Preface

In 1999, the Papermaking Additives Committee decided to completely rewrite the TAPPI Monograph, “The Sizing of Paper”. Since the last edition that was compiled and edited in 1889 by Walter F. Reynolds, most of the paper mills have converted to neutral or alkaline pH wet end conditions.

Therefore, this new monograph reflects the new application experiences and technologies. To accomplish this end, we followed the general format established in previous monographs. We broke down the project into specific product lines. The authors selected for each topic were experts in their field. Furthermore, we expanded the size press surface sizing sections so that we could accommodate the new interests generated by this technology. We hope that this compilation of chapters will be of some help to paper mill technical people, students, chemists and mill engineers.

Finally, I would like to give special thanks to Lori Murphy and Eric R. Wagner at for doing some of the secretarial and editing, Columbia River Carbonates for giving me the resources to edit this book and to members of our families for putting up with us. Also, I would like to thank Dr. C. M. Wai for giving me general advice during the making of this monograph.

J. M. Rodriguez, Ph.D.
J. M. Gess, Ph.D.
The Sizing of Paper

The Association assumes no liability or responsibility in connection with the use of this information or data, including, but not limited to, any liability or responsibility under patent, copyright, or trade secret laws. The user is responsible for determining that this document is the most recent edition published.

Within the context of this work, the author(s) may use as examples specific manufacturers of equipment. This does not imply that these manufacturers are the only or best sources of the equipment or that TAPPI endorses them in any way. The presentation of such material by TAPPI should not be construed as an endorsement of or suggestion for any agreed upon course of conduct or concerted action.

Copyright © 2005 by:

TAPPI PRESS
Technology Park/Atlanta
P.O. Box 105113
Atlanta, GA 30348-5113 U.S.A.

www.tappi.org

All rights reserved

To obtain copyright permission to photocopy pages from this publication for internal or personal use, contact Copyright Clearance Center, Inc. (CCC) via their website at www.copyright.com. If you have questions about the copyright permission request process, please contact CCC by phone at 978-750-8400.

To obtain copyright permission to use excerpts from this publication in another published work, send your specific request in writing to TAPPI PRESS, 15 Technology Parkway South, Norcross, GA 30348 or by fax to 770-446-6947.

ISBN 1-59510-073-3

TP 0101R311

Printed in the United States of America
Contributors

T. Arnson M. J. Jaycock
G. L. Batten, Jr. R. L. Kearney
S. Boone M. A. May
R. E. Cates C. C. Olson
B. Crouse D. S. Rende
D. H. Dumas P. W. Resler
D. B. Evans J. M. Rodriguez
N. L. Franchina J. Sajbel
J. M. Gess D. K. Swales
R. T. Gray D. F. Varnell
W. Griggs P. Wilson
The Sizing of Paper

Table of Contents

Preface ii
List of Contributors iii

Chapter 1: A Short History into the “Sizing” of Paper 1
J. M. Gess

Introduction 1
The Derivation of the Words “Size” and “Sizing” 1
What is Meant by “Size” and “Sizing” 1
Background 2
The “Internal Sizing” of Paper
The Acid Papermaking Days (1798-1950’s) 3
The Neutral/Alkaline Era 5
Further Reading 6
References 6

Chapter 2: Mechanisms of Paper and Board Wetting 9
J. M. Rodriguez

Introduction 9
Contact Angle 9
Young’s Equation 10
The Spreading Coefficient 10
The Effect of Surface Roughness and Heterogeneous Surfaces on Contact Angles and Wetting 10
The Thermodynamics of Wetting 12
Classification of the Wetting Process 13
Determinations of Surface Energy 14
Dynamic Wetting 17
Dynamic Wetting of Paper and Board 20
The Wetting of Fibers 21
Capillary Penetration 23
References 24
Soap Size
 Addition Point Considerations for Rosin Soap Sizes
 Drying
 Pulp, Filler, Fines, and Process Chemicals
 Rosin Soap Size Handling
 Troubleshooting Rosin Soap Sizing Problems
 Rosin Soap Sizes-Pros and Cons

Dispersed Size
 Basic Chemical Considerations
 Dispersed Rosin Size
 Dispersion Stabilization
 Addition Point Considerations
 Post Addition of Cationic Polymer
 Drying, Pulp, Filler, Fines, and Process Chemicals
 Dispersed Size Handling
 Troubleshooting Dispersed Rosin Sizing Problems
 Dispersed Rosin Size-Pros and Cons

Dispersed Size under Neutral Papermaking Conditions
 Alternate Sources of Aluminum
 Limits to Neutral Rosin Sizing
 Miscellaneous Considerations for Neutral Rosin Sizing

References

Chapter 6: Soap Size vs. Dispersed Size
J. M. Gess

Understanding How Both Rosin Soap and Dispersed Rosin Acid Impart Sizing
Notes on Dispersed Size
Thin Stock versus Thick Stock Addition of Size

Chapter 7: Internal Sizing with Stearic Acid
T. Arnson, B. Crouse, W. Griggs.

Introduction
Properties of Commercial Stearic Acid
Preparation and Delivery of Stearic Acid for Sizing
Development of Sizing with Stearic Acid
Sizing Response with Stearic acid Size
Mill problems with Stearic Sizes
 Stearate Spots
 Wet Press Roll Adhesion and Stearate Plating
Chapter 8: Fluorochemical Sizing
C. C. Olson, N. L. Franchina, P. W. Resler and M. A. May

Introduction
Oil and Polar Fluid Resistant Papers
Types of Commercial Fluorochemicals
Fluorochemical Treatment Application Modes
Size Press Application
Internal Application (wet end)
Pigmented Coated Application
Calender Stack Application
Effect of Machine and Post-Treatment Operations
Testing Fluorochemically Treated Papers
References

Chapter 9: Alkenyl Succinic Anhydride (ASA)
J. M. Gess and D. S. Rende

Introduction
Background and Theory
The Distribution of ASA Through a Papermaking System
The Reaction of a Sizing Agent with the Cellulose Substrate
The Use of ASA
The Purchase and Storage of ASA
The Emulsification of ASA
ASA and Cationic Starch
The Use of ASA/Cationic Starch Emulsions
Conclusions
References

Chapter 10: Alkyl Ketene Dimer Sizes

Introduction
Chemical Properties
Sizing Mechanism
Chapter 11: Surface Sizing

P. Wilson

Surface Sizing
Pick-up
Influences on Pick-up
 Hercules Size Test (Internal Sizing)
 Porosity
 Size Press Solution Solids Content
 Paper Machine Speed
Mechanisms of Size Press Pick-up
Theoretical Considerations
Size Press Configuration
 Pond/nip Type Size Presses
 Starch Pickup in Puddle Type Size Presses
 Metering Size Presses
 Gate Roll Size Presses
Cationic Starch for Use in the Pond or Metering Press
Functional Property Response
 Water Resistance
 Wet Rub and Wet Pick Resistance
 Internal Strength
 Surface Strength
 Porosity
 Non-Aqueous Holdout
 Ink Receptivity and Show-through
 Opacity
<table>
<thead>
<tr>
<th>Problems Encountered</th>
<th>228</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foam</td>
<td>228</td>
</tr>
<tr>
<td>Surface Slipperiness</td>
<td>229</td>
</tr>
<tr>
<td>Nip Rejection</td>
<td>229</td>
</tr>
<tr>
<td>Blocking of Reel</td>
<td>229</td>
</tr>
<tr>
<td>Important Properties of Size Press Formulation</td>
<td>229</td>
</tr>
<tr>
<td>Combinations of Size Press Additives</td>
<td>229</td>
</tr>
<tr>
<td>Interaction with Subsequent Coatings</td>
<td>230</td>
</tr>
<tr>
<td>Effects of Wet End Conditions</td>
<td>230</td>
</tr>
<tr>
<td>Effect of Higher Speeds</td>
<td>230</td>
</tr>
<tr>
<td>Effect of Moisture Entering Size Press</td>
<td>231</td>
</tr>
<tr>
<td>Effect of Additives on Drying</td>
<td>231</td>
</tr>
<tr>
<td>Advantages and Disadvantages</td>
<td>231</td>
</tr>
<tr>
<td>Effects of Forming</td>
<td>231</td>
</tr>
<tr>
<td>The after Size or Metering Press Dryers</td>
<td>232</td>
</tr>
<tr>
<td>References</td>
<td>233</td>
</tr>
</tbody>
</table>

Appendix A

Starch in the Papermaking Process	234
Size Press Starch	234
References	235

Chapter 12: Starch

R. L. Kearney

Abstract	237
Introduction	237
Starch	238
Fundamentals	238
Oxidized Starchs	240
Viscosity Reduction by the User-Enzyme Conversion	241
Thermal Conversion and Jet Cooking	241
Continuous High Temperature Chemical (AP) Conversion	242
Starch Derivatives	242
Starch Paste Preparation	243
Starch Spoilage	243
Cooked Starch	245
The Cleaning of Pipe Lines and Equipment Used for Starch	246
Chemical Methods of Control	246
Specialty Starchs	247
Starch Copolymers	247
Summary	248
References	248
Chapter 13: Size Press Starch

P. Wilson

Size Press Starch

Design Considerations for Starch Systems

Starch Handling and Cooking

Introduction

Bulk Starch Handling

References

Chapter 14: Surface Sizing

R. T. Gray and D. S. Rende

Introduction

Equipment

Pond-Type Size Press

Gate-Roll Size Press

Metered Size Press

Factors Influencing Solution Pickup

Machine Speed

Nip Loading and Roll Hardness

Solution Viscosity

Surface Chemistry of Sheet

Base Sheet Porosity

Base Sheet Smoothness

Chemistry

Starch

Alkaline Internal Sizing Additives

Polymeric Sizing Additives

Styrene Maleic Anhydride (SMA)

Styrene Acrylic Acid (SAA)

Styrene Acrylate Emulsion (SAE)

Polyurethane Dispersions (PUD)

Ethylene Acrylic Acid (EAA)

Other Size Press Additives

Delivery of Size Press Solution

Applications

Surface Strength

Internal Strength

Print Quality

Other Applications

Summary

References
Chapter 15: Surface Sizing Additives

J. Sajbel

Definition and History of Surface Sizing
Types of Surface Sizing Agents
- Acrylic Emulsion Products
- Polyurethanes
- Styrene Acrylic Solutions
- Styrene Maleic Anhydride
Methods of Application
Size Press Formulation and Conditions
Size Testing
Performance/Effects
- Inkjet Grades
- Laser/Copier Grades
- Offsets, Opaques
- Artist Pen+Ink Grades
- SCA Grades
- Boards
Performance Testing
- Inkjet Printing Evaluations
- Laser/Copier Printing Evaluations
- Toners and Toner Adhesion
- Offset Testing
Summary

Chapter 16: Testing of Paper and Board Sizing

S. Boone

Introduction
Definitions
Mechanism of the Sorption of Water by Paper and Paperboard
Testing of Paper for Sizing
Factors Affecting Testing
- Effect of Temperature
- Effect of Moisture Content of Paper
- Effect of Hydraulic Head
Composition of the Test Liquid
Preparation of the Sample
Factors Influencing the Choice of test Method
Types of Sizing Tests
Test Procedures
- Penetration Tests
- Through Surface
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Resistance Tests</td>
<td>327</td>
</tr>
<tr>
<td>Secondary Paper Properties</td>
<td>332</td>
</tr>
<tr>
<td>Index of TAPPI Sizing Test Methods</td>
<td>336</td>
</tr>
<tr>
<td>References</td>
<td>341</td>
</tr>
<tr>
<td>Chapter 17: The Effect of Internal Size Additives on Print Quality</td>
<td>345</td>
</tr>
<tr>
<td>D. F. Varnell</td>
<td></td>
</tr>
<tr>
<td>Introduction and Experimental</td>
<td>345</td>
</tr>
<tr>
<td>Observations on Sizing</td>
<td>346</td>
</tr>
<tr>
<td>Electroreprographic Printing</td>
<td>348</td>
</tr>
<tr>
<td>Ink Jet Printing</td>
<td>351</td>
</tr>
<tr>
<td>Proposed Theory</td>
<td>356</td>
</tr>
<tr>
<td>References</td>
<td>357</td>
</tr>
<tr>
<td>Index</td>
<td>359</td>
</tr>
</tbody>
</table>