System Components

SERIES 21 Amplifiers (single furnace):
A1010A - use with TD121
A1010B - high fire ignition - use with TD121
A1010E - integral temp. selector
A1010F - integral temp. selector and high fire ignition

SERIES 31 Amplifiers (multiple furnace):
A1011A - use with TD121
A1011B - high fire ignition - use with TD121
A1011E - integral temp. selector
A1011F - integral temp. selector and high fire ignition

Modulator-Regulator Valves:
MR410 - (3/8" and 1/2" pipe size)
MR510 - (1/2" and 3/4" pipe size)
MR610 - (3/4" and 1" pipe size)

Remote Temperature Selectors:
TD121 - (55°F to 90°F)
TD121A - (80°F to 130°F)
TD121B - (120°F to 170°F)
TD121C - (160°F to 210°F)
TD121D - (200°F to 250°F)
TD121E - (100°F to 250°F)
TD121F - (40°F to 80°F)

NOTE: Remote Selector and Discharge Temperature Sensor must have same temperature range to be compatible.
Optional: ETD-1 enclosure.
EFP-1 cover plate only - no enclosure

Discharge Temperature Sensors:
use with Mixing Tube
TS121 - (55°F to 90°F)
TS121A - (80°F to 130°F)
TS121B - (120°F to 170°F)
TS121C - (160°F to 210°F)
TS121D - (200°F to 250°F)
TS121E - (100°F to 250°F)
TS121F - (40°F to 80°F)

Mixing Tubes:
used with Sensors
MT1-9 or 2-9 (9" length)
MT1-12 or 2-12 (12" length)
MT1-23 or 2-23 (23" length)
MT1-28 or 2-28 (28" length)
MT1-57 (57" length)

Optional:

Inlet Air Sensors:
use with Mixing Tube
TS10765A - (8:1 ratio)
TS10765B - (5:1 ratio)
TS10765C - (3.5:1 ratio)

Override Stat:
use with TD121 only
T115 - (40°F to 90°F)
Introduction and Dimensions

Selectra SERIES 21/31 electronic gas flame modulation systems are designed primarily for make-up air heating, as components of indirect fired units with atmospheric burners. All fuel gases are compatible.

The SERIES 21 is designed for single function operation, and the SERIES 31 is capable of handling up to four furnaces. They may be field installed on existing equipment or specified for new equipment installation.

Also optional, an inlet air sensor (and mixing tube) provides inverse change in discharge air for each degree change in inlet air - when installed in a convenient duct location upstream of the burner.

The systems utilize Modulator-Regulator valves. Amplifiers are available for high-fire ignition with integral or remote temperature selection. A discharge air temperature sensor is mounted within a mixing tube housing. Optionally, a room override thermostat provides space temperature control by raising the discharge air temperature to a pre-selected point - when used in conjunction with the remote temperature selector.

Selectra SERIES 21/31 electronic gas flame modulation systems are designed primarily for make-up air heating, as components of indirect fired units with atmospheric burners. All fuel gases are compatible.

The SERIES 21 is designed for single function operation, and the SERIES 31 is capable of handling up to four furnaces. They may be field installed on existing equipment or specified for new equipment installation.

Also optional, an inlet air sensor (and mixing tube) provides inverse change in discharge air for each degree change in inlet air - when installed in a convenient duct location upstream of the burner.

The systems utilize Modulator-Regulator valves. Amplifiers are available for high-fire ignition with integral or remote temperature selection. A discharge air temperature sensor is mounted within a mixing tube housing. Optionally, a room override thermostat provides space temperature control by raising the discharge air temperature to a pre-selected point - when used in conjunction with the remote temperature selector.

Selectra SERIES 21/31 electronic gas flame modulation systems are designed primarily for make-up air heating, as components of indirect fired units with atmospheric burners. All fuel gases are compatible.

The SERIES 21 is designed for single function operation, and the SERIES 31 is capable of handling up to four furnaces. They may be field installed on existing equipment or specified for new equipment installation.

Also optional, an inlet air sensor (and mixing tube) provides inverse change in discharge air for each degree change in inlet air - when installed in a convenient duct location upstream of the burner.

The systems utilize Modulator-Regulator valves. Amplifiers are available for high-fire ignition with integral or remote temperature selection. A discharge air temperature sensor is mounted within a mixing tube housing. Optionally, a room override thermostat provides space temperature control by raising the discharge air temperature to a pre-selected point - when used in conjunction with the remote temperature selector.

Selectra SERIES 21/31 electronic gas flame modulation systems are designed primarily for make-up air heating, as components of indirect fired units with atmospheric burners. All fuel gases are compatible.

The SERIES 21 is designed for single function operation, and the SERIES 31 is capable of handling up to four furnaces. They may be field installed on existing equipment or specified for new equipment installation.

Also optional, an inlet air sensor (and mixing tube) provides inverse change in discharge air for each degree change in inlet air - when installed in a convenient duct location upstream of the burner.

The systems utilize Modulator-Regulator valves. Amplifiers are available for high-fire ignition with integral or remote temperature selection. A discharge air temperature sensor is mounted within a mixing tube housing. Optionally, a room override thermostat provides space temperature control by raising the discharge air temperature to a pre-selected point - when used in conjunction with the remote temperature selector.

Selectra SERIES 21/31 electronic gas flame modulation systems are designed primarily for make-up air heating, as components of indirect fired units with atmospheric burners. All fuel gases are compatible.

The SERIES 21 is designed for single function operation, and the SERIES 31 is capable of handling up to four furnaces. They may be field installed on existing equipment or specified for new equipment installation.

Also optional, an inlet air sensor (and mixing tube) provides inverse change in discharge air for each degree change in inlet air - when installed in a convenient duct location upstream of the burner.

The systems utilize Modulator-Regulator valves. Amplifiers are available for high-fire ignition with integral or remote temperature selection. A discharge air temperature sensor is mounted within a mixing tube housing. Optionally, a room override thermostat provides space temperature control by raising the discharge air temperature to a pre-selected point - when used in conjunction with the remote temperature selector.

Selectra SERIES 21/31 electronic gas flame modulation systems are designed primarily for make-up air heating, as components of indirect fired units with atmospheric burners. All fuel gases are compatible.

The SERIES 21 is designed for single function operation, and the SERIES 31 is capable of handling up to four furnaces. They may be field installed on existing equipment or specified for new equipment installation.

Also optional, an inlet air sensor (and mixing tube) provides inverse change in discharge air for each degree change in inlet air - when installed in a convenient duct location upstream of the burner.
Specifications

Gases: All fuel gases.

Pressure Limits:
- Inlet (maximum) MR410 / 510 / 610.....1 psi / 69 mbar
- Outlet (maximum fire)
 - standard spring*.....3.0” to 5.0” w.c. / 7 to 12 mbar
 - H - models.....7.5” to 12” w.c. / 19 to 30 mbar
 - Max. set point not to exceed 10” w.c. above min.set point
- Outlet (minimum fire)
 - MR*10B10L standard spring*.....0.2” to 1.2” w.c. / .5 to 3 mbar
 - MR*10B10L-1 spring*.....1” to 2.8” w.c. / 2.5 to 7 mbar
* other spring ranges available - consult factory

Power Requirements:
- Single Furnace.....24V AC, 40VA capacity
- Multiple Furnace.....24V AC, 100VA capacity

NOTE: Transformer secondary must not be grounded in any portion of the circuit external to a Maxitrol amplifier. If existing transformer is grounded, a separate isolated transformer must be used. Electrical interference may effect performance and/or damage equipment.

Temperature Control Range:
- Standard.....55° to 90° F
- Optional ranges to.....250° F

Ambient Limits: -30° to 125° F / -34° to 52° C

Installation of Components

Wiring Run: Control wires connected to the Override Stat, Discharge Air Sensor, or Remote Temperature Selector must not be run close to or inside conduit with power or ignition wires. Doing so may cause the unit to function erratically or may destroy the amplifier. If shielded wires are used, shield must be insulated and grounded at the amplifier location only.

Amplifier: Slide or snap out circuit board from amplifier base. Mount base with two screws in chosen location protected from weather or contaminated atmosphere. Amplifier is ready for wiring when circuit board is replaced on base - protective cover need not be removed.

Discharge Temperature Sensor (in Mixing Tube): Cut hole in air duct - install several feet from heat exchanger to avoid thermal radiation effects. Locate in discharge air stream. Remove cover and wire as shown in diagram, page 7 - reassemble.

Remote Selector: Install in control cabinet or other chosen location. Remove cover and wire as shown in diagram, page 7 - reassemble.

Room Override Thermostat: Place in heated area to sense average room temperature, not in direct path of discharge air stream. Use only with TD121 Remote Temperature Selector. Wire as shown in diagram, page 7.

Note: For systems using up to four automatic gas valves with 0.8 amp maximum current each, a 100VA transformer will be adequate.

In the event that an automatic valve's current exceeds 0.8 amps, it would be advisable to wire according to the 'Independent Power Supply' diagram, page 7. The transformer for the modulating power - terminals 8 and 9 - should be 40VA, and the automatic valve transformer should be capable of handling required loads up to 3.5 amps maximum. If exceeding 3.5 amps, it will be necessary to operate an auxiliary relay with contact rating sufficient to handle the automatic valves.

Valve: The MR valve must be in upright position, in a horizontal run of pipe only, with pilot gas supply upstream.

If diaphragm type automatic gas valve is used with separate regulator, install MR valve downstream from diaphragm gas valve. Retain regulator in manifold and adjust 2 or 3 turns to compensate for pressure drop of MR valve.

If full combination control is used, install MR valve downstream. Adjust regulator in combination control 2 or 3 turns to compensate for pressure drop at MR valve.

If solenoid type automatic gas valve is used with separate regulator, replace regulator with the MR valve.
Field Service Checklist

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>POSSIBLE CAUSE</th>
<th>FIELD TEST</th>
<th>REMEDY</th>
</tr>
</thead>
</table>
| **A.** Automatic control valve will not close despite full range of modulating voltage at terminals 1 and 2. | 1. Faulty automatic control valve.
2. Installation wiring error.
3. Amplifier is faulty. | 1. Remove wire from valve, if valve does not close valve is faulty.
2. Remove wire from amplifier terminal 10 or 11. If valve remains open, check for miswiring.
3. If AC voltage will not drop at terminals 8 and 11 - when DC voltage at terminals 1 and 2 is above 20V DC - amplifier is faulty. If space temperature is less than 60° or greater than 85°F (<16° or >29°C), see Preliminary Circuit Analysis, page 6. | 1. Replace automatic control valve.
2. Correct wiring.
3. Replace amplifier. |
| **B.** Automatic control valve won't open despite full range of modulating voltage at terminals 1 and 2. | 4. Faulty automatic control valve.
5. Open wire to automatic valve.
6. Amplifier is faulty. | 4. Read voltage across valve terminals. If 24 V AC, valve is faulty.
5. Read voltage across terminals 8 and 11 on amplifier. If 24 V AC, check for open circuit to automatic valve. If space temperature is less than 60° or greater than 85°F (<16° or >29°C), see Preliminary Circuit Analysis, page 6. | 4. Replace automatic control valve.
5. Correct wiring.
6. Replace amplifier. |
| **C.** No gas flow. | 7. Faulty power supply.
8. MR valve installed backwards. | 7. Read voltage at amplifier terminals 8 and 14 (24 V AC).
8. Arrow on MR valve should point in direction of gas flow. | 7. Powers supply must be 24 VAC.
8. Install properly. |
| **D.** Continuous high fire. | 9. Room Override Thermostat, if used, calls for heat.
10. Disconnect and measure across wires connected to amplifier terminals 3 and 4 (A1010 models). Should read between 8,000 and 12,000 ohms. | 9. If proper operation is obtained, check the thermostat wiring for shorts. Rotate thermostat dial above and below room temperature to prove thermostat function.
10. If above 12,000 ohms, check circuit for open or loose wires. |
| **E.** Continuous high fire but automatic valve cycles. | 11. Open circuit in wiring to MR valve.
12. Plunger jammed or installed upside down.
12. Plunger should be smooth, clean, and operate freely in solenoid sleeve.
12. Clean or replace plunger.
13. If modulating voltages are obtained but no gas modulation, MR valve is faulty. Replace if necessary. |
| **F.** Furnace won't activate due to constant high modulation voltage (above 17 V DC). | 14. Short circuit in sensing and setting circuit. | 14. Disconnect and measure across wires connected to amplifier terminals 3 and 4 (A1010 models). Should read between 8,000 and 12,000 ohms. | 14. If below 8,000 ohms, check circuit for shorts or miswiring. |
| **G.** Continuous low or medium fire, but automatic valve cycles correctly. | 15. Heat load requires low fire only.
16. Plunger and/or maximum spring missing.
17. Jammed plunger
18. Other valve faults.
19. Inadequate supply pressure. | 15. Increase temperature setting 10 degrees.
16. Check for parts (see 'Valve Adjustment' figure, page 8).
17. Examine. Plunger should be clean, smooth, and operate freely in solenoid sleeve.
18. Remove wire from MR valve.
19. Remove spring 5 from MR valve (see valve figure, page 8), push down on plunger. Insufficient manifold pressure with furnace operating indicate supply is too low. | 15. If heater goes to high fire, system is working correctly.
16. Install correct parts.
17. Clean, or replace plunger if necessary.
18. If MR valve remains on low fire, valve may be faulty. Check item 19 below, then replace valve if necessary.
19. Check for obstruction in gas pipe ahead of controls. Increase gas pressure if possible. |
| **I.** Erratic or severely pulsating flame. | 21. Dirty or sticking plunger.
22. Intermittent shorting in wiring.
23. Faulty amplifier. | 21. Examine. Plunger should be clean, smooth, and operate freely in solenoid sleeve.
22. Inspect wiring.
23. Observe DC voltage across amplifier terminals 1 and 2. | 21. Clean, or replace plunger if necessary.
22. Correct wiring.
23. If erratic or pulsating DC voltage is observed and wiring shows no defects, replace amplifier. If erratic or pulsating voltage continues, contact Maxitrol. |

Control circuits external to the Series 21 and 31 can cause burner malfunction. Always check manual valve to be certain gas is on, and check limit controls for normal operation.
Automatic Valve Function:
After the electronic modulation function is tested, a voltage reading must be taken across the automatic gas valve. These voltage readings will be approximately 24 V AC with the temperature selection knob at maximum setting, zero volts AC with the selector at minimum setting. The relay switching action should occur when the modulating voltage is between 15 and 19 V DC.

If these voltage readings are observed as noted, it is proved that the amplifier and temperature selector are operating properly.

After testing, remove the resistor and reconnect the discharge air sensor.

Modulating Function Test:
Connect a DC voltmeter to amplifier terminals 1 and 2. If more convenient, the meter may be attached to the MR valve terminals. Rotate temperature selection knob to maximum setting - the DC volts should read zero. The voltage should gradually increase to at least 20 volts when the temperature selector is slowly rotated to its minimum (generally over a 3° to 4° range).

Manifold pressure can be adjusted as follows:
MR*10B10L Standard spring 0.2" to 1.2" w.c.
(0.5 to 3 mbar)
MR*10B10L-1 spring 1" to 2.8" w.c.
(2.5 to 7 mbar)

Maximum fire is obtained at zero volts DC.
Use manufacturer's pressure specifications when available.
Maxitrol standard factory settings are 0.5" w.c. (1.25 mbar) minimum and 3.5" w.c. (8.75 mbar) maximum. H-1 models 1.75" w.c. (4.35 mbar) minimum and 11" w.c. (27 mbar) maximum.

At Temperature Selector:
1) Set the selector at least 10° higher than incoming air and allow discharge air temperature to stabilize. Discharge air temperature should agree with temperature selector setting.
2) Increase temperature setting by 5° to 10°. Heater manifold pressure should immediately go to high fire.
3) Decrease temperature to the original setting. Burner should immediately turn off. Then, as the discharge air temperature decreases, the burner should ignite at low fire. The discharge air temperature should again stabilize at the temperature setting.
4) Recheck wiring to ensure system is consistent with appropriate wiring diagram.
5) Check power source for 24 volts.
6) Some automatic control valves require as much as 20 seconds to open. In this case, check for 24VAC output at automatic valve terminals.

Extended High-Fire Ignition

On A1010B, A1010F, A1011B, and A1011F amplifiers, the high fire start duration is approximately five seconds. To extend it from 5 seconds to approximately 25 seconds, remove 100K (brown-black-yellow-gold) resistor from board as shown.

On furnaces equipped with slow opening automatic valves, it is recommended to make this modification.
Preliminary Circuit Analysis

Single Furnace Operation - Series 21

Multiple Furnace Operation - Series 31

(MR valves and automatic gas valves wired in parallel as shown)
Temperature Calibration

If needed - amplifier potentiometer adjustment - for heat sensing with Discharge Temperature Sensor (TS121):

Install a thermometer or other temperature measuring device at a point adjacent to the tip of the TS121 Discharge Air Sensor. Set the temperature selector at least 15° above the existing outdoor air temperature. (Accurate calibration cannot be made at temperature differentials of less than 15°.)

Adjust calibrating potentiometer (A) until thermometer reading agrees with temperature setting. **Note:** Adjust (A) in small increments and allow time for the discharge air temperature to stabilize after each adjustment.

Valve Adjustments

(See bulletin MT2035 for additional M/MR valve information)

Note: High Fire Adjustment should be checked whenever Low Fire Adjustment is changed.

Disconnect wire from amplifier terminal 3, remove cover plate (2).

High Fire Adjustments:
A) Using maximum adjustment screw (4), set manifold pressure to furnace manufacturer's specifications.
B) Replace cover plate (2) on Modulator-Regulator valve and reconnect wire to amplifier terminal 3.

Low Fire Adjustments:
A) Remove maximum adjusting screw (4), spring (5), and plunger (8). A small magnet is useful for this purpose.
CAUTION - The plunger is a precision part. Handle carefully to avoid marring or picking up grease and dirt. Do not lubricate.
B) Using minimum adjusting screw (9), set manifold pressure to furnace manufacturer's specifications.
C) Replace plunger and spring retainer, spring, and maximum adjusting screw in proper order.

CAUTION: Operation of combustion equipment can be hazardous resulting in bodily injury or equipment damage. Each burner should be supervised by a combustion safeguard and only qualified personnel should install, make system adjustments and perform any required service.

NOTICE: Maxitrol practices a policy of continuous improvement in the design of its products. It reserves the right to change the specifications at any time without prior notice.

ORDAN THERMAL PRODUCTS LTD
Combustion Equipment & Controls for Industry
21 Amber St # 9, Markham Ontario Canada L3R 4Z3
Tel: (905) 475-9292 Fax: (905) 475-3286
www.ordanthermal.com
CAUTION: Operation of combustion equipment can be hazardous resulting in bodily injury or equipment damage. Each burner should be supervised by a combustion safeguard and only qualified personnel should install, make system adjustments and perform any required service.

NOTICE: Maxitrol practices a policy of continuous improvement in the design of its products. It reserves the right to change the specifications at any time without prior notice.

ORDAN THERMAL PRODUCTS LTD
Combustion Equipment & Controls for Industry
21 Amber St #9, Markham Ontario Canada L3R 4Z3
Tel: (905) 475-9292 Fax: (905) 475-3286
www.ordanthermal.com