The past decade has seen many advances in physical-layer wireless communication theory and their implementation in wireless systems. This textbook takes a unified view of the fundamentals of wireless communication and explains the web of concepts underpinning these advances at a level accessible to an audience with a basic background in probability and digital communication. Topics covered include MIMO (multiple input multiple output) communication, space-time coding, opportunistic communication, OFDM and CDMA. The concepts are illustrated using many examples from wireless systems such as GSM, IS-95 (CDMA), IS-856 (1× EV-DO), Flash OFDM and ArrayComm SDMA systems. Particular emphasis is placed on the interplay between concepts and their implementation in systems. An abundant supply of exercises and figures reinforce the material in the text. This book is intended for use on graduate courses in electrical and computer engineering and will also be of great interest to practicing engineers.

David Tse is a professor at the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley.

Pramod Viswanath is an assistant professor at the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign.
Fundamentals of Wireless Communication

David Tse
University of California, Berkeley

and

Pramod Viswanath
University of Illinois, Urbana-Champaign
To my family and Lavinia

DT

To my parents and to Suma

PV
Contents

Preface
Acknowledgements
List of notation

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Book objective</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Wireless systems</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Book outline</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>The wireless channel</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Physical modeling for wireless channels</td>
<td>10</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Free space, fixed transmit and receive antennas</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Free space, moving antenna</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Reflecting wall, fixed antenna</td>
<td>14</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Reflecting wall, moving antenna</td>
<td>16</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Reflection from a ground plane</td>
<td>17</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Power decay with distance and shadowing</td>
<td>18</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Moving antenna, multiple reflectors</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Input/output model of the wireless channel</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1</td>
<td>The wireless channel as a linear time-varying system</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Baseband equivalent model</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3</td>
<td>A discrete-time baseband model</td>
<td>25</td>
</tr>
<tr>
<td>Discussion 2.1</td>
<td>Degrees of freedom</td>
<td>28</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Additive white noise</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Time and frequency coherence</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Doppler spread and coherence time</td>
<td>30</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Delay spread and coherence bandwidth</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Statistical channel models</td>
<td>34</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Modeling philosophy</td>
<td>34</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Rayleigh and Rician fading</td>
<td>36</td>
</tr>
</tbody>
</table>
2.4.3 Tap gain auto-correlation function 37

Example 2.2 Clarke’s model 38

Chapter 2 The main plot 40

2.5 Bibliographical notes 42

2.6 Exercises 42

3 Point-to-point communication: detection, diversity and channel uncertainty 49

3.1 Detection in a Rayleigh fading channel 50

3.1.1 Non-coherent detection 50

3.1.2 Coherent detection 52

3.1.3 From BPSK to QPSK: exploiting the degrees of freedom 56

3.1.4 Diversity 59

3.2 Time diversity 60

3.2.1 Repetition coding 60

3.2.2 Beyond repetition coding 64

Summary 3.1 Time diversity code design criterion 68

Example 3.1 Time diversity in GSM 69

3.3 Antenna diversity 71

3.3.1 Receive diversity 71

3.3.2 Transmit diversity: space-time codes 73

3.3.3 MIMO: a 2×2 example 77

Summary 3.2 2×2 MIMO schemes 82

3.4 Frequency diversity 83

3.4.1 Basic concept 83

3.4.2 Single-carrier with ISI equalization 84

3.4.3 Direct-sequence spread-spectrum 91

3.4.4 Orthogonal frequency division multiplexing 95

Summary 3.3 Communication over frequency-selective channels 101

3.5 Impact of channel uncertainty 102

3.5.1 Non-coherent detection for DS spread-spectrum 103

3.5.2 Channel estimation 105

3.5.3 Other diversity scenarios 107

Chapter 3 The main plot 109

3.6 Bibliographical notes 110

3.7 Exercises 111

4 Cellular systems: multiple access and interference management 120

4.1 Introduction 120

4.2 Narrowband cellular systems 123

4.2.1 Narrowband allocations: GSM system 124

4.2.2 Impact on network and system design 126
4.2.3 Impact on frequency reuse

Summary 4.1 Narrowband systems 127

4.3 Wideband systems: CDMA

4.3.1 CDMA uplink 128
4.3.2 CDMA downlink 131
4.3.3 System issues 131

Summary 4.2 CDMA 134

4.4 Wideband systems: OFDM

4.4.1 Allocation design principles 148
4.4.2 Hopping pattern 148
4.4.3 Signal characteristics and receiver design 152
4.4.4 Sectorization 153

Example 4.1 Flash-OFDM 153

Chapter 4 The main plot 154

4.5 Bibliographical notes

4.6 Exercises

5 Capacity of wireless channels

5.1 AWGN channel capacity

5.1.1 Repetition coding 167
5.1.2 Packing spheres 168

Discussion 5.1 Capacity-achieving AWGN channel codes 170

Summary 5.1 Reliable rate of communication and capacity 171

5.2 Resources of the AWGN channel

5.2.1 Continuous-time AWGN channel 172
5.2.2 Power and bandwidth 173

Example 5.2 Bandwidth reuse in cellular systems 175

5.3 Linear time-invariant Gaussian channels

5.3.1 Single input multiple output (SIMO) channel 179
5.3.2 Multiple input single output (MISO) channel 179
5.3.3 Frequency-selective channel 181

5.4 Capacity of fading channels

5.4.1 Slow fading channel 187
5.4.2 Receive diversity 189
5.4.3 Transmit diversity 191

Summary 5.2 Transmit and receive diversity 195

5.4.4 Time and frequency diversity 195

Summary 5.3 Outage for parallel channels 199

5.4.5 Fast fading channel 199
5.4.6 Transmitter side information 203

Example 5.3 Rate adaptation in IS-856 209

5.4.7 Frequency-selective fading channels 213
6 Multiuser capacity and opportunistic communication

6.1 Uplink AWGN channel
6.1.1 Capacity via successive interference cancellation
6.1.2 Comparison with conventional CDMA
6.1.3 Comparison with orthogonal multiple access
6.1.4 General K-user uplink capacity

6.2 Downlink AWGN channel
6.2.1 Symmetric case: two capacity-achieving schemes
6.2.2 General case: superposition coding achieves capacity

Summary 6.1 Uplink and downlink AWGN capacity

Discussion 6.1 SIC: implementation issues

6.3 Uplink fading channel
6.3.1 Slow fading channel
6.3.2 Fast fading channel
6.3.3 Full channel side information

Summary 6.2 Uplink fading channel

6.4 Downlink fading channel
6.4.1 Channel side information at receiver only
6.4.2 Full channel side information

6.5 Frequency-selective fading channels

6.6 Multiuser diversity
6.6.1 Multiuser diversity gain
6.6.2 Multiuser versus classical diversity

6.7 Multiuser diversity: system aspects
6.7.1 Fair scheduling and multiuser diversity
6.7.2 Channel prediction and feedback
6.7.3 Opportunistic beamforming using dumb antennas
6.7.4 Multiuser diversity in multicell systems
6.7.5 A system view

Chapter 6 The main plot

6.8 Bibliographical notes

6.9 Exercises

7 MIMO I: spatial multiplexing and channel modeling

7.1 Multiplexing capability of deterministic MIMO channels
7.1.1 Capacity via singular value decomposition
7.1.2 Rank and condition number
Chapter 7

7.2 Physical modeling of MIMO channels

7.2.1 Line-of-sight SIMO channel

7.2.2 Line-of-sight MISO channel

7.2.3 Antenna arrays with only a line-of-sight path

7.2.4 Geographically separated antennas

7.2.5 Line-of-sight plus one reflected path

Summary 7.1 Multiplexing capability of MIMO channels

7.3 Modeling of MIMO fading channels

7.3.1 Basic approach

7.3.2 MIMO multipath channel

7.3.3 Angular domain representation of signals

7.3.4 Angular domain representation of MIMO channels

7.3.5 Statistical modeling in the angular domain

7.3.6 Degrees of freedom and diversity

Example 7.1 Degrees of freedom in clustered response models

7.3.7 Dependency on antenna spacing

7.3.8 i.i.d. Rayleigh fading model

Chapter 7 The main plot

7.4 Bibliographical notes

7.5 Exercises

Chapter 8

8 MIMO II: capacity and multiplexing architectures

8.1 The V-BLAST architecture

8.2 Fast fading MIMO channel

8.2.1 Capacity with CSI at receiver

8.2.2 Performance gains

8.2.3 Full CSI

Summary 8.1 Performance gains in a MIMO channel

8.3 Receiver architectures

8.3.1 Linear decorrelator

8.3.2 Successive cancellation

8.3.3 Linear MMSE receiver

8.3.4 Information theoretic optimality

Discussion 8.1 Connections with CDMA multiuser detection and ISI equalization

8.4 Slow fading MIMO channel

8.5 D-BLAST: an outage-optimal architecture

8.5.1 Suboptimality of V-BLAST

8.5.2 Coding across transmit antennas: D-BLAST

8.5.3 Discussion

Chapter 8 The main plot

8.6 Bibliographical notes

8.7 Exercises
9 MIMO III: diversity–multiplexing tradeoff and universal space-time codes

9.1 Diversity–multiplexing tradeoff
9.1.1 Formulation
9.1.2 Scalar Rayleigh channel
9.1.3 Parallel Rayleigh channel
9.1.4 MISO Rayleigh channel
9.1.5 2×2 MIMO Rayleigh channel
9.1.6 $n_t \times n_r$ MIMO i.i.d. Rayleigh channel

9.2 Universal code design for optimal diversity–multiplexing tradeoff
9.2.1 QAM is approximately universal for scalar channels
Summary 9.1 Approximate universality
9.2.2 Universal code design for parallel channels
Summary 9.2 Universal codes for the parallel channel
9.2.3 Universal code design for MISO channels
Summary 9.3 Universal codes for the MISO channel
9.2.4 Universal code design for MIMO channels
Discussion 9.1 Universal codes in the downlink
Chapter 9 The main plot

9.3 Bibliographical notes

9.4 Exercises

10 MIMO IV: multiuser communication

10.1 Uplink with multiple receive antennas
10.1.1 Space-division multiple access
10.1.2 SDMA capacity region
10.1.3 System implications
Summary 10.1 SDMA and orthogonal multiple access
10.1.4 Slow fading
10.1.5 Fast fading
10.1.6 Multiuser diversity revisited
Summary 10.2 Opportunistic communication and multiple receive antennas

10.2 MIMO uplink
10.2.1 SDMA with multiple transmit antennas
10.2.2 System implications
10.2.3 Fast fading

10.3 Downlink with multiple transmit antennas
10.3.1 Degrees of freedom in the downlink
10.3.2 Uplink–downlink duality and transmit beamforming
10.3.3 Precoding for interference known at transmitter
10.3.4 Precoding for the downlink
10.3.5 Fast fading
10.4 MIMO downlink 471
10.5 Multiple antennas in cellular networks: a system view 473
 Summary 10.3 System implications of multiple antennas on
 multiple access 473
10.5.1 Inter-cell interference management 474
10.5.2 Uplink with multiple receive antennas 476
10.5.3 MIMO uplink 478
10.5.4 Downlink with multiple receive antennas 479
10.5.5 Downlink with multiple transmit antennas 479
 Example 10.1 SDMA in ArrayComm systems 479
Chapter 10 The main plot 481
10.6 Bibliographical notes 482
10.7 Exercises 483

Appendix A Detection and estimation in additive Gaussian noise 496
 A.1 Gaussian random variables 496
 A.1.1 Scalar real Gaussian random variables 496
 A.1.2 Real Gaussian random vectors 497
 A.1.3 Complex Gaussian random vectors 500
 Summary A.1 Complex Gaussian random vectors 502
 A.2 Detection in Gaussian noise 503
 A.2.1 Scalar detection 503
 A.2.2 Detection in a vector space 504
 A.2.3 Detection in a complex vector space 507
 Summary A.2 Vector detection in complex Gaussian noise 508
 A.3 Estimation in Gaussian noise 509
 A.3.1 Scalar estimation 509
 A.3.2 Estimation in a vector space 510
 A.3.3 Estimation in a complex vector space 511
 Summary A.3 Mean square estimation in a complex vector space 513
 A.4 Exercises 513

Appendix B Information theory from first principles 516
 B.1 Discrete memoryless channels 516
 Example B.1 Binary symmetric channel 517
 Example B.2 Binary erasure channel 517
 B.2 Entropy, conditional entropy and mutual information 518
 Example B.3 Binary entropy 518
 B.3 Noisy channel coding theorem 521
 B.3.1 Reliable communication and conditional entropy 521
 B.3.2 A simple upper bound 522
 B.3.3 Achieving the upper bound 523
 Example B.4 Binary symmetric channel 524
 Example B.5 Binary erasure channel 525
 B.3.4 Operational interpretation 525
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.4 Formal derivation of AWGN capacity</td>
<td>526</td>
</tr>
<tr>
<td>B.4.1 Analog memoryless channels</td>
<td>526</td>
</tr>
<tr>
<td>B.4.2 Derivation of AWGN capacity</td>
<td>527</td>
</tr>
<tr>
<td>B.5 Sphere-packing interpretation</td>
<td>529</td>
</tr>
<tr>
<td>B.5.1 Upper bound</td>
<td>529</td>
</tr>
<tr>
<td>B.5.2 Achievability</td>
<td>530</td>
</tr>
<tr>
<td>B.6 Time-invariant parallel channel</td>
<td>532</td>
</tr>
<tr>
<td>B.7 Capacity of the fast fading channel</td>
<td>533</td>
</tr>
<tr>
<td>B.7.1 Scalar fast fading channel</td>
<td>533</td>
</tr>
<tr>
<td>B.7.2 Fast fading MIMO channel</td>
<td>535</td>
</tr>
<tr>
<td>B.8 Outage formulation</td>
<td>536</td>
</tr>
<tr>
<td>B.9 Multiple access channel</td>
<td>538</td>
</tr>
<tr>
<td>B.9.1 Capacity region</td>
<td>538</td>
</tr>
<tr>
<td>B.9.2 Corner points of the capacity region</td>
<td>539</td>
</tr>
<tr>
<td>B.9.3 Fast fading uplink</td>
<td>540</td>
</tr>
<tr>
<td>B.10 Exercises</td>
<td>541</td>
</tr>
</tbody>
</table>

References: 546
Index: 554
Preface

Why we wrote this book

The writing of this book was prompted by two main developments in wireless communication in the past decade. First is the huge surge of research activities in physical-layer wireless communication theory. While this has been a subject of study since the sixties, recent developments such as opportunistic and multiple input multiple output (MIMO) communication techniques have brought completely new perspectives on how to communicate over wireless channels. Second is the rapid evolution of wireless systems, particularly cellular networks, which embody communication concepts of increasing sophistication. This evolution started with second-generation digital standards, particularly the IS-95 Code Division Multiple Access standard, continuing to more recent third-generation systems focusing on data applications. This book aims to present modern wireless communication concepts in a coherent and unified manner and to illustrate the concepts in the broader context of the wireless systems on which they have been applied.

Structure of the book

This book is a web of interlocking concepts. The concepts can be structured roughly into three levels:

1. channel characteristics and modeling;
2. communication concepts and techniques;
3. application of these concepts in a system context.

A wireless communication engineer should have an understanding of the concepts at all three levels as well as the tight interplay between the levels. We emphasize this interplay in the book by interlacing the chapters across these levels rather than presenting the topics sequentially from one level to the next.
• Chapter 2: basic properties of multipath wireless channels and their modeling (level 1).
• Chapter 3: point-to-point communication techniques that increase reliability by exploiting time, frequency and spatial diversity (2).
• Chapter 4: cellular system design via a case study of three systems, focusing on multiple access and interference management issues (3).
• Chapter 5: point-to-point communication revisited from a more fundamental capacity point of view, culminating in the modern concept of opportunistic communication (2).
• Chapter 6: multiuser capacity and opportunistic communication, and its application in a third-generation wireless data system (3).
• Chapter 7: MIMO channel modeling (1).
• Chapter 8: MIMO capacity and architectures (2).
• Chapter 9: diversity–multiplexing tradeoff and space-time code design (2).
• Chapter 10: MIMO in multiuser channels and cellular systems (3).

How to use this book

This book is written as a textbook for a first-year graduate course in wireless communication. The expected background is solid undergraduate/beginning graduate courses in signals and systems, probability and digital communication. This background is supplemented by the two appendices in the book. Appendix A summarizes some basic facts in vector detection and estimation in Gaussian noise which are used repeatedly throughout the book. Appendix B covers the underlying information theory behind the channel capacity results used in this book. Even though information theory has played a significant role in many of the recent developments in wireless communication, in the main text we only introduce capacity results in a heuristic manner and use them mainly to motivate communication concepts and techniques. No background in information theory is assumed. The appendix is intended for the reader who wants to have a more in-depth and unified understanding of the capacity results.

At Berkeley and Urbana-Champaign, we have used earlier versions of this book to teach one-semester (15 weeks) wireless communication courses. We have been able to cover most of the materials in Chapters 1 through 8 and parts of 9 and 10. Depending on the background of the students and the time available, one can envision several other ways to structure a course around this book. Examples:

• A senior level advanced undergraduate course in wireless communication: Chapters 2, 3, 4.
• An advanced graduate course for students with background in wireless channels and systems: Chapters 3, 5, 6, 7, 8, 9, 10.
• A short (quarter) course focusing on MIMO and space-time coding: Chapters 3, 5, 7, 8, 9.

The more than 230 exercises form an integral part of the book. Working on at least some of them is essential in understanding the material. Most of them elaborate on concepts discussed in the main text. The exercises range from relatively straightforward derivations of results in the main text, to “back-of-envelope” calculations for actual wireless systems, to “get-your-hands-dirty” MATLAB types, and to reading exercises that point to current research literature. The small bibliographical notes at the end of each chapter provide pointers to literature that is very closely related to the material discussed in the book; we do not aim to exhaust the immense research literature related to the material covered here.
We would like first to thank the students in our research groups for the selfless help they provided. In particular, many thanks to: Sanket Dusad, Raúl Etkin and Lenny Grokop, who between them painstakingly produced most of the figures in the book; Aleksandar Jovičić, who drew quite a few figures and proofread some chapters; Ada Poon whose research shaped significantly the material in Chapter 7 and who drew several figures in that chapter as well as in Chapter 2; Saurabha Tavildar and Lizhong Zheng whose research led to Chapter 9; Tie Liu and Vinod Prabhakaran for their help in clarifying and improving the presentation of Costa precoding in Chapter 10.

Several researchers read drafts of the book carefully and provided us with very useful comments on various chapters of the book: thanks to Stark Draper, Atilla Eryilmaz, Irem Kopru, Dana Porrat and Pascal Vontobel. This book has also benefited immensely from critical comments from students who have taken our wireless communication courses at Berkeley and Urbana-Champaign. In particular, sincere thanks to Amir Salman Avestimehr, Alex Dimakis, Krishnan Eswaran, Jana van Greunen, Nils Hoven, Shridhar Mubaraq Mishra, Jonathan Tsao, Aaron Wagner, Hua Wang, Xinzhou Wu and Xue Yang.

Earlier drafts of this book have been used in teaching courses at several universities: Cornell, ETHZ, MIT, Northwestern and University of Colorado at Boulder. We would like to thank the instructors for their feedback: Helmut Bölcskei, Anna Scaglione, Mahesh Varanasi, Gregory Wornell and Lizhong Zheng. We would like to thank Ateet Kapur, Christian Peel and Ulrich Schuster from Helmut’s group for their very useful feedback. Thanks are also due to Mitchell Trott for explaining to us how the ArrayComm systems work.

This book contains the results of many researchers, but it owes an intellectual debt to two individuals in particular. Bob Gallager’s research and teaching style have greatly inspired our writing of this book. He has taught us that good theory, by providing a unified and conceptually simple understanding of a morass of results, should shrink rather than grow the knowledge tree. This book is an attempt to implement this dictum. Our many discussions with
Rajiv Laroia have significantly influenced our view of the system aspects of wireless communication. Several of his ideas have found their way into the “system view” discussions in the book.

Finally we would like to thank the National Science Foundation, whose continual support of our research led to this book.
Notation

Some specific sets
\(\mathcal{R} \) Real numbers
\(\mathcal{C} \) Complex numbers
\(S \) A subset of the users in the uplink of a cell

Scalars

\(m \) Non-negative integer representing discrete-time
\(L \) Number of diversity branches
\(\ell \) Scalar, indexing the diversity branches
\(K \) Number of users
\(N \) Block length
\(N_c \) Number of tones in an OFDM system
\(T_c \) Coherence time
\(T_d \) Delay spread
\(W \) Bandwidth
\(n_t \) Number of transmit antennas
\(n_r \) Number of receive antennas
\(n_{\text{min}} \) Minimum of number of transmit and receive antennas
\(h[m] \) Scalar channel, complex valued, at time \(m \)
\(h^* \) Complex conjugate of the complex valued scalar \(h \)
\(x[m] \) Channel input, complex valued, at time \(m \)
\(y[m] \) Channel output, complex valued, at time \(m \)
\(\mathcal{N}(\mu, \sigma^2) \) Real Gaussian random variable with mean \(\mu \) and variance \(\sigma^2 \)
\(\mathcal{C}\mathcal{N}(0, \sigma^2) \) Circularly symmetric complex Gaussian random variable: the real and imaginary parts are i.i.d. \(\mathcal{N}(0, \sigma^2/2) \)
\(N_0 \) Power spectral density of white Gaussian noise
\(\{w[m]\} \) Additive Gaussian noise process, i.i.d. \(\mathcal{C}\mathcal{N}(0, N_0) \) with time \(m \)
\(z[m] \) Additive colored Gaussian noise, at time \(m \)
\(P \) Average power constraint measured in joules/symbol
\(\bar{P} \) Average power constraint measured in watts
\(\text{SNR} \) Signal-to-noise ratio
\(\text{SINR} \) Signal-to-interference-plus-noise ratio
\(E_b \)
Energy per received bit

\(P_e \)
Error probability

Capacities
- \(C_{\text{awgn}} \)
Capacity of the additive white Gaussian noise channel
- \(C_e \)
\(\varepsilon \)-Outage capacity of the slow fading channel
- \(C_{\text{sum}} \)
Sum capacity of the uplink or the downlink
- \(C_{\text{sym}} \)
Symmetric capacity of the uplink or the downlink
- \(C_{\text{sym}}^\varepsilon \)
\(\varepsilon \)-Outage symmetric capacity of the slow fading uplink channel
- \(P_{\text{out}} \)
Outage probability of a scalar fading channel
- \(P_{\text{out}}^\text{Ala} \)
Outage probability when employing the Alamouti scheme
- \(P_{\text{out}}^\text{rep} \)
Outage probability with the repetition scheme
- \(P_{\text{out}}^\text{ul} \)
Outage probability of the uplink
- \(P_{\text{out}}^\text{mimo} \)
Outage probability of the MIMO fading channel
- \(P_{\text{out}}^\text{ul-mimo} \)
Outage probability of the uplink with multiple antennas at the base-station

Vectors and matrices
- \(h \)
Vector, complex valued, channel
- \(x \)
Vector channel input
- \(y \)
Vector channel output
- \(\mathcal{CN}(0, \mathbf{K}) \)
Circularly symmetric Gaussian random vector with mean zero and covariance matrix \(\mathbf{K} \)
- \(w \)
Additive Gaussian noise vector \(\mathcal{CN}(0, N_0\mathbf{I}) \)
- \(h^* \)
Complex conjugate-transpose of \(h \)
- \(d \)
Data vector
- \(\tilde{d} \)
Discrete Fourier transform of \(d \)
- \(H \)
Matrix, complex valued, channel
- \(\mathbf{K_x} \)
Covariance matrix of the random complex vector \(x \)
- \(H^* \)
Complex conjugate-transpose of \(H \)
- \(H' \)
Transpose of matrix \(H \)
- \(\mathbf{Q}, \mathbf{U}, \mathbf{V} \)
Unitary matrices
- \(\mathbf{I}_n \)
Identity \(n \times n \) matrix
- \(\Lambda, \Psi \)
Diagonal matrices
- \(\text{diag}\{p_1, \ldots, p_n\} \)
Diagonal matrix with the diagonal entries equal to \(p_1, \ldots, p_n \)
- \(\mathbf{C} \)
Circulant matrix
- \(\mathbf{D} \)
Normalized codeword difference matrix

Operations
- \(\mathbb{E}[x] \)
Mean of the random variable \(x \)
- \(\mathbb{P}\{A\} \)
Probability of an event \(A \)
- \(\text{Tr}[\mathbf{K}] \)
Trace of the square matrix \(\mathbf{K} \)
- \(\text{sinc}(t) \)
Defined to be the ratio of \(\sin(\pi t) \) to \(\pi t \)
- \(Q(a) \)
\(\int_a^{\infty} \frac{1}{\sqrt{2\pi}} \exp^{-x^2/2} \, dx \)
- \(\mathcal{L}(\cdot, \cdot) \)
Lagrangian function
CHAPTER

1

Introduction

1.1 Book objective

Wireless communication is one of the most vibrant areas in the communication field today. While it has been a topic of study since the 1960s, the past decade has seen a surge of research activities in the area. This is due to a confluence of several factors. First, there has been an explosive increase in demand for tetherless connectivity, driven so far mainly by cellular telephony but expected to be soon eclipsed by wireless data applications. Second, the dramatic progress in VLSI technology has enabled small-area and low-power implementation of sophisticated signal processing algorithms and coding techniques. Third, the success of second-generation (2G) digital wireless standards, in particular, the IS-95 Code Division Multiple Access (CDMA) standard, provides a concrete demonstration that good ideas from communication theory can have a significant impact in practice. The research thrust in the past decade has led to a much richer set of perspectives and tools on how to communicate over wireless channels, and the picture is still very much evolving.

There are two fundamental aspects of wireless communication that make the problem challenging and interesting. These aspects are by and large not as significant in wireline communication. First is the phenomenon of fading: the time variation of the channel strengths due to the small-scale effect of multipath fading, as well as larger-scale effects such as path loss via distance attenuation and shadowing by obstacles. Second, unlike in the wired world where each transmitter–receiver pair can often be thought of as an isolated point-to-point link, wireless users communicate over the air and there is significant interference between them. The interference can be between transmitters communicating with a common receiver (e.g., uplink of a cellular system), between signals from a single transmitter to multiple receivers (e.g., downlink of a cellular system), or between different transmitter–receiver pairs (e.g., interference between users in different cells). How to deal with fading and with interference is central to the design of wireless communication.
systems and will be the central theme of this book. Although this book takes a physical-layer perspective, it will be seen that in fact the management of fading and interference has ramifications across multiple layers.

Traditionally the design of wireless systems has focused on increasing the reliability of the air interface; in this context, fading and interference are viewed as nuisances that are to be countered. Recent focus has shifted more towards increasing the spectral efficiency; associated with this shift is a new point of view that fading can be viewed as an opportunity to be exploited. The main objective of the book is to provide a unified treatment of wireless communication from both these points of view. In addition to traditional topics such as diversity and interference averaging, a substantial portion of the book will be devoted to more modern topics such as opportunistic and multiple input multiple output (MIMO) communication.

An important component of this book is the system view emphasis: the successful implementation of a theoretical concept or a technique requires an understanding of how it interacts with the wireless system as a whole. Unlike the derivation of a concept or a technique, this system view is less malleable to mathematical formulations and is primarily acquired through experience with designing actual wireless systems. We try to help the reader develop some of this intuition by giving numerous examples of how the concepts are applied in actual wireless systems. Five examples of wireless systems are used. The next section gives some sense of the scope of the wireless systems considered in this book.

1.2 Wireless systems

Wireless communication, despite the hype of the popular press, is a field that has been around for over a hundred years, starting around 1897 with Marconi’s successful demonstrations of wireless telegraphy. By 1901, radio reception across the Atlantic Ocean had been established; thus, rapid progress in technology has also been around for quite a while. In the intervening hundred years, many types of wireless systems have flourished, and often later disappeared. For example, television transmission, in its early days, was broadcast by wireless radio transmitters, which are increasingly being replaced by cable transmission. Similarly, the point-to-point microwave circuits that formed the backbone of the telephone network are being replaced by optical fiber. In the first example, wireless technology became outdated when a wired distribution network was installed; in the second, a new wired technology (optical fiber) replaced the older technology. The opposite type of example is occurring today in telephony, where wireless (cellular) technology is partially replacing the use of the wired telephone network (particularly in parts of the world where the wired network is not well developed). The point of these examples is that there are many situations in which there is a choice
between wireless and wire technologies, and the choice often changes when new technologies become available.

In this book, we will concentrate on cellular networks, both because they are of great current interest and also because the features of many other wireless systems can be easily understood as special cases or simple generalizations of the features of cellular networks. A cellular network consists of a large number of wireless subscribers who have cellular telephones (users), that can be used in cars, in buildings, on the street, or almost anywhere. There are also a number of fixed base-stations, arranged to provide coverage of the subscribers.

The area covered by a base-station, i.e., the area from which incoming calls reach that base-station, is called a cell. One often pictures a cell as a hexagonal region with the base-station in the middle. One then pictures a city or region as being broken up into a hexagonal lattice of cells (see Figure 1.1a). In reality, the base-stations are placed somewhat irregularly, depending on the location of places such as building tops or hill tops that have good communication coverage and that can be leased or bought (see Figure 1.1b). Similarly, mobile users connected to a base-station are chosen by good communication paths rather than geographic distance.

When a user makes a call, it is connected to the base-station to which it appears to have the best path (often but not always the closest base-station). The base-stations in a given area are then connected to a *mobile telephone switching office* (MTSO, also called a *mobile switching center* MSC) by high-speed wire connections or microwave links. The MTSO is connected to the public wired telephone network. Thus an incoming call from a mobile user is first connected to a base-station and from there to the MTSO and then to the wired network. From there the call goes to its destination, which might be an ordinary wire line telephone, or might be another mobile subscriber. Thus, we see that a cellular network is not an independent network, but rather an appendage to the wired network. The MTSO also plays a major role in coordinating which base-station will handle a call to or from a user and when to handoff a user from one base-station to another.

When another user (either wired or wireless) places a call to a given user, the reverse process takes place. First the MTSO for the called subscriber is found,

Figure 1.1 Cells and base-stations for a cellular network. (a) An oversimplified view in which each cell is hexagonal. (b) A more realistic case where base-stations are irregularly placed and cell phones choose the best base-station.
then the closest base-station is found, and finally the call is set up through the MTSO and the base-station. The wireless link from a base-station to the mobile users is interchangeably called the downlink or the forward channel, and the link from the users to a base-station is called the uplink or a reverse channel. There are usually many users connected to a single base-station, and thus, for the downlink channel, the base-station must multiplex together the signals to the various connected users and then broadcast one waveform from which each user can extract its own signal. For the uplink channel, each user connected to a given base-station transmits its own waveform, and the base-station receives the sum of the waveforms from the various users plus noise. The base-station must then separate out the signals from each user and forward these signals to the MTSO.

Older cellular systems, such as the AMPS (advanced mobile phone service) system developed in the USA in the eighties, are analog. That is, a voice waveform is modulated on a carrier and transmitted without being transformed into a digital stream. Different users in the same cell are assigned different modulation frequencies, and adjacent cells use different sets of frequencies. Cells sufficiently far away from each other can reuse the same set of frequencies with little danger of interference.

Second-generation cellular systems are digital. One is the GSM (global system for mobile communication) system, which was standardized in Europe but now used worldwide, another is the TDMA (time-division multiple access) standard developed in the USA (IS-136), and a third is CDMA (code division multiple access) (IS-95). Since these cellular systems, and their standards, were originally developed for telephony, the current data rates and delays in cellular systems are essentially determined by voice requirements. Third-generation cellular systems are designed to handle data and/or voice. While some of the third-generation systems are essentially evolution of second-generation voice systems, others are designed from scratch to cater for the specific characteristics of data. In addition to a requirement for higher rates, data applications have two features that distinguish them from voice:

- Many data applications are extremely bursty; users may remain inactive for long periods of time but have very high demands for short periods of time. Voice applications, in contrast, have a fixed-rate demand over long periods of time.
- Voice has a relatively tight latency requirement of the order of 100 ms. Data applications have a wide range of latency requirements; real-time applications, such as gaming, may have even tighter delay requirements than voice, while many others, such as http file transfers, have a much laxer requirement.

In the book we will see the impact of these features on the appropriate choice of communication techniques.
As mentioned above, there are many kinds of wireless systems other than cellular. First there are the broadcast systems such as AM radio, FM radio, TV and paging systems. All of these are similar to the downlink part of cellular networks, although the data rates, the sizes of the areas covered by each broadcasting node and the frequency ranges are very different. Next, there are wireless LANs (local area networks). These are designed for much higher data rates than cellular systems, but otherwise are similar to a single cell of a cellular system. These are designed to connect laptops and other portable devices in the local area network within an office building or similar environment. There is little mobility expected in such systems and their major function is to allow portability. The major standards for wireless LANs are the IEEE 802.11 family. There are smaller-scale standards like Bluetooth or a more recent one based on ultra-wideband (UWB) communication whose purpose is to reduce cabling in an office and simplify transfers between office and hand-held devices. Finally, there is another type of LAN called an ad hoc network. Here, instead of a central node (base-station) through which all traffic flows, the nodes are all alike. The network organizes itself into links between various pairs of nodes and develops routing tables using these links. Here the network layer issues of routing, dissemination of control information, etc. are important concerns, although problems of relaying and distributed cooperation between nodes can be tackled from the physical-layer as well and are active areas of current research.

1.3 Book outline

The central object of interest is the wireless fading channel. Chapter 2 introduces the multipath fading channel model that we use for the rest of the book. Starting from a continuous-time passband channel, we derive a discrete-time complex baseband model more suitable for analysis and design. Key physical parameters such as coherence time, coherence bandwidth, Doppler spread and delay spread are explained and several statistical models for multipath fading are surveyed. There have been many statistical models proposed in the literature; we will be far from exhaustive here. The goal is to have a small set of example models in our repertoire to evaluate the performance of basic communication techniques we will study.

Chapter 3 introduces many of the issues of communicating over fading channels in the simplest point-to-point context. As a baseline, we start by looking at the problem of detection of uncoded transmission over a narrowband fading channel. We find that the performance is very poor, much worse than over the additive white Gaussian noise (AWGN) channel with the same average signal-to-noise ratio (SNR). This is due to a significant probability that the channel is in deep fade. Various diversity techniques to mitigate this adverse effect of fading are then studied. Diversity techniques increase
reliability by sending the same information through multiple independently faded paths so that the probability of successful transmission is higher. Some of the techniques studied include:

- interleaving of coded symbols over time to obtain time diversity;
- inter-symbol equalization, multipath combining in spread-spectrum systems and coding over sub-carriers in orthogonal frequency division multiplexing (OFDM) systems to obtain frequency diversity;
- use of multiple transmit and/or receive antennas, via space-time coding, to obtain spatial diversity.

In some scenarios, there is an interesting interplay between channel uncertainty and the diversity gain: as the number of diversity branches increases, the performance of the system first improves due to the diversity gain but then subsequently deteriorates as channel uncertainty makes it more difficult to combine signals from the different branches.

In Chapter 4 the focus is shifted from point-to-point communication to studying cellular systems as a whole. Multiple access and inter-cell interference management are the key issues that come to the forefront. We explain how existing digital wireless systems deal with these issues. The concepts of frequency reuse and cell sectorization are discussed, and we contrast narrowband systems such as GSM and IS-136, where users within the same cell are kept orthogonal and frequency is reused only in cells far away, and CDMA systems, such as IS-95, where the signals of users both within the same cell and across different cells are spread across the same spectrum, i.e., frequency reuse factor of 1. Due to the full reuse, CDMA systems have to manage intra-cell and inter-cell interference more efficiently: in addition to the diversity techniques of time-interleaving, multipath combining and soft handoff, power control and interference averaging are the key interference management mechanisms. All the five techniques strive toward the same system goal: to maintain the channel quality of each user, as measured by the signal-to-interference-and-noise ratio (SINR), as constant as possible. This chapter is concluded with the discussion of a wideband OFDM system, which combines the advantages of both the CDMA and the narrowband systems.

Chapter 5 studies the capacity of wireless channels. This provides a higher level view of the tradeoffs involved in the earlier chapters and also lays the foundation for understanding the more modern developments in the subsequent chapters. The performance over the (non-faded) AWGN channel, as a baseline for comparison. We introduce the concept of channel capacity as the basic performance measure. The capacity of a channel provides the fundamental limit of communication achievable by any scheme. For the fading channel, there are several capacity measures, relevant for different scenarios. Two distinct scenarios provide particular insight: (1) the slow fading channel, where the channel stays the same (random value) over the entire time-scale
of communication, and (2) the fast fading channel, where the channel varies significantly over the time-scale of communication.

In the slow fading channel, the key event of interest is outage: this is the situation when the channel is so poor that no scheme can communicate reliably at a certain target data rate. The largest rate of reliable communication at a certain outage probability is called the outage capacity. In the fast fading channel, in contrast, outage can be avoided due to the ability to average over the time variation of the channel, and one can define a positive capacity at which arbitrarily reliable communication is possible. Using these capacity measures, several resources associated with a fading channel are defined: (1) diversity; (2) number of degrees of freedom; (3) received power. These three resources form a basis for assessing the nature of performance gain by the various communication schemes studied in the rest of the book.

Chapters 6 to 10 cover the more recent developments in the field. In Chapter 6 we revisit the problem of multiple access over fading channels from a more fundamental point of view. Information theory suggests that if both the transmitters and the receiver can track the fading channel, the optimal strategy to maximize the total system throughput is to allow only the user with the best channel to transmit at any time. A similar strategy is also optimal for the downlink. Opportunistic strategies of this type yield a system-wide multiuser diversity gain: the more users in the system, the larger the gain, as there is more likely to be a user with a very strong channel. To implement this concept in a real system, three important considerations are: fairness of the resource allocation across users; delay experienced by the individual user waiting for its channel to become good; and measurement inaccuracy and delay in feeding back the channel state to the transmitters. We discuss how these issues are addressed in the context of IS-865 (also called HDR or CDMA 2000 1×EV-DO), a third-generation wireless data system.

A wireless system consists of multiple dimensions: time, frequency, space and users. Opportunistic communication maximizes the spectral efficiency by measuring when and where the channel is good and only transmits in those degrees of freedom. In this context, channel fading is beneficial in the sense that the fluctuation of the channel across the degrees of freedom ensures that there will be some degrees of freedom in which the channel is very good. This is in sharp contrast to the diversity-based approach in Chapter 3, where channel fluctuation is always detrimental and the design goal is to average out the fading to make the overall channel as constant as possible. Taking this philosophy one step further, we discuss a technique, called opportunistic beamforming, in which channel fluctuation can be induced in situations when the natural fading has small dynamic range and/or is slow. From the cellular system point of view, this technique also increases the fluctuations of the interference imparted on adjacent cells, and presents an opposing philosophy to the notion of interference averaging in CDMA systems.
Chapters 7, 8, 9 and 10 discuss multiple input multiple output (MIMO) communication. It has been known for a while that the uplink with multiple receive antennas at the base-station allow several users to simultaneously communicate to the receiver. The multiple antennas in effect increase the number of degrees of freedom in the system and allow spatial separation of the signals from the different users. It has recently been shown that a similar effect occurs for point-to-point channels with multiple transmit and receive antennas, i.e., even when the antennas of the multiple users are co-located. This holds provided that the scattering environment is rich enough to allow the receive antennas to separate out the signal from the different transmit antennas, allowing the spatial multiplexing of information. This is yet another example where channel fading is beneficial to communication. Chapter 7 studies the properties of the multipath environment that determine the amount of spatial multiplexing possible and defines an angular domain in which such properties are seen most explicitly. We conclude with a class of statistical MIMO channel models, based in the angular domain, which will be used in later chapters to analyze the performance of communication techniques. Chapter 8 discusses the capacity and capacity-achieving transceiver architectures for MIMO channels, focusing on the fast fading scenario. It is demonstrated that the fast fading capacity increases linearly with the minimum of the number of transmit and receive antennas at all values of SNR. At high SNR, the linear increase is due to the increase in degrees of freedom from spatial multiplexing. At low SNR, the linear increase is due to a power gain from receive beamforming. At intermediate SNR ranges, the linear increase is due to a combination of both these gains. Next, we study the transceiver architectures that achieve the capacity of the fast fading channel. The focus is on the V-BLAST architecture, which multiplexes independent data streams, one onto each of the transmit antennas. A variety of receiver structures are considered: these include the decorrelator and the linear minimum mean square-error (MMSE) receiver. The performance of these receivers can be enhanced by successively canceling the streams as they are decoded; this is known as successive interference cancellation (SIC). It is shown that the MMSE–SIC receiver achieves the capacity of the fast fading MIMO channel. The V-BLAST architecture is very suboptimal for the slow fading MIMO channel: it does not code across the transmit antennas and thus the diversity gain is limited by that obtained with the receive antenna array. A modification, called D-BLAST, where the data streams are interleaved across the transmit antenna array, achieves the outage capacity of the slow fading MIMO channel. The boost of the outage capacity of a MIMO channel as compared to a single antenna channel is due to a combination of both diversity and spatial multiplexing gains. In Chapter 9, we study a fundamental tradeoff between the diversity and multiplexing gains that can be simultaneously harnessed over a slow fading MIMO channel. This formulation is then used as a unified framework to assess both the diversity and multiplexing performance
of several schemes that have appeared earlier in the book. This framework is also used to motivate the construction of new tradeoff-optimal space-time codes. In particular, we discuss an approach to design universal space-time codes that are tradeoff-optimal.

Finally, Chapter 10 studies the use of multiple transmit and receive antennas in multiuser and cellular systems; this is also called space-division multiple access (SDMA). Here, in addition to providing spatial multiplexing and diversity, multiple antennas can also be used to mitigate interference between different users. In the uplink, interference mitigation is done at the base-station via the SIC receiver. In the downlink, interference mitigation is also done at the base-station and this requires precoding: we study a precoding scheme, called Costa or dirty-paper precoding, that is the natural analog of the SIC receiver in the uplink. This study allows us to relate the performance of an SIC receiver in the uplink with a corresponding precoding scheme in a reciprocal downlink. The ArrayComm system is used as an example of an SDMA cellular system.