with organometallic moieties as pendant groups, polymers with organometallic moieties in the main chain, condensation polymers based on ferrocene and on rigid rod polyynes, polymers prepared by ring opening polymerization, organometallic dendrimers.

Unit 5: Bioinorganic Compounds (18 Hrs)

5.1 Essential and trace elements in biological systems, structure and functions of biological membranes, mechanism of ion transport across membranes, sodium pump, ionophores, valinomycin and crown ether complexes of Na⁺ and K⁺, ATP and ADP. Photosynthesis-chlorophyll a, PS I and PS II. Role of calcium in muscle contraction, blood clotting mechanism and biological calcification.

5.3 Metals in medicine-therapeutic applications of cis-platin, radio-isotopes and MRI agents. Toxic effects of metals(Cd, Hg, Cr and Pb).

Unit 6: Nuclear Chemistry (9 Hrs)

6.2 Synthesis of transuranic elements such as Neptunium, Plutonium, Curium, Berkelium, Einsteinium, Mendelevium, Nobelium, Lawrencium and elements with atomic numbers 104 to 109.

6.3 Analytical applications of radioisotopes-radiometric titrations, kinetics of exchange reactions, measurement of physical constants including diffusion constants, Radioanalysis, Neutron Activation Analysis, Prompt Gama Neutron Activation Analysis and Neutron Absorptiometry.

6.4 Applications of radio isotopes in industry, medicine, autoradiography, radiopharmacology, radiation safety precaution, nuclear waste disposal. Radiation chemistry of water and aqueous solutions.

6.5 Measurement of radiation doses. Relevance of radiation chemistry in biology, organic compounds and radiation polymerization.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Edition</th>
<th>Publisher</th>
</tr>
</thead>
</table>
Unit 1: Basic Concepts in Organic Chemistry
1.1 Review of basic concepts in organic chemistry: bonding, hybridisation, MO picture, inductive effect, electromeric effect, resonance effect, hyperconjugation, steric effect. Bonding weaker than covalent bonds.
1.2 The formalism of curved arrow mechanisms. Practicing of line diagram drawing.
1.3 Concept of aromaticity: delocalization of electrons - Hückel’s rule, criteria for aromaticity, examples of neutral and charged aromatic systems - annulenes. NMR as a tool for aromaticity. Anti-and homo-aromatic systems - Fullerenes, Carbon nanotubes and Graphene.
1.4 Mechanism of electrophilic and nucleophilic aromatic substitution reactions with examples. Arenium ion intermediates. SN1, SNAr, SRN1 and Benzyne mechanisms.

Unit 2: Physical Organic Chemistry and Photochemistry
2.1 Energy profiles. Kinetic versus thermodynamic control of product formation, Hammond postulate, kinetic isotope effects with examples, Hammet equation, Taft equation. Linear free energy relationships.
2.2 Catalysis by acids and bases and nucleophiles with examples from acetal, cyanhydrin and ester formation and hydrolysis reactions-AAC2, AAC1, AAL1, BAC2 and BAL1 mechanisms. Solvent effect. Bulk and specific solvent effects. Introduction to carbon acids - pKa of weak acids, kinetic and thermodynamic acidity. Hard and soft acids and bases - HSAB principle and its applications.

Unit 3: Stereochemistry of Organic Compounds
3.1 Introduction to molecular symmetry and chirality: examples from common objects to molecules. Axis, plane, center, alternating axis of symmetry.
3.2 Center of chirality: molecules with C, N, S based chiral centers, absolute configuration, enantiomers, racemic modifications, R and S nomenclature using Cahn-Ingold-Prelog rules, molecules with a chiral center and Cn, molecules with more than one center of chirality, definition of diastereoisomers, constitutionally symmetrical and unsymmetrical chiral molecules, erythro, threo nomenclature.
3.3 Axial, planar and helical chirality with examples, stereochemistry and absolute configuration of allenes, biphenyls and binaphthyls, ansa and cyclophanic compounds, spiranes, exo-cyclic alkylidenecycloalkanes.

3.4 Topicity and prostereoisomerism, topicity of ligands and faces as well as their nomenclature. NMR distinction of enantiotopic/diastereotopic ligands.

3.5 Stereosomerism: definition based on symmetry and energy criteria, configuration and conformational stereoisomers.

Unit 4: Conformational Analysis (18 Hrs)

References

CH1C03 QUANTUM CHEMISTRY AND GROUP THEORY

Credit: 4
Contact Lecture Hours: 72

Unit 1: Postulates of Quantum Mechanics (9 Hrs)

1.1 State function or wave function postulate: Born interpretation of the wave function, well behaved functions, orthonormality of wave functions.

1.2 Operator postulate: operator algebra, linear and nonlinear operators, Laplacian operator, commuting and noncommuting operators, Hermitian operators and their properties, eigen functions and eigen values of an operator.

1.3 Eigen value postulate: eigen value equation, eigen functions of commuting operators.

1.4 Expectation value postulate.

1.5 Postulate of time-dependent Schrödinger equation, conservative systems and time-independent Schrödinger equation.

Unit 2: Application to Exactly Solvable Model Problems (18 Hrs)

2.1 Translational motion: free particle in one-dimension, particle in a one-dimensional box with infinite potential walls, particle in a one-dimensional box with finite potential walls-tunneling, particle in a three dimensional box-separation of variables, degeneracy.

2.2 Vibrational motion: one-dimensional harmonic oscillator (complete treatment), Hermite equation(solving by method of power series), Hermite polynomials, recursion relation, wave functions and energies-important features, Harmonic oscillator model and molecular vibrations.

2.3 Rotational motion: co-ordinate systems, cartesian, cylindrical polar and spherical polar coordinates and their relationships. The wave equation in spherical polar coordinates-particle on a ring, the phi equation and its solution, wave functions in the real form. Non-planar rigid rotor (or particle on a sphere)-separation of variables, the phi and the theta equations and their solutions, Legendre and associated Legendre equations, Legendre and associated Legendre polynomials. Spherical harmonics (imaginary and real forms)-polar diagrams of spherical harmonics.

2.4 Quantization of angular momentum, quantum mechanical operators corresponding to angular momenta (L_x, L_y, L_z and L^2)-commutation relations between these operators. Spherical harmonics as eigen functions of angular momentum operators L_z and L^2. Ladder operator method for angular momentum. Space quantization.
Unit 3: Quantum Mechanics of Hydrogen-like Atoms (9 Hrs)

3.2 The postulate of spin by Uhlenbeck and Goudsmith, discovery of spin-Stern Gerlach experiment. Spin orbitals-construction of spin orbitals from orbitals and spin functions.

Unit 4: Symmetry and Groups (9 Hrs)

4.1 Symmetry elements, symmetry operations, point groups and their symbols, sub groups, classes, abelian and cyclic groups, group multiplication tables-classes in a group and similarity transformation.

4.2 Symmetry in crystals-32 crystallographic point groups (no derivation), Hermann-Mauguin symbols. Screw axis-pitch and fold of screw axis. Glide planes. Space groups-determination of space group symbols of triclinic and monoclinic systems.

Unit 5: Theory of Molecular Symmetry (18 Hrs)

5.1 Matrices: addition and multiplication of matrices, inverse and orthogonal matrices, character of a matrix, block diagonalisation, matrix representation of symmetry operations, representation of groups by matrices, construction of representation using vectors and atomic orbitals as basis, representation generated by cartesian coordinates positioned on the atoms of a molecule (H₂O and SO₂ as examples).

5.3 Molecular dissymmetry and optical activity.

Unit 6: Application of Group Theory in Spectroscopy (9 Hrs)

6.1 Applications in vibrational spectra: transition moment integral, vanishing of integrals, symmetry aspects of molecular vibrations, vibrations of polyatomic molecules-selection rules for vibrational absorption. Determination of the symmetry of normal modes of H₂O, Trans N₂F₂ and NH₃ using Cartesian coordinates and internal coordinates. Complementary character of IR and Raman spectra-determination of the number of active IR and Raman lines.

References
Unit 1: Classical Thermodynamics (27 Hrs)

1.01 Entropy, dependence of entropy on variables of a system (S,T and V; S,T and P). Thermodynamic equations of state. Irreversible processes - Clausius inequality.

1.02 Free energy, Maxwell relations and significance, temperature dependence of free energy - Gibbs Helmholtz equation, applications of Gibbs Helmholtz equation.

1.03 Partial molar quantities, chemical potential and Gibbs-Duhem equations, determination of partial molar volume and enthalpy.

1.04 Fugacity, relation between fugacity and pressure, determination of fugacity of a real gas, variation of fugacity with temperature and pressure. Activity, dependence of activity on temperature and pressure.

1.05 Thermodynamics of mixing, Gibbs-Duhem-Margules equation, Konowaloff’s rule, Henry’s law, excess thermodynamic functions-free energy, enthalpy, entropy and volume. Determination of excess enthalpy and volume.

1.06 Chemical affinity and thermodynamic functions, effect of temperature and pressure on chemical equilibrium- vant Hoff reaction isochore and isotherm.

1.07 Third law of thermodynamics, Nernst heat theorem, determination of absolute entropies using third law, entropy changes in chemical reactions.

1.08 Three component systems-graphical representation. Solid-liquid equilibrium- ternary solutions with common ions, hydrate formation, compound formation. Liquid-liquid equilibria-one pair of partially miscible liquids, two pairs of partially miscible liquids, three pairs of partially miscible liquids.

1.09 Thermodynamics of irreversible processes with simple examples. Uncompensated heat and its physical significance. Entropy production-rate of entropy production, entropy production in chemical reactions, the phenomenological relations. The principle of microscopic reversibility, the Onsager reciprocal relations. Thermal osmosis. Thermoelectric phenomena.

1.10 Bioenergetics: coupled reactions, ATP and its role in bioenergetics, high energy bond, free energy and entropy change in ATP hydrolysis, thermodynamic aspects of metabolism and respiration, glycolysis, biological redox reactions.

Unit 2: Statistical Thermodynamics (27 Hrs)

2.1 Permutation, probability, apriori and thermodynamic probability, Stirlings approximation, macrostates and microstates, Boltzmann distribution law, partition function and its physical significance, phase space, different ensembles, canonical partition function, distinguishable and indistinguishable molecules, partition function and thermodynamic functions, separation of partition function-
translational, rotational, vibrational and electronic partition functions. Thermal de-Broglie wavelength.

2.2 Calculation of thermodynamic functions and equilibrium constants, statistical interpretation of work and heat, Sakur-Tetrode equation, statistical formulation of third law of thermodynamics, thermodynamic probability and entropy, residual entropy, heat capacity of gases - classical and quantum theories, heat capacity of hydrogen.

2.3 Need for quantum statistics, Bose-Einstein statistics: Bose-Einstein distribution, example of particles, Bose-Einstein condensation, difference between first order and higher order phase transitions, liquid helium, supercooled liquids. Fermi-Dirac distribution: examples of particles, application in electron gas, thermionic emission. Comparison of three statistics.

2.4 Heat capacity of solids- the vibrational properties of solids, Einsteins theory and its limitations, Debye theory and its limitations.

References
SEMESTER 2
CH2C05 COORDINATION CHEMISTRY

Credits: 4
Contact Lecture Hours: 72

Unit 1: Structural Aspects and Bonding
(18 Hrs)

1.1 Classification of complexes based on coordination numbers and possible geometries. Sigma and pi bonding ligands such as CO, NO, CN, R₃P, and Ar₃P. Stability of complexes, thermodynamic aspects of complex formation-Irving William order of stability, chelate effect.

1.2 Splitting of d orbitals in octahedral, tetrahedral, square planar, square pyramidal and triagonal bipyramidal fields, LFSE, Dq values, Jahn Teller (JT) effect, theoretical failure of crystal field theory, evidence of covalency in the metal-ligand bond, nephelauxetic effect, ligand field theory, molecular orbital theory-M.O energy level diagrams for octahedral and tetrahedral complexes without and with pi-bonding, experimental evidences for pi-bonding.

Unit 2: Spectral and Magnetic Properties of Metal Complexes
(18 Hrs)

2.1 Electronic Spectra of complexes-Term symbols of dⁿ system, Racah parameters, splitting of terms in weak and strong octahedral and tetrahedral fields. Correlation diagrams for dⁿ and d¹⁰⁻ⁿ ions in octahedral and tetrahedral fields (qualitative approach), d-d transition, selection rules for electronic transition-effect of spin orbit coupling and vibronic coupling.

2.2 Interpretation of electronic spectra of complexes-Orgel diagrams, demerits of Orgel diagrams, Tanabe-Sugano diagrams, calculation of Dq, B and β (Nephelauxetic ratio) values, spectra of complexes with lower symmetries, charge transfer spectra, luminescence spectra.

2.3 Magnetic properties of complexes-paramagnetic and diamagnetic complexes, molar susceptibility, Gouy method for the determination of magnetic moment of complexes, spin only magnetic moment. Temperature dependence of magnetism-Curie’s law, Curie-Weiss law. Temperature Independent Paramagnetism (TIP), Spin state cross over, Antiferromagnetism-inter and intra molecular interaction. Anomalous magnetic moments.

2.4 Elucidating the structure of metal complexes (cobalt and nickel complexes) using electronic spectra, IR spectra and magnetic moments.

Unit 3: Kinetics and Mechanism of Reactions in Metal Complexes
(18 Hrs)

3.1 Thermodynamic and kinetic stability, kinetics and mechanism of nucleophilic substitution reactions in square planar complexes, trans effect-theory and applications.
3.2 Kinetics and mechanism of octahedral substitution- water exchange, dissociative and associative mechanisms, base hydrolysis, racemization reactions, solvolytic reactions (acidic and basic).
3.3 Electron transfer reactions: outer sphere mechanism-Marcus theory, inner sphere mechanism-Taube mechanism.

Unit 4: Stereochemistry of Coordination Compounds (9 Hrs)
4.1 Geometrical and optical isomerism in octahedral complexes, resolution of optically active complexes, determination of absolute configuration of complexes by ORD and circular dichroism, stereoselectivity and conformation of chelate rings, asymmetric synthesis catalyzed by coordination compounds,

Unit 5: Coordination Chemistry of Lanthanides and Actinides (9 Hrs)
5.1 General characteristics of lanthanides-Electronic configuration, Term symbols for lanthanide ions, Oxidation state, Lanthanide contraction. Factors that mitigate against the formation of lanthanide complexes. Electronic spectra and magnetic properties of lanthanide complexes. Lanthanide complexes as shift reagents.
5.2 General characteristics of actinides-difference between 4f and 5f orbitals, comparative account of coordination chemistry of lanthanides and actinides with special reference to electronic spectra and magnetic properties.

References
08. J.D. Lee, Concise Inorganic Chemistry, 4th Edn., Wiley-India, 2008
Unit 1: Review of Organic Reaction Mechanisms

1.1 Review of organic reaction mechanisms with special reference to nucleophilic and electrophilic substitution at aliphatic carbon (SN$_1$, SN$_2$, SN$_i$, SE$_1$, SE$_2$), addition-elimination and elimination-addition sequences), elimination (E$_1$ and E$_2$) and addition reactions (regioselectivity: Markovnikov’s addition-carbocation mechanism, anti-Markovnikov’s addition-radical mechanism). Elimination vs substitution.

1.2 A comprehensive study on the effect of substrate, reagent, leaving group, solvent and neighbouring group on nucleophilic substitution(SN$_2$ and SN$_1$) and elimination (E$_1$ and E$_2$) reactions.

Unit 2: Chemistry of Carbanions

2.2 Nucleophilic additions to carbonyls groups. Named reactions under carbanion chemistry-mechanism of Claisen, Dieckmann, Knoevenagel, Stobbe, Darzen and acyloin condensations, Shapiro reaction and Julia elimination. Favorski rearrangement.

2.3 Ylids: chemistry of phosphorous and sulphur ylids - Wittig and related reactions, Peterson olefination.

Unit 3: Chemistry of Carbocations

3.1 Formation, structure and stability of carbocations. Classical and non-classical carbocations.

3.2 C-X bond (X = C, O, N) formations through the intermediary of carbocations. Molecular rearrangements including Wagner-Meerwein, Pinacol-pinacolone, semi-pinacol, Dienone-phenol and Benzilic acid rearrangements, Noyori annulation, Prins reaction.

3.3 C-C bond formation involving carbocations: oxymercuration, halolactonisation.

Unit 4: Carbenes, Carbenoids, Nitrenes and Arynes

4.1 Structure of carbenes (singlet and triplet), generation of carbenes, addition and insertion reactions.
4.2 Rearrangement reactions of carbenes such as Wolff rearrangement, generation and reactions of ylids by carbenoid decomposition.

4.3 Structure, generation and reactions of nitrone and related electron deficient nitrene intermediates.

4.4 Hoffmann, Curtius, Lossen, Schmidt and Beckmann rearrangement reactions.

Unit 5: Radical Reactions (9 Hrs)

5.1 Generation of radical intermediates and its (a) addition to alkenes, alkynes (inter and intramolecular) for C-C bond formation - Baldwin’s rules (b) fragmentation and rearrangements-Hydroperoxide: formation, rearrangement and reactions. Autooxidation.

5.2 Named reactions involving radical intermediates: Barton deoxygenation and decarboxylation, McMurry coupling.

Unit 6: Chemistry of Carbonyl Compounds (9 Hrs)

6.1 Reactions of carbonyl compounds: oxidation, reduction (Clemmensen and Wolf-Kishner), addition (addition of cyanide, ammonia, alcohol) reactions, Cannizzaro reaction, addition of Grignard reagent. Structure and reactions of α, β-unsaturated carbonyl compounds involving electrophilic and nucleophilic addition-Michael addition, Mannich reaction, Robinson annulation.

Unit 7: Concerted reactions (18 Hrs)

7.1 Classification: electrocyclic, sigmatropic, cycloaddition, chelotropic and ene reactions. Woodward Hoffmann rules-frontier orbital and orbital symmetry correlation approaches-PMO method.

7.2 Highlighting pericyclic reactions in organic synthesis such as Claisen, Cope, Wittig, Mislow-Evans and Sommelet-Hauser rearrangements. Diels-Alder and Ene reactions (with stereochemical aspects), dipolar cycloaddition(introductory).

7.3 Unimolecular pyrolytic elimination reactions: chelotropic elimination, decomposition of cyclic azo compounds, β-eliminations involving cyclic transition states such as N-oxides, acetates and xanthates.

7.4 Problems based on the above topics.

References

Unit 1: Approximate Methods in Quantum Mechanics (18 Hrs)

1.1 Many-body problem and the need of approximation methods, independent particle model. Variation method, variation theorem with proof, illustration of variation theorem using the trial function $x(a-x)$ for particle in a 1D-box and using the trial function e^{-ar} for the hydrogen atom, variation treatment for the ground state of helium atom.

1.2 Perturbation method, time-independent perturbation method (non-degenerate case only), first order correction to energy and wave function, illustration by application to particle in a 1D-box with slanted bottom, perturbation treatment of the ground state of the helium atom. Qualitative idea of Hellmann-Feynman theorem.

1.3 Hartree Self-Consistent Field method. Spin orbitals for many electron atomsymmetric and antisymmetric wave functions. Pauli's exclusion principle. Slater determinants. Qualitative treatment of Hartree-Fock Self-Consistent Field (HFSCF) method. Roothan's concept of basis functions, Slater type orbitals (STO) and Gaussian type orbitals (GTO), sketches of STO and GTO.

Unit 2: Chemical Bonding (18 Hrs)

2.1 Schrödinger equation for molecules. Born-Oppenheimer approximation. Valence Bond (VB) theory, VB theory of H_2 molecule, singlet and triplet state functions (spin orbitals) of H_2.

2.2 Molecular Orbital (MO) theory, MO theory of H_2^+ ion, MO theory of H_2 molecule, MO treatment of homonuclear diatomic molecules Li_2, Be_2, N_2, O_2 and F_2 and hetero nuclear diatomic molecules LiH, CO, NO and HF. Bond order. Correlation diagrams, non-crossing rule. Spectroscopic term symbols for diatomic molecules. Comparison of MO and VB theories.

2.3 Hybridization, quantum mechanical treatment of sp, sp2 and sp3 hybridisation. Semiempirical MO treatment of planar conjugated molecules, Hückel Molecular Orbital (HMO) theory of ethene, allyl systems, butadiene and benzene. Calculation of charge distributions, bond orders and free valency.

Unit 3: Applications of Group Theory in Chemical Bonding (9 Hrs)

3.1 Applications in chemical bonding, construction of hybrid orbitals with BF_3, CH_4, PCl_5 as examples. Transformation properties of atomic orbitals. Symmetry adapted linear combinations (SALC) of C_2V, C_2h, C_3, C_3v and D_3h point groups. MO diagram for water and ammonia.
Unit 4: Computational Chemistry

(The units 4 and 5 have been designed to expose the students to the field of computational chemistry, which has emerged as a powerful tool in chemistry capable of supplementing and complementing experimental research. The quantities which can be calculated using computational methods, how to prepare the input to get these results and the different methods that are widely used to arrive at the results are introduced here. Detailed mathematical derivations are not expected. Though computer simulations form an important part of computational chemistry, they are not covered in this syllabus.)

4.1 Introduction: computational chemistry as a tool and its scope.

4.2 Potential energy surface: stationary point, transition state or saddle point, local and global minima.

4.3 Molecular mechanics methods: force fields-bond stretching, angle bending, torsional terms, non-bonded interactions, electrostatic interactions. Mathematical expressions. Parameterisation from experiments or quantum chemistry. Important features of commonly used force fields like MM3, MMFF, AMBER and CHARMM.

4.4 Ab initio methods: A review of Hartree-Fock method. Basis set approximation. Slater and Gaussian functions. Classification of basis sets - minimal, double zeta, triple zeta, split valence, polarization and diffuse basis sets, contracted basis sets, Pople style basis sets and their nomenclature, correlation consistent basis sets.

4.6 General introduction to semiempirical methods: basic principles and terminology.

4.7 Introduction to Density Functional Theory (DFT) methods: Hohenberg-Kohn theorems. Kohn-Sham orbitals. Exchange correlation functional. Local density approximation. Generalized gradient approximation. Hybrid functionals (only the basic principles and terms need to be introduced).

4.8 Model Chemistry-notation, effect on calculation time (cost).

4.9 Comparison of molecular mechanics, ab initio, semiempirical and DFT methods.

Unit 5: Computational Chemistry Calculations

(9 Hrs)

5.2 Identifying a successful GAMESS/Firefly calculation-locating local minima and saddle points, characterizing transition states, calculation of ionization energies, Koopmans’ theorem, electron affinities and atomic charges.

5.3 Identifying HOMO and LUMO-visualization of molecular orbitals and normal modes of vibrations using suitable graphics packages.

References
06. A.S. Kunju, G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2010

Softwares
Molecular Mechanics:
2. Tinker available from www.dasher.wustl.edu/ffc/
Ab initio, semiempirical and dft:

1. **Firefly / PC GAMESS** available from http://classic.chem.msu.su/gran/gamess/
2. **WINGAMESS** available from http://www.msg.ameslab.gov/gamess/

Graphical User Interface (GUI):

1. **Gabedit** available from http://gabedit.sourceforge.net/
3. **Avogadro** from http://avogadro.openmolecules.net/wiki/Get_Avogadro
Unit 1: Foundations of Spectroscopic Techniques (27 Hrs)

1.1 Origin of spectra: origin of different spectra and the regions of the electromagnetic spectrum, intensity of absorption, influencing factors, signal to noise ratio, natural line width, contributing factors, Doppler broadening, Lamb dip spectrum, Born Oppenheimer approximation, energy dissipation from excited states (radiative and non radiative processes), relaxation time.

1.2 Microwave spectroscopy: principal moments of inertia and classification (linear, symmetric tops, spherical tops and asymmetric tops), selection rules, intensity of rotational lines, relative population of energy levels, derivation of J_{max}, effect of isotopic substitution, calculation of intermolecular distance, spectrum of non rigid rotors, rotational spectra of polyatomic molecules, linear and symmetric top molecules, Stark effect and its application, nuclear spin and electron spin interaction, chemical analysis by microwave spectroscopy.

1.3 Infrared spectroscopy: Morse potential energy diagram, fundamentals, overtones and hot bands, determination of force constants, diatomic vibrating rotator, break down of the Born-Oppenheimer approximation, effect of nuclear spin, vibrational spectra of polyatomic molecules, normal modes of vibrations, combination and difference bands, Fermi resonance, finger print region and group vibrations, effect of H-bonding on group frequency, disadvantages of dispersive IR, introduction to FT spectroscopy, FTIR.

1.4 Raman spectroscopy: scattering of light, polarizability and classical theory of Raman spectrum, rotational and vibrational Raman spectrum, complementarities of Raman and IR spectra, mutual exclusion principle, polarized and depolarized Raman lines, resonance Raman scattering and resonance fluorescence.

1.5 Electronic spectroscopy: term symbols of diatomic molecules, electronic spectra of diatomic molecules, selection rules, vibrational coarse structure and rotational fine structure of electronic spectrum, Franck-Condon principle, predissociation, calculation of heat of dissociation, Birge and Sponer method, electronic spectra of polyatomic molecules, spectra of transitions localized in a bond or group, free electron model, different types of lasers-solid state lasers, continuous wave lasers, gas lasers and chemical laser, frequency doubling, applications of lasers, introduction to UV and X-ray photoelectron spectroscopy.

Unit 2: Resonance Spectroscopy (27 Hrs)

2.1 NMR spectroscopy: interaction between nuclear spin and applied magnetic field, nuclear energy levels, population of energy levels, Larmor precession, relaxation methods, chemical shift, representation, examples of AB, AX and AMX types, exchange phenomenon, factors influencing coupling, Karplus relationship.
2.2 FTNMR, second order effects on spectra, spin systems (AB, AB₂), simplification of second order spectra, chemical shift reagents, high field NMR, double irradiation, selective decoupling, double resonance, NOE effect, two dimensional NMR, COSY and HETCOR, ¹³C NMR, natural abundance, sensitivity, ¹³C chemical shift and structure correlation, introduction to solid state NMR, magic angle spinning.

2.3 EPR spectroscopy: electron spin in molecules, interaction with magnetic field, g factor, factors affecting g values, determination of g values (g∥ and g⊥), fine structure and hyperfine structure, Kramers’ degeneracy, McConnell equation.

2.4 An elementary study of NQR spectroscopy.

2.5 Mossbauer spectroscopy: principle, Doppler effect, recording of spectrum, chemical shift, factors determining chemical shift, application to metal complexes, MB spectra of Fe(II) and Fe(III) cyanides.

References
03. P.W. Atkins, Physical Chemistry, ELBS, 1994
SEMESTERS 1 AND 2
CH2P01 INORGANIC CHEMISTRY PRACTICAL-1
Credit: 3 Contact Lab Hours: 54+54=108

PART I
Separation and identification of two less familiar metal ions such as Tl, W, Se, Mo, Ce, Th, Ti, Zr, V, U and Li. Anions which need elimination not to be given. Minimum eight mixtures to be given.

PART II
Colorimetric estimation of Fe, Cu, Ni, Mn, Cr, NH₄⁺, nitrate and phosphate ions.

PART III
Preparation and characterization complexes using IR, NMR and electronic spectra.
(a) Tris (thiourea)copper(I) complex
(b) Potassium tris (oxalate) aluminate (III).
(c) Hexammine cobalt (III) chloride.
(d) Tetrammine copper (II) sulphate.
(e) Schiff base complexes of various divalent metal ions.

References
01. A.I. Vogel, G. Svehla, Vogel’s Qualitative Inorganic Analysis, 7th Edn., Longman, 1996.
PART I

General methods of separation and purification of organic compounds such as:
1. Solvent extraction
2. Soxhlet extraction
3. Fractional crystallization
4. TLC and Paper Chromatography
5. Column Chromatography
6. Membrane Dialysis

PART II

1. Separation of Organic binary mixtures by chemical/solvent separation methods
2. Separation of organic mixtures by TLC
3. Separation/purification of organic mixtures by column chromatography

PART III

Drawing the structures of organic molecules and reaction schemes by ChemDraw, Symyx Draw and Chemsketch. Draw the structures and generate the IR and NMR spectra of the substrates and products in the following reactions:
1. Cycloaddition of diene and dienophile (Diels-Alder reaction)
2. Oxidation of primary alcohol to aldehyde and then to acid
3. Benzoin condensation
4. Esterification of simple carboxylic acids
5. Aldol condensation

References

CH2P03 PHYSICAL CHEMISTRY PRACTICAL-1

Credit: 3
Contact Lab Hours: 72+72 = 144

(One question each from both parts A and B will be asked for the examination)

Part A

I. Adsorption

1. Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system.
2. Determination of the concentration of the given acid using the isotherms.

II. Phase diagrams

1. Construction of phase diagrams of simple eutectics.
2. Construction of phase diagram of compounds with congruent melting point: diphenyl amine-benzophenone system.
3. Effect of (KCl/succinic acid) on miscibility temperature.
4. Construction of phase diagrams of three component systems with one pair of partially miscible liquids.

III. Distribution law

1. Distribution coefficient of iodine between an organic solvent and water.
2. Distribution coefficient of benzoic acid between benzene and water.
3. Determination of the equilibrium constant of the reaction KI + I₂ ↔ KI₃

IV. Surface tension

1. Determination of the surface tension of a liquid by
 a) Capillary rise method
 b) Drop number method
 c) Drop weight method
2. Determination of parachor values.
3. Determination of the composition of two liquids by surface tension measurements
Part B
Computational chemistry experiments

V. Experiments illustrating the capabilities of modern open source/free computational chemistry packages in computing single point energy, geometry optimization, vibrational frequencies, population analysis, conformational studies, IR and Raman spectra, transition state search, molecular orbitals, dipole moments etc.

Geometry input using Z-matrix for simple systems, obtaining Cartesian coordinates from structure drawing programs like Chemsketch.

References
04. GAMESS documentation available from:
 http://www.msg.ameslab.gov/gamess/documentation.html
SEMESTER 3

CH3C09 STRUCTURAL INORGANIC CHEMISTRY

Credits: 4 Contact Lecture Hours: 72

Unit 1: Solid State Chemistry (18 Hrs)

1.1 Structure of solids: Imperfections in solids-point defects, line defects and plane defects. Structure of compounds of AX (Zinc blende, Wurtzite), AX₂ (Rutile, fluorite, antifluorite), AₘX₂ (Nickel Arsenide), ABX₃ (Perovskite, Ilmenite). Spins. Inverse spinel structures.

1.2 Solid state reactions-diffusion coefficient, mechanisms, vacancy diffusion, thermal decomposition of solid-Type I reactions, Type II reactions.

Unit 2: Electrical, Magnetic and Optical Properties (18 Hrs)

2.2 Magnetic properties of transition metal oxides, garnets, spinels, ilmenites and perovskites, magnetoplumbites.

2.3 Optical properties-photoconductivity, photovoltaic effects, luminescence. Applications of optical properties

2.4 Super conductivity-Type I and Type II superconductors, Frolich diagram, Cooper pairs, theory of low temperature super conductors, junctions using superconductors, BCS theory of superconductivity (derivation not required). Super conducting cuprates - YBaCu oxide system, Meisner effect, conventional superconductors, organic superconductors, fullerenes, carbon nanotubes, high temperature superconductors.

Unit 3: Inorganic Chains and Rings (18 Hrs)

3.1 Chains - catenation, heterocatenation. Silicate minerals. Structure of silicates-common silicates, silicates containing discrete anions, silicates containing infinite chains, silicates containing sheets, framework silicates. Silicones. Zeolites-synthesis, structure and applications. Isopoly acids of vanadium, molybdenum and

3.2 Rings-topological approach to boron hydrides, Styx numbers. Structure and bonding in borazines, ring silicates and silicones, phosphorous-nitrogen compounds, phosphazenes. Heterocyclic inorganic ring systems—structure and bonding in phosphorous-sulphur and sulphur-nitrogen compounds. Homocyclic inorganic ring systems—structure and bonding in sulphur, selenium and phosphorous compounds.

Unit 4: Inorganic Cages and Metal Clusters (9 Hrs)

4.1 Cages: synthesis, structure and bonding of cage like structures of phosphorous. Boron cage compounds—Wade Mingos Lauher rules, MNO rule, boranes, carboranes, metallacarboranes.

4.2 Metal clusters: dinuclear compounds of Re, Cu and Cr, metal-metal multiple bonding in \((\text{Re}_2\text{X}_8)_2\), trinuclear clusters, tetrnuclear clusters, hexanuclear clusters. Polyatomic zintl anion and cations. Infinite metal chains.

Unit 5: Chemistry of Materials (9 Hrs)

5.1 Glasses, ceramics, composites, nanomaterials—preparative procedures. Sol-gel synthesis, glassy state—glass formers and glass modifiers, ceramic structures—mechanical properties, clay products, refractories—characterizations, properties and applications.

References

Unit 1: Organic Synthesis via Oxidation and Reduction (18 Hrs)
1.1 Survey of organic reagents and reactions in organic chemistry with special reference to oxidation and reduction. Metal based and non-metal based oxidations of (a) alcohols to carbonyls (Chromium, Manganese, aluminium and DMSO based reagents) (b) alkenes to epoxides (peroxides/per acids based)-Sharpless asymmetric epoxidation, Jacobsen epoxidation, Shi epoxidation (c) alkenes to diols (Manganese and Osmium based)-Prevost reaction and Woodward modification (d) alkenes to carbonyls with bond cleavage (Manganese and lead based, ozonolysis) (e) alkenes to alcohols/carbonyls without bond cleavage-hydroboration-oxidation, Wacker oxidation, selenium/chromium based allylic oxidation (f) ketones to ester/lactones- Baeyer-Villiger oxidation.

Unit 2: Modern Synthetic Methods and Reagents (18 Hrs)

2.2 Introduction to multicomponent reactions-Click reactions.

Unit 3: Construction of Carbocyclic and Heterocyclic Ring Systems (9 Hrs)
3.1 Different approaches towards the synthesis of three, four, five and six-membered rings. Photochemical approaches for the synthesis of four membered rings-oxetanes and cyclobutanes, ketene cycloaddition (inter and intra molecular), Pauson-Khand reaction, Volhard reaction, Bergman cyclization, Nazarov cyclization, Mitsunobu reaction, cation-olefin cyclization and radical-olefin cyclization.

3.2 Inter-conversion of ring systems (contraction and expansion)-Demjenov reaction, Reformatsky reaction. Construction of macrocyclic rings-ring closing metathesis.
3.3 Formation of heterocyclic rings: 5-membered ring heterocyclic compounds with one or more than one hetero atom like N, S or O - pyrrole, furan, thiophene, imidazole, thiazole and oxazole.

Unit 4: Protecting Group Chemistry (9 Hrs)

4.1 Protection and deprotection of hydroxy, carboxyl, carbonyl, and amino groups. Chemo and regio selective protection and deprotection. Illustration of protection and deprotection in synthesis.

4.2 Protection and deprotection in peptide synthesis: common protecting groups used in peptide synthesis, protecting groups used in solution phase and solid phase peptide synthesis (SPPS).

4.3 Functional equivalence and reactivity Umpolung. Role of trimethyl silyl group in organic synthesis.

Unit 5: Retrosynthetic Analysis (9 Hrs)

5.1 Basic principles and terminology of retrosynthesis: synthesis of aromatic compounds, one group and two group C-X disconnections, one group C-C and two group C-C disconnections.

5.2 Amine and alkene synthesis: important strategies of retrosynthesis, functional group transposition, important functional group interconversions. Enantioselective synthesis of Corey lactone, longifolene and luciferin. Umpolung equivalent - Peterson olefination, enolate formation, Ireland method.

Unit 6: Biosynthesis and Biomimetic Synthesis (9 Hrs)

References

CH3C11 CHEMICAL KINETICS, SURFACE CHEMISTRY AND PHOTOCHEMISTRY

Credit: 4 Contact Lecture Hours: 72

Unit 1: Chemical kinetics (27 Hrs)

1.2 Lindemann-Hinshelwood mechanism, qualitative idea of RRKM theory, chain reactions: free radical and chain reactions, steady state treatment, kinetics of H_2Cl_2 and H_2Br_2 reactions, Rice-Herzfeld mechanism, branching chains H_2O_2, Semonov-Hinshelwood mechanism of explosive reactions, mechanisms of step-growth, ionic and addition polymerization, kinetics of anionic and cationic polymerization.

1.3 Fast reactions: relaxation, flow and shock methods, flash photolysis, NMR and ESR methods of studying fast reactions.

1.4 Reactions in solution: factors determining reaction rates in solutions, effect of dielectric constant and ionic strength, cage effect, Bronsted-Bjerrum equation, primary and secondary kinetic salt effect, influence of solvent on reaction rates, significance of volume of activation, linear free energy relationship, kinetic isotope effect.

1.5 Acid-base catalysis: specific and general catalysis, Skrabal diagram, Bronsted catalysis law, prototropic and protolytic mechanism with examples, acidity function.

1.6 Enzyme catalysis and its mechanism, Michelis-Menten equation, effect of pH and temperature on enzyme catalysis.

1.7 Mechanisms of heterogeneous catalysis: unimolecular and bimolecular surface reactions, mechanisms of catalyzed reactions like ammonia synthesis, Fischer-Tropsch reactions, hydrogenation of ethylene and catalytic cracking of hydrocarbons and related reactions.

Unit 2: Surface Chemistry (27 Hrs)

2.1 Different types of surfaces, thermodynamics of surfaces, Gibbs adsorption equation and its verification, surfactants and micelles, general properties of emulsions, foam structure, aerosols, surface films, surface pressure and surface potential and their measurements and interpretation. Application of low energy electron diffraction and photoelectron spectroscopy, ESCA and Auger electron spectroscopy, scanning probe microscopy, ion scattering, SEM and TEM in the study of surfaces.

2.3 Colloids: Zeta potential, electrokinetic phenomena, sedimentation potential and streaming potential, Donnan membrane equilibrium.

2.4 Macromolecules: different averages, methods of molecular mass determination-osmotic, viscosity, sedimentation and light scattering methods.

2.5 Surface Enhanced Raman Scattering, surfaces for SERS studies, chemical enhancement mechanism, surface selection rules, spectrum of 2-aminophenol, applications of SERS.

Unit 3: Photochemistry (18 Hrs)

3.1 Quantum yield, chemical actinometry, excimers and exciplexes, photosensitization, chemiluminescence, bioluminescence, thermoluminescence, pulse radiolysis, hydrated electrons, photostationary state, dimerization of anthracene, ozone layer in the atmosphere.

3.2 Principle of utilization of solar energy, solar cells and their working.

3.3 Quenching of fluorescence and its kinetics, Stern-Volmer equation, concentration quenching, fluorescence and structure, delayed fluorescence, E-type and P-type, effect of temperature on emissions, photochemistry of environment, green house effect, two photon absorption spectroscopy, lasers in photochemical kinetics.

References

Unit 1: Ultraviolet-Visible and Chirooptical Spectroscopy (9 Hrs)
1.1 Energy levels and selection rules, Woodward-Fieser and Fieser-Kuhn rules.
1.2 Influence of substituent, ring size and strain on spectral characteristics. Solvent effect, Stereochmical effect, non-conjugated interactions. Chirooptical properties-ORD, CD, octant rule, axial haloketone rule, Cotton effect.
1.3 Problems based on the above topics.

Unit 2: Infrared Spectroscopy (9 Hrs)
2.1 Fundamental vibrations, characteristic regions of the spectrum (fingerprint and functional group regions), influence of substituent, ring size, hydrogen bonding, vibrational coupling and field effect on frequency, determination of stereochemistry by IR technique.
2.2 IR spectra of C=C bonds (olefins and arenes) and C=O bonds.
2.3 Problems on spectral interpretation with examples.

Unit 3: Nuclear Magnetic Resonance Spectroscopy (18 Hrs)
3.1 Magnetic nuclei with special reference to 1H and 13C nuclei. Chemical shift and shielding/deshielding, factors affecting chemical shift, relaxation processes, chemical and magnetic non-equivalence, local diamagnetic shielding and magnetic anisotropy. 1H and 13C NMR scales.
3.2 Spin-spin splitting: AX, AX$_2$, AX$_3$, A$_2$X$_3$, AB, ABC, AMX type coupling, first order and non-first order spectra, Pascal’s triangle, coupling constant, mechanism of coupling, Karplus curve, quadrupole broadening and decoupling, diastereomeric protons, virtual coupling, long range coupling-epi, peri and bay effects. NOE, NOE and cross polarization.
3.3 Simplification non-first order spectra to first order spectra: shift reagents, spin decoupling and double resonance, off resonance decoupling. Chemical shifts and homonuclear/heteronuclear couplings. Basis of heteronuclear decoupling.
3.4 2D NMR and COSY, HOMOCOSY and HETEROCOSY
3.5 Polarization transfer. Selective Population Inversion. DEPT, INEPT and RINEPT. Sensitivity enhancement and spectral editing, MRI.
3.6 Problems on spectral interpretation with examples.
Unit 4: Mass Spectrometry
(9 Hrs)

4.2 Problems on spectral interpretation with examples.

Unit 5: Structural Elucidation Using Spectroscopic Techniques
(9 Hrs)

5.1 Identification of structures of unknown organic compounds based on the data from UV-Vis, IR, 1H NMR and 13C NMR spectroscopy (HRMS data or Molar mass or molecular formula may be given).

5.2 Interpretation of the given UV-Vis, IR and NMR spectra.

References

06. H. Gunther, NMR Spectroscopy, 2nd Edn., Wiley, 1995.
12. Online spectral databases including RIO-DB.
SEMESTER 4

ELECTIVE COURSES
(Any 3 courses to be opted from the following courses)

CH4E01 ADVANCED INORGANIC CHEMISTRY
Credit: 4
Contact Lecture Hours: 90

Unit 1: Applications of Group Theory
(27Hrs)
1.1 Transformation properties of atomic orbitals, hybridization schemes for sigma and pi bonding with examples, Symmetry Adapted Linear Combination of Atomic orbitals in tetrahedral, octahedral and sandwich complexes.
1.2 Ligand field theory-splitting of d orbitals in different environments using group theoretical considerations, construction of energy level diagrams, correlation diagrams, method of descending symmetry, formation of symmetry adapted group of ligands, M.O. diagrams, splitting terms for orbitals, energy levels, d-d transition-selection rules, vanishing integrals. Raman spectra of complexes with oxo anions as ligands, IR and Raman spectra using character tables in tetrahedral, octahedral and square planar complexes.

Unit 2: Inorganic Spectroscopic Methods.
(9 Hrs)
2.1 Infrared and Raman Spectroscopy: structural elucidation of coordination compounds containing the following molecules/ions as ligands-NH3, H2O, CO, NO, OH−, SO4^{2−}, CN−, SCN−, NO2− and X− (X=halogen).
2.2 Electron Paramagnetic Resonance Spectroscopy: EPR of d^1 and d^9 transition metal ions in cubic and tetragonal ligand fields, evaluation of g values and metal hyperfine coupling constants.
2.3 Mössbauer Spectroscopy: applications of Mössbauer spectroscopy in the study of Fe(III) complexes.

Unit 3: Inorganic Photochemistry
(9 Hrs)
3.1 Excited states, ligand field states, charge-transfer states and Thexi states, phosphorescence and fluorescence. Photochemical reactions-substitution and redox reactions of Cr(III), Ru(II) and Ru(III) complexes. Applications-synthesis and catalysis, chemical actinometry and photochromism. Metal-metal multiple bonds.
3.2 Metal complex sensitizers-electron relay, semiconductor supported metal oxide systems, water photolysis, nitrogen fixation and CO2 reduction.
Unit 4: Nanomaterials (18 Hrs)

4.1 General introduction to nanomaterials and emergence of nanotechnology, Moore’s law, synthesis and properties of fullerenes and carbon nanotubes, synthesis of nanoparticles of gold, silver, rhodium, palladium and platinum, techniques of synthesis-electroplating and electrophoretic deposition, conversion through chemical reactions and lithography. Thin films-chemical vapor deposition and atomic layer deposition techniques.

4.3. Evolving interfaces of nanotechnology-nanobiology, nanosensors, nanomedicines.

Unit 5: Analytical Methods (18 Hrs)

5.1 The basis and procedure of sampling-crushing and grinding, gross sampling. Sampling of solids, liquids, gas, particulate solids, metals and alloys. Preparation of a laboratory sample. Moisture in samples-essential and non essential water, occluded water. Determination of water in samples-direct and indirect methods.

5.2 Decompositions and dissolution-reagents for decomposition and dissolution like HCl, H2SO4, HNO3, HClO4 and HF. Microwave decompositions, combustion methods. Uses of fluxes like Na2CO3, Na2O2, KNO3, K2S2O7, NaOH, B2O3 and lithium meta borate.

5.3 Elimination of interferences from samples by precipitation, electrolytic precipitation, separation by extraction and ion exchange separation.

5.4 Analytical procedures involved in the environmental monitoring of water quality-BOD, COD, DO, nitrite and nitrate, iron, fluoride, soil moisture, salinity, soil colloids, cation and anion exchange capacity. Air pollution monitoring: sampling and collection of air pollutants-SO2, NO2, NH3, O3, and SPM.

Unit 6: Acids and Bases and Non-aqueous Solvents (9 Hrs)

6.1 Acid base concept in non aqueous media-HSAB concept, solvent effects, linear free energy relationship-mechanism and methods of determination

References

03. A.S. Kunju, G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2010
CH4E02 ADVANCED ORGANIC CHEMISTRY
Credit: 4
Contact Lecture Hours: 90

Unit 1: Molecular Recognition and Supramolecular Chemistry (18 Hrs)

1.1 Concept of molecular recognition, host-guest complex formation, forces involved in molecular recognition.
1.2 Molecular receptors: cyclodextrins, crown ethers, cryptands, spherands, tweezers, carcerands, cyclophanes, calixarenes, carbon nanocapsules.
1.3 Importance of molecular recognition in biological systems like DNA and protein. Controlled release phenomena.
1.4 Applications of supramolecular complexes in perfumery and medicine. Targeted drug delivery.

Unit 2: Green Alternatives to Organic Synthesis (9 Hrs)

2.3 Green Solvents: ionic liquids, supercritical CO₂, fluorous chemistry.
2.4 General principles of microwave and ultrasound assisted organic synthesis.

Unit 3: Principles of Nanochemistry (9 Hrs)

3.1 Basic principles of Nanochemistry: methods of synthesis of Nanomaterials (basic idea only). Characterisation of Nanomaterials: UV-Visible spectroscopy, SEM, TEM, STM, XRD (principles only).
3.2 Applications of nanomaterials in medicine.

Unit 4: Stereoselective Transformations (9 Hrs)

4.1 Asymmetric induction-chiral auxiliaries and chiral pool.
4.2 Enantioselective catalytic hydrogenation developed by Noyori and Knowels.
4.3 Asymmetric aldol condensation pioneered by Evans.
4.4 Asymmetric Diels-Alder reactions.
4.5 Asymmetric epoxidation using Jacobsen’s catalyst.
Unit 5: Chemistry of Natural Products and Biomolecules (18 Hrs)

5.1 Basic aspects of structure and classification of carbohydrates, terpenoids, alkaloids, steroids, plant pigments, lipids, vitamins, amino acids, proteins and nucleic acids. Nomenclature of prostaglandins.

5.2 Synthesis of camphor, atropine, papaverine, quinine, cyanin, quercetin, β-carotene, testosterone, PGE₂ and PGF₂α.

5.3 Methods for primary structure determination of peptides, proteins and nucleic acids. Replication of DNA, flow of genetic information, protein biosynthesis, transcription and translation, Genetic code, regulation of gene expression, DNA sequencing. The Human Genome Project. DNA profiling and the Polymerase Chain Reaction (PCR).

Unit 6: Medicinal Chemistry and Drug Designing (9 Hrs)

6.1 Introduction to Drug design: modeling techniques, receptor proteins, drug-receptor interaction, drug action, drug selectivity, drug metabolism.

6.2 Important chemicals used in drug action, anticoagulants and anticoagulant therapy, anti-anginal drugs, antihypertensive agents, antimalarial drugs, aminoquinolines and alkaloids.

Unit 7: Advances in Polymer Chemistry (9 Hrs)

7.1 Conducting polymers, polymers for NLO applications, temperature resistant and flame retardant polymers, polymers for medical applications.

Unit 8: Research Methodology of Chemistry (9 Hrs)

8.1 The search of knowledge, purpose of research, scientific methods, role of theory, characteristics of research.

8.2 Types of research: fundamental, applied, historical and experimental research.

8.5 Important scientific and Chemistry Journals. Impact factor.

References

CH4E03 ADVANCED PHYSICAL CHEMISTRY

Credit: 4
Contact Lecture Hours: 90

Unit 1: Crystallography (18 Hrs)

1.1 Miller indices, point groups (derivation not expected), translational symmetry, glide planes and screw axes, space groups, simple cases like triclinic and monoclinic systems, interplanar spacing and method of determining lattice types, reciprocal lattices, methods of characterizing crystal structure, rotating crystal method, powder X-ray diffraction method, determination of structure of sodium chloride by powder method, comparison of the structures of NaCl and KCl, brief outline of single crystal X-ray diffraction and crystal growth techniques.

1.2 Structure factor: atomic scattering factor, coordinate expression for structure factor, structure by Fourier synthesis.

1.3 Liquid crystals: mesomorphic state, types, examples and application of liquid crystals. Theories of liquid crystals. Photoconductivity of liquid crystals.

Unit 2: Gaseous State (9 Hrs)

2.1 Derivation of Maxwell’s law of distribution of velocities, graphical representation, experimental verification of the law, most probable velocity, derivation of average, RMS and most probable velocities, collision diameter, collision frequency in a single gas and in a mixture of two gases, mean free path, frequency of collision, effusion, the rate of effusion, time dependence of pressure of an effusing gas, the law of corresponding states, transport properties of gases.

Unit 3: Fluorescence Spectroscopy (9 Hrs)

Unit 4: Electrochemistry and Electromotive Force (27 Hrs)

4.1 Conductance measurements, technique at high frequency and high voltage, results of conductance measurements, ionic mobilities, influence of pressure and temperature on conductance of ions, Walden equations, abnormal ionic conductance.

4.2 Theories of ions in solution, Drude and Nernst’s electrostriction model and Born’s model, Debye-Huckel theory, Derivation of Debye-Huckel-Onsager equation, validity of DHO equation for aqueous and non aqueous solutions, Debye-Falkenhagen effect, conductance with high potential gradients, activity and
activity coefficients in electrolytic solutions, ionic strength, Debye-Huckel limiting law and its various forms, qualitative and quantitative tests of Debye-Huckel limiting equation, deviations from the DHL Limiting law. Osmotic coefficient, ion association, fraction of association, dissociation constant, triple ion and conductance minima, equilibria in electrolytes, association constant, solubility product principle, solubility in presence of common ion, instability constant, activity coefficient and solubility measurement, determination of activity coefficient from equilibrium constant measurement.

4.3 Electrochemical cells, concentration cells and activity coefficient determination, liquid junction potential, evaluation of thermodynamic properties, the electrode double layer, electrode-electrolyte interface, different models of double layer, theory of multilayer capacity, electrocapillary, Lippmann equation, membrane potential.

4.4 Fuel cells, classification based on working temperature, chemistry of fuel cells, H_2-O_2 fuel cells.

4.5 Polarization - electrolytic polarization, dissolution and decomposition potential, concentration polarization, overvoltage, hydrogen and oxygen overvoltage, theories of overvoltage, Tafel equation and its significance, Butler-Volmer equation for simple electron transfer reactions, transfer coefficient, exchange current density, rate constants.

Unit 5: Diffraction Methods and Atomic Spectroscopic Techniques (9 Hrs)

5.2 Atomic absorption spectroscopy (AAS), principle of AAS, absorption of radiant energy by atoms, classification of atomic spectroscopic methods, measurement of atomic absorption, instrumentation.

5.3 Atomic emission spectroscopy (AES), advantages and disadvantages of AES, origin of spectra, principle and instrumentation.

5.4 Flame emission spectroscopy (FES), flames and flame temperature, spectra of metals in flame, instrumentation.

Unit 6: Electroanalytical Techniques (18 Hrs)

6.1 Voltametry and polarography: Voltametry-cyclic voltametry, ion selective electrodes, anodic stripping voltametry. Polarography-decomposition potential, residual current, migration current, supporting electrolyte, diffusion current, polarogram, half wave potential, limiting current density, polarograph, explanation of polarographic waves.

6.2 The dropping mercury electrode, advantages and limitations of DME, applications of polarography, quantitative analysis- pilot ion procedure, standard
addition methods, qualitative analysis-determination of half wave potential of an ion, advantages of polarography.

6.3 Amperometric titrations: general principles of amperometry, application of amperometry in the qualitative analysis of anions and cations in solution, instrumentation, titration procedure, merits and demerits of amperometric titrations.

References
08. G.W. Castellan, Physical Chemistry, Addison-Wesley, 1983.
Unit 1: Introduction to Polymer Science
1.1 History of macromolecular science: monomers, functionality, degree of polymerization, classification of polymers based on origin, structure, backbone, branching, action of heat, ultimate form and use, tacticity and crystalline behaviour.

1.2 Primary bonds-molecular forces in polymers: dipole forces, induction forces, dispersion forces and H bond, dependence of physical properties on intermolecular forces. Polymer molecular weight-different averages, polydispersity index, molecular weight distribution curve, polymer fractionation. Methods for molecular weight determination: end group analysis, colligative property measurements, ultracentrifugation, vapour phase osmometry, viscometry, GPC, light scattering method. Monomers and structure of common polymers like PE, PP, PVC, PVAc, PVA, PMMA, PEMA, poly lactic acid, PET, PBT, PS, PTFE, PEI, nylon 6, nylon 66, nylon 612, Kevlar, PEEK, PES, PC, ABS, PAN, PEO, PPO, PEG, SAN, PCL, PLA, PHB, DGEBA, MF, UF, AF, PF, PU, NR, SBR, NBR, PB, butyl rubber, polychloroprene and thiokol rubber.

Unit 2: Fundamentals of Polymerization
2.1 Addition polymerization, free radical addition polymerization, mechanism and kinetics of vinyl polymerization, kinetics of free radical addition polymerization, effect of temperature, pressure, enthalpies, entropies, free energies and activation energies on polymerization.

2.2 Ionic polymerization, common features of two types of ionic polymerization, mechanism and kinetics of cationic polymerization, expressions for overall rate of polymerization and the number average degree of polymerization, mechanism and kinetics of anionic polymerization, expressions for overall rate of polymerization and the average degree of polymerization, living polymers.

2.3 Mechanism of coordination polymerization, Ziegler-Natta polymerization, ring opening polymerization, mechanism of polymerization of cyclic amides.

2.4 Copolymerization, types of copolymers, the copolymer composition equation, reactivity ratio and copolymer structure-influence of structural effects on monomer reactivity ratios, the Q-e scheme, synthesis of alternating, block and graft copolymers.

2.5 Step reaction (condensation) polymerization, Carothers equation, mechanism of step reaction polymerization, kinetics of step reaction polymerization, number distribution and weight distribution functions, polyfunctional step reaction polymerization, prediction of gel point.
2.6 Controlled polymerization methods, nitroxide mediated polymerization, Ring Opening polymerization (ROP), Atom Transfer Radical Polymerization (ATRP), Reversible Addition Fragmentation Termination (RAFT).

Unit 3: Properties of Polymers (18 Hrs)

3.1 Structure property relationship in polymers, transitions in polymers, first order and second order transitions in polymers, relationship between T_g and T_m, molecular motion and transitions, Boyer-Beamem rule, factors affecting glass transition temperature.

3.2 Rheological properties of polymers, Newtonian fluids, non-Newtonian fluids, pseudoplastic, thixotropy, St. Venant body, dialatant, complex rheological fluids, rheopectic fluids, time dependent fluids, time independent fluids, power law, Weissenberg effect, laminar flow, turbulent flow, die swell, shark skin, viscous flow.

Unit 4: Stereochemistry and Conformation of Polymers (9 Hrs)

04.1 Stereoregular polymers, constitutional isomerism, positional isomerism and branching, optical isomerism, geometric isomerism, substitutional isomerism, configuration of polymer chains, infrared, Raman and NMR characterization, polymer conformation, chain end to end distance, random walks and random flights, self-avoiding walks.

Unit 5: Morphology and Order in Crystalline Polymers (9 Hrs)

5.1 Polymer morphology, common polymer morphologies, structural requirements for crystallinity, degree of crystallinity, crystallisability-mechanism of crystallization, polymer single crystals, lamellar structure of polymers, fringed micelle concept, folded chain model, adjacent re-entry model, switchboard model.

5.2 Structure of polymers crystallised from melt, spherulitic morphology, mechanism of spherulite formation, theories of crystallisation kinetics, Avrami equation, Hoffman’s nucleation theory, the entropic barrier theory, strain induced morphology, cold drawing, morphology changes during orientation, application of XRD, SEM and DSC in determining the crystallinity of polymers.
Unit 6: Advances in Polymers

6.1 Specialty polymers, conducting polymers, high temperature polymers, flame resistant polymers, biopolymers and biomaterials, polymers in medicine, polymers for dental applications.

Unit 7: Dendrimers and Dendritic Polymers

7.1 Basic concepts and terminology: Dendrons, star shaped and starbust polymers, dendrimer formation and generations, various types of dendrimers.

7.2 Synthesis of dendrimers-convergent and divergent approaches, methods and mechanism. Properties of dendrimers-polydispersity, mechanical properties, viscoelastic properties. Determination of physical properties.

7.3 Characterisation of dendrimers: GPC, osmosis, TG, DSC, magnetic resonance spectroscopy (proton and carbon-13 NMR), mass spectral studies(MALDI and TOF).

7.4 Dendritic macromolecules: hypergrafted and hyperbranched polymers - definition and classification, synthesis-methods and mechanism, characterization, properties, applications.

References

Unit 1: Instrumental Methods (36 Hrs)

1.1 Electrical and nonelectrical data domains—transducers and sensors, detectors, examples for piezoelectric, pyroelectric, photoelectric, pneumatic and thermal transducers. Criteria for selecting instrumental methods—precision, sensitivity, selectivity, and detection limits.

1.2 Signals and noise: sources of noise, S/N ratio, methods of enhancing S/N ratio—hardware and software methods.

1.3 Electronics: transistors, FET, MOSFET, ICs, OPAMs. Application of OPAM in amplification and measurement of transducer signals.

1.4 UV-Vis spectroscopic instrumentation: types of optical instruments, components of optical instruments—sources, monochromators, detectors. Sample preparations. Instrumental noises. Applications in qualitative and quantitative analysis.

1.5 Molecular fluorescence and fluorometers: photoluminescence and concentration-electron transition in photoluminescence, factors affecting fluorescence, instrumentation details. Fluorometric standards and reagents. Introduction to photoacoustic spectroscopy.

1.6 IR spectrometry: instrumentation designs—various types of sources, monochromators, sample cell considerations, different methods of sample preparations, detectors of IR-NDIR instruments. FTIR instruments. Mid IR absorption spectrometry. Determination of path length. Application in qualitative and quantitative analysis.

1.7 Raman Spectrometric Instrumentation: sources, sample illumination systems. Application of Raman Spectroscopy in inorganic, organic, biological and quantitative analysis.

1.8 NMR Spectrometry—magnets, shim coils, sample spinning, sample probes (\(^1\)H, \(^13\)C, \(^32\)P). Principle of MRI.

Unit 2: Sampling (18 hrs)

2.1 The basis and procedure of sampling, sampling statistics, sampling and the physical state, crushing and grinding, the gross sampling, size of the gross sample, sampling liquids, gas and solids (metals and alloys), preparation of a laboratory sample, moisture in samples—essential and nonessential water, absorbed and occluded water, determination of water (direct and indirect methods).

2.2 Decomposition and dissolution, source of error, reagents for decomposition and dissolution like HCl, H\(_2\)SO\(_4\), HNO\(_3\), HClO\(_4\), HF, microwave decompositions, combustion methods, use of fluxes like Na\(_2\)CO\(_3\), Na\(_2\)O\(_2\), KNO\(_3\), NaOH, K\(_2\)S\(_2\)O\(_7\),
B₂O₃ and lithium metaborate. Elimination of interference from samples-separation by precipitation, electrolytic precipitation, extraction and ion exchange. Distribution ratio and completeness of multiple extractions. Types of extraction procedures.

Unit 3: Applied Analysis (9 hrs)
3.1 Analytical procedures involved in environmental monitoring. Water quality-BOD, COD, DO, nitrite, nitrate, iron, fluoride.
3.2 Soil-moisture, salinity, colloids, cation and anion exchange capacity.
3.3 Air pollution monitoring sampling, collection of air pollutants-SO₂, NO₂, NH₃, O₃ and SPM.

Unit 4: Capillary Electrophoresis and Capillary Electro Chromatography (9 Hrs)
4.1 Capillary electrophoresis-migration rates and plate heights, instrumentation, sample introduction, detection(indirect)-fluorescence, absorbance, electrochemical, mass spectrometric, applications. Capillary gel electrophoresis. Capillary isotachophoresis. Isoelectric focusing.
4.2 Capillary electro chromatography-packed columns. Micellar electro kinetic chromatography.

Unit 5: Process instrumentation (9 Hrs)
5.1 Automatic and automated systems, flow injection systems, special requirements of process instruments, sampling problems, typical examples of C, H and N analysers.

Unit 6: Aquatic Resources (9 Hrs)
6.1 Aquatic resources: renewable and non renewable resources, estimation, primary productivity and factors affecting it, regional variations.
6.2 Desalination: principles and applications of desalination-distillation, solar evaporation, freezing, electrodialysis, reverse osmosis, ion exchange and hydrate formation methods. Relative advantages and limitations. Scale formation and its prevention in distillation process.
6.3 Non-renewable resources: inorganic chemicals from the sea-extraction and recovery of chemicals, salt from solar evaporation.
References

PART I

Estimation of simple binary mixtures (like Cu-Ni, Cu-Zn, Fe-Cr, Fe-Cu, Fe-Ni, Pb-Ca) of metallic ions in solution by volumetric and gravimetric methods.

PART II

Analysis of one of the alloys of brass, bronze and solder. Analysis of one of the ores from hematite, chromite, dolomite, monazite, ilmenite.

References

PART I
Preparation Involving Two step Synthetic Sequences by Chemical Methods

PART II
Enzyme/coenzyme catalyzed reactions

PART III
Preparation Involving Multistep Synthetic Sequences by the Green Alternatives of Chemical Methods

PART IV
Microwave assisted Organic Synthesis

PART V
Prediction of FTIR, UV-Visible, 1H and 13C NMR spectra of the substrates and products at each stage of the products synthesized by the above methods.

References

I Chemical Kinetics
 1. Determination of the rate constant of the hydrolysis of ester by sodium hydroxide.
 2. Determination of Arrhenius parameters.
 3. Kinetics of reaction between $K_2S_2O_8$ and KI
 4. Influence of ionic strength on the rate constant of the reaction between $K_2S_2O_8$ and KI
 5. Iodination of acetone in acid medium.

II Polarimetry
 1. Kinetics of the inversion of sucrose in presence of HCl.
 2. Determination of the concentration of a sugar solution.
 3. Determination of the concentration of HCl.
 4. Determination of the relative strength of acids.

III Refractometry
 1. Identification of pure organic liquids and oils.
 2. Determination of molar refractions of pure liquids.
 3. Determination of concentration of solutions (KCl-water, glycerol-water).
 4. Determination of molar refraction of solids.
 5. Study of complex formation between potassium iodide and mercuric iodide system.

IV Viscosity
 1. Determination of viscosity of pure liquids.
 2. Verification of Kendall’s equation.
 4. Determination of the molecular weight of a polymer (polystyrene in toluene).

V Conductivity measurements
 1. Verification of Onsager equation.
 2. Determination of the degree of ionization of weak electrolytes.
3. Determination of pKa values of organic acids.
5. Titration of a mixture of acids against a strong base.
6. Titration of a dibasic acid against a strong base.

VI Potentiometry
1. Determination of single electrode potentials (Cu and Zn).
3. Titration of a mixture of acids against a strong base.
4. Determination of end point of a titration using Gran Plot.
5. Determination of the concentration of a mixture of Cl\(^-\) and I\(^-\) ions.

References

03. B. Viswanathan, Practical Physical chemistry, Viva Pub., 2005.