What Is Interventional Radiology?

The landscape of medicine is constantly changing, and, for the past 30 years, interventional radiologists have been responsible for much of the medical innovation and development of the minimally invasive procedures that are commonplace today. Interventional radiologists pioneered modern medicine with the invention of angioplasty and the catheter-delivered stent, which were first used to treat peripheral arterial disease. By using a catheter to open the blocked artery, the procedure allowed an 82-year-old woman, who refused amputation surgery, to keep her gangrene-ravaged left foot. To her surgeon’s disbelief, her pain ceased, she started walking, and three “irreversibly” gangrenous toes spontaneously sloughed. She left the hospital on her feet—both of them. Charles Dotter, M.D., the interventional radiologist who pioneered this technique, is known as the “Father of Interventional Radiology” and was nominated for the Nobel Prize in medicine in 1978.

Angioplasty and stenting revolutionized medicine and led the way for the more widely known applications of coronary artery angioplasty and stenting that revolutionized the practice of cardiology. Today many conditions that once required surgery can be treated nonsurgically by interventional radiologists. Through a small knick in the skin, they use tiny catheters and miniature instruments so small they can be run through a person’s network of arteries to treat at the site of illness internally, saving the patient from open invasive surgery. While no treatment is risk free, interventional procedures carry far lower risks than does open surgery and are a major advance in medicine for patients.

Some of the more recent advances in interventional radiology include
- Nonsurgical ablation of tumors to kill cancer without harming the surrounding tissue
- Embolization therapy to stop hemorrhaging or to block the blood supply to a tumor
- Catheter-directed thrombolysis to clear blood clots, preventing disability from deep vein thrombosis and stroke
- Carotid artery angioplasty and stenting to prevent stroke

What Is an Interventional Radiologist?

Interventional radiology is a recognized medical specialty by the American Board of Medical Specialties. Interventional radiologists are board-certified physicians with additional advanced training in minimally invasive, targeted treatments performed using
imaging to guide them. Their board certification includes both vascular and interventional radiology and diagnostic radiology, which are administered by the American Board of Radiology.

Interventional radiologists’ unique blend of skills fosters innovation and enables them to quickly adapt their imaging expertise to pioneer nonsurgical treatments that are guided by imaging. Because they are first trained in diagnostic radiology, they use imaging to understand, visualize and diagnose the full scope of the disease’s pathology and to map out the procedure tailored to the individual patient. During the procedure, they image as they go, literally watching and guiding their catheter to the site of the problem.

Innovation and Patient Safety

Interventional radiology is one of the most dynamic medical fields today as these physicians adapt a technique proven to work for one problem and find a way to apply it to another. For example, only a few years ago, they were researching the potential of delivering radio-wave energy to inoperable liver tumors to see if they could be killed with heat. Today, not only have they made enormous strides in treating liver tumors, they are using the same technique for kidney, breast, bone and other cancers.

When it comes to the best practices for safely performing minimally invasive medicine, interventional radiologists pioneered the procedures and the standards for safety and quality. First, these procedures are performed by specialists with an in-depth foundation in diagnostic radiology. In addition, patient safety was incorporated into the development of these advances because interventional radiology and diagnostic radiology training programs include radiation safety, radiation physics, the biological effects of radiation and injury prevention.

The Society of Interventional Radiology (SIR) publishes guidelines for minimally invasive medicine, including criteria for adequate training for specific interventional procedures, as well as expected success and complication rates. These evidence-based guidelines are used by the FDA, hospitals and state regulatory groups and can be found online at www.SIRweb.org.

Interventional Radiologists—The Best Kept Secret in Medicine

According to a national survey, only 3 percent of Americans are aware of interventional radiologists (Riley Research Associates, 2001). Modern, minimally invasive treatments are available for many diseases, but few patients know to ask about them or to seek out a second opinion from an interventional radiologist. Historically, interventional radiologists have been the “specialist’s specialist,” and patients didn’t have direct contact with this specialty.

Because surgery was the only treatment available for many years, many primary care physicians still refer their patients to surgeons and rely on the surgeon to provide the
consult on available treatment options. However, surgeons are generally poor
gatekeepers for knowing the minimally invasive treatments that another specialty offers.
Eventually this paradigm will change and patients will be sent to the least invasive
practitioner for consult first, but in the meantime, it is important for patients to know
their options.

Milestones Pioneered by Interventional Radiologists

- Angioplasty 1964
- Embolization therapy to treat tumors and spinal cord vascular malformations by blocking the blood flow 1966
- The Judkins technique of coronary angiography, the technique still most widely used around the world today 1967
- Closure of the patent ductus arteriosis, a heart defect in newborns of a vascular opening between the pulmonary artery and the aorta 1967
- Selective vasoconstriction infusions for hemorrhage, now commonly used for bleeding ulcers, GI bleeding and arterial bleeding 1967
- The catheter-delivered stenting technique and prototype stent 1969
- Tools for interventions such as heparinized guidewires, contrast injector, disposable catheter needles and see-through film changer 1960–74
- Percutaneous removal of common bile duct stones 1970s
- Occlusive coils 1970s
- Selective arterial embolization for GI bleeding, which was adapted to treat massive bleeding in other arteries in the body and to block blood supply to tumors 1972
- Embolization for pelvic trauma 1973
- Selective arterial thrombolysis for arterial occlusions, now used to treat blood clots, stroke, DVT, etc. 1974
- Transhepatic embolization for variceal bleeding 1974
- Embolization technique for pulmonary arteriovenous malformations and varicoceles 1977–78
- Bland- and chemoembolization for treatment of hepatocellular cancer and disseminated liver metastases 1977–83
- Cryoablation to freeze liver tumors 1980
- Development of special tools and devices for biliary manipulation 1980
- Biliary stents to allow bile to flow from the liver saving patients from biliary bypass surgery 1980s
- Embolization technique for spleen trauma 1981
- TIPS (transjugular intrahepatic portosystemic shunt) to improve blood flow in damaged livers from conditions such as cirrhosis and hepatitis C 1982
- Dilators for interventional urology, percutaneous removal of kidney stones 1982
- The balloon-expandable stent (peripheral) used today 1983
- Self-expandable stents 1985
- Percutaneous extraction of gallbladder stones 1990
- Radiofrequency ablation (RFA) technique for liver tumors 1990
- Treatment of bone and kidney tumors by embolization 1990s
- RFA for soft tissue tumors, i.e., bone, breast, kidney, lung and liver cancer Early ‘90s
- Abdominal aortic stent grafts 1991
- The balloon-expandable coronary stent used today 1994
- Intra-arterial delivery of tumor-killing viruses and gene therapy vectors to the liver 1997
- Percutaneous delivery of pancreatic islet cells to the liver for transplantation to treat diabetes 1999
- Developed the endovenous laser ablation procedure to treat varicose veins and venous disease 1999