Contents

NSX Administration Guide 11

1 Overview of NSX 13
 NSX Components 14
 NSX Services 16

2 Logical Switches 19
 Create a Logical Switch 20
 Connect Virtual Machines to a Logical Switch 32
 Test Logical Switch Connectivity 32
 Prevent Spoofing on a Logical Switch 33
 Edit a Logical Switch 33
 Working with Transport Zones 33
 Logical Switch Scenario 38

3 L2 Bridges 43
 Add L2 Bridge 44

4 Logical Router 45
 Specify Global Configuration 45
 Add a Static Route 46
 Configure OSPF on a Logical (Distributed) Router 47
 Configure BGP 52
 Configure IS-IS Protocol 56
 Configure Route Redistribution 57

5 Logical Firewall 59
 Distributed Firewall 59
 Edge Firewall 61
 Working with Firewall Rules 61
 Working with Firewall Rule Sections 69
 Working with Firewall Configurations 70
 Excluding Virtual Machines from Firewall Protection 71
 Using SpoofGuard 72
 View Firewall CPU and Memory Threshold Events 75
 Firewall Logs 75
 Working with Local Rules 75

6 Virtual Private Networks (VPN)s 83
 SSL VPN-Plus Overview 83
 IPSec VPN Overview 104
L2 VPN Overview 108

7 Logical Load Balancer 115
 Set Up Load Balancing 115
 Load Balance Web Servers using NTLM Authentication 125
 Working with Application Profiles 125
 Working with Service Monitors 126
 Working with Server Pools 127
 Working with Virtual Servers 127
 Working with Application Rules 128

8 Other Edge Services 129
 Managing DHCP Service 129
 Configuring DHCP Relay 132
 Configure DNS Servers 134

9 Service Composer 135
 Using Service Composer 136
 Graphical View of Service Composer 142
 Export a Service Composer Configuration 145
 Import a Service Composer Configuration 145
 Working with Security Tags 146
 Viewing Effective Services 148
 Working with Security Policies 149
 Edit a Security Group 150
 Service Composer Scenarios 150

10 Data Security 155
 NSX Data Security User Roles 155
 Defining a Data Security Policy 155
 Running a Data Security Scan 157
 Viewing and Downloading Reports 158
 Creating Regular Expressions 158

11 Network Extensibility 159
 Distributed Service Insertion 160
 Edge-Based Service Insertion 160
 Integrating Third Party Services 160
 Consuming Vendor Services through Service Composer 160
 Redirecting Traffic to a Vendor Solution through Logical Firewall 161
 Using a Partner Load Balancer 161

12 User Management 163
 Configure Single Sign On 163
 Managing User Rights 165
 Managing the Default User Account 166
 Assign a Role to a vCenter User 166
 Edit a User Account 168
<table>
<thead>
<tr>
<th>State Name</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>297</td>
</tr>
<tr>
<td>Kentucky</td>
<td>297</td>
</tr>
<tr>
<td>Louisiana</td>
<td>297</td>
</tr>
<tr>
<td>Maine</td>
<td>297</td>
</tr>
<tr>
<td>Manitoba</td>
<td>297</td>
</tr>
<tr>
<td>Maryland</td>
<td>298</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>298</td>
</tr>
<tr>
<td>Michigan</td>
<td>298</td>
</tr>
<tr>
<td>Minnesota</td>
<td>298</td>
</tr>
<tr>
<td>Mississippi</td>
<td>298</td>
</tr>
<tr>
<td>Missouri</td>
<td>298</td>
</tr>
<tr>
<td>Montana</td>
<td>298</td>
</tr>
<tr>
<td>Nebraska</td>
<td>299</td>
</tr>
<tr>
<td>Netherlands</td>
<td>299</td>
</tr>
<tr>
<td>Nebraska</td>
<td>299</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>300</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>300</td>
</tr>
<tr>
<td>New Jersey</td>
<td>300</td>
</tr>
<tr>
<td>New Mexico</td>
<td>300</td>
</tr>
<tr>
<td>New York</td>
<td>300</td>
</tr>
<tr>
<td>New Zealand</td>
<td>301</td>
</tr>
<tr>
<td>New Zealand Inland Revenue Department</td>
<td>301</td>
</tr>
<tr>
<td>New Zealand National Health Index Number</td>
<td>301</td>
</tr>
<tr>
<td>Newfoundland and Labrador</td>
<td>301</td>
</tr>
<tr>
<td>North Carolina</td>
<td>301</td>
</tr>
<tr>
<td>North Dakota</td>
<td>301</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>301</td>
</tr>
<tr>
<td>Ohio</td>
<td>301</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>302</td>
</tr>
<tr>
<td>Ontario</td>
<td>302</td>
</tr>
<tr>
<td>Oregon</td>
<td>302</td>
</tr>
<tr>
<td>Patient Identification Numbers</td>
<td>302</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>302</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>302</td>
</tr>
<tr>
<td>Protected Health Information Terms</td>
<td>302</td>
</tr>
<tr>
<td>Quebec</td>
<td>303</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>303</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>303</td>
</tr>
<tr>
<td>SIN</td>
<td>303</td>
</tr>
<tr>
<td>SIN Unformatted</td>
<td>303</td>
</tr>
<tr>
<td>SSN</td>
<td>303</td>
</tr>
<tr>
<td>SSN Unformatted</td>
<td>304</td>
</tr>
<tr>
<td>South Carolina</td>
<td>304</td>
</tr>
<tr>
<td>South Dakota</td>
<td>304</td>
</tr>
<tr>
<td>Spain</td>
<td>304</td>
</tr>
</tbody>
</table>
Spain Passport Number Content Blade 304
Spain Social Security Number Content Blade 304
Sweden IBAN Number Content Blade 304
Sweden Passport Number Content Blade 305
Tennessee License Number Content Blade 305
UK BIC Number Content Blade 305
UK Driving License Number Content Blade 305
UK IBAN Number Content Blade 306
UK National Health Service Number Content Blade 306
UK NINO Formal Content Blade 306
UK Passport Number Content Blade 306
Utah License Number Content Blade 307
Virginia License Number Content Blade 307
Visa Card Number Content Blade 307
Washington License Number Content Blade 307
Wisconsin License Number Content Blade 307
Wyoming License Number Content Blade 307

18 File Formats Supported by Data Security 309

Index 315
NNSX Administration Guide

The NSX Administration Guide describes how to configure, monitor, and maintain the VMware® NSX™ system by using the NSX Manager user interface and the vSphere Web Client. The information includes step-by-step configuration instructions, and suggested best practices.

Intended Audience

This manual is intended for anyone who wants to install or use NSX in a VMware vCenter environment. The information in this manual is written for experienced system administrators who are familiar with virtual machine technology and virtual datacenter operations. This manual assumes familiarity with VMware Infrastructure 5.x, including VMware ESX, vCenter Server, and the vSphere Web Client.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions of terms as they are used in VMware technical documentation, go to http://www.vmware.com/support/pubs.

Document Feedback

VMware welcomes your suggestions for improving our documentation. If you have comments, send your feedback to docfeedback@vmware.com.

Technical Support and Education Resources

The following technical support resources are available to you. To access the current version of this book and other books, go to http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and contract information, and register your products, go to http://www.vmware.com/support.

Customers with appropriate support contracts should use telephone support for the fastest response on severity 1 issues. Go to http://www.vmware.com/support/phone_support.html.

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live online. For onsite pilot programs and implementation best practices,
VMware Consulting Services provides offerings to help you assess, plan, build, and manage your virtual environment. To access information about education classes, certification programs, and consulting services, go to http://www.vmware.com/services.
Overview of NSX

IT organizations have gained significant benefits as a direct result of server virtualization. Server consolidation reduced physical complexity, increased operational efficiency and the ability to dynamically re-purpose underlying resources to quickly and optimally meet the needs of increasingly dynamic business applications.

VMware’s Software Defined Data Center (SDDC) architecture is now extending virtualization technologies across the entire physical data center infrastructure. VMware NSX®, the network virtualization platform, is a key product in the SDDC architecture. With NSX, virtualization delivers for networking what it has already delivered for compute and storage. In much the same way that server virtualization programmatically creates, snapshots, deletes and restores software-based virtual machines (VMs), NSX network virtualization programmatically creates, snapshots, deletes, and restores software-based virtual networks. The result is a completely transformative approach to networking that not only enables data center managers to achieve orders of magnitude better agility and economics, but also allows for a vastly simplified operational model for the underlying physical network. With the ability to be deployed on any IP network, including both existing traditional networking models and next-generation fabric architectures from any vendor, NSX is a completely non-disruptive solution. In fact, with NSX, the physical network infrastructure you already have is all you need to deploy a software-defined data center.
The figure above draws an analogy between compute and network virtualization. With server virtualization, a software abstraction layer (server hypervisor) reproduces the familiar attributes of an x86 physical server (for example, CPU, RAM, Disk, NIC) in software, allowing them to be programmatically assembled in any arbitrary combination to produce a unique VM in a matter of seconds.

With network virtualization, the functional equivalent of a network hypervisor reproduces the complete set of Layer 2 through Layer 7 networking services (for example, switching, routing, access control, firewalls, QoS, and load balancing) in software. As a result, these services can be programmatically assembled in any arbitrary combination, to produce unique, isolated virtual networks in a matter of seconds.

With network virtualization, benefits similar to server virtualization are derived. For example, just as VMs are independent of the underlying x86 platform and allow IT to treat physical hosts as a pool of compute capacity, virtual networks are independent of the underlying IP network hardware and allow IT to treat the physical network as a pool of transport capacity that can be consumed and repurposed on demand. Unlike legacy architectures, virtual networks can be provisioned, changed, stored, deleted, and restored programmatically without reconfiguring the underlying physical hardware or topology. By matching the capabilities and benefits derived from familiar server and storage virtualization solutions, this transformative approach to networking unleashes the full potential of the software-defined data center.

NSX can be configured through the vSphere Web Client, a command-line interface (CLI), and a REST API.

This chapter includes the following topics:

- “NSX Components,” on page 14
- “NSX Services,” on page 16

NSX Components

This section describes the components of the NSX solution.
Data Plane

The NSX Data plane consists of the NSX vSwitch, which is based on the vSphere Distributed Switch (VDS) with additional components to enable services. Kernel modules (VIBs) run within the hypervisor kernel to provide services such as distributed routing and logical firewall and to enable VXLAN bridging capabilities.

The NSX vSwitch (vDS-based) abstracts the physical network and provides access-level switching in the hypervisor. It is central to network virtualization because it enables logical networks that are independent of physical constructs, such as VLANs. Some of the benefits of the vSwitch are:

- Support for overlay networking with protocols (such as VXLAN) and centralized network configuration. Overlay networking enables the following capabilities:
 - Creation of a flexible logical Layer 2 (L2) overlay over existing IP networks on existing physical infrastructure without the need to re-architect any of the data center networks
 - Provision of communication (east–west and north–south), while maintaining isolation between tenants
 - Application workloads and virtual machines that are agnostic of the overlay network and operate as if they were connected to a physical L2 network
 - Facilitates massive scale of hypervisors
 - Multiple features—such as Port Mirroring, NetFlow/IPFIX, Configuration Backup and Restore, Network Health Check, QoS, and LACP—provide a comprehensive toolkit for traffic management, monitoring, and troubleshooting within a virtual network

Additionally, the data plane consists of gateway devices that can provide L2 bridging from the logical networking space (VXLAN) to the physical network (VLAN). The gateway device is typically an NSX Edge virtual appliance. NSX Edge offers L2, L3, perimeter firewall, load balancing, and other services such as SSL VPN and DHCP.

Control Plane

The NSX control plane runs in the NSX Controller cluster. NSX Controller is an advanced distributed state management system that provides control plane functions for NSX logical switching and routing functions. It is the central control point for all logical switches within a network and maintains information about all hosts, logical switches (VXLANs), and distributed logical routers.

The controller cluster is responsible for managing the distributed switching and routing modules in the hypervisors. The controller does not have any dataplane traffic passing through it. Controller nodes are deployed in a cluster of three members to enable high-availability and scale. Any failure of the controller nodes does not impact any data-plane traffic.

NSX Controllers work by distributing network information to hosts. To achieve a high level of resiliency the NSX Controller is clustered for scale out and HA. NSX Controllers must be deployed in a three-node cluster. The three virtual appliances provide, maintain, and update the state of all network functioning within the NSX domain. NSX Manager is used to deploy NSX Controller nodes.

The three NSX Controller nodes form a control cluster. The controller cluster requires a quorum (also called a majority) in order to avoid a "split-brain scenario." In a split-brain scenario, data inconsistencies originate from the maintenance of two separate data sets that overlap. The inconsistencies can be caused by failure conditions and data synchronization issues. Having three controller nodes ensures data redundancy in case of failure of one NSX Controller node.

A controller cluster has several roles, including:

- API provider
- Persistence server
- Switch manager
- Logical manager
- Directory server

Each role has a master controller node. If a master controller node for a role fails, the cluster elects a new master for that role from the available NSX Controller nodes. The new master NSX Controller node for that role reallocates the lost portions of work among the remaining NSX Controller nodes.

NSX supports three logical switch control plane modes: multicast, unicast and hybrid. Using a controller cluster to manage VXLAN-based logical switches eliminates the need for multicast support from the physical network infrastructure. You don’t have to provision multicast group IP addresses, and you also don’t need to enable PIM routing or IGMP snooping features on physical switches or routers. Thus, the unicast and hybrid modes decouple NSX from the physical network. VXLANs in unicast control-plane mode do not require the physical network to support multicast in order to handle the broadcast, unknown unicast, and multicast (BUM) traffic within a logical switch. The unicast mode replicates all the BUM traffic locally on the host and requires no physical network configuration. In the hybrid mode, some of the BUM traffic replication is offloaded to the first hop physical switch to achieve better performance. Hybrid mode requires IGMP snooping on the first-hop switch and access to an IGMP querier in each VTEP subnet.

Management Plane

The NSX management plane is built by the NSX Manager, the centralized network management component of NSX. It provides the single point of configuration and REST API entry-points.

The NSX Manager is installed as a virtual appliance on any ESX™ host in your vCenter Server environment.

Consumption Platform

The consumption of NSX can be driven directly through the NSX Manager user interface, which is available in the vSphere Web Client. Typically end users tie network virtualization to their cloud management platform for deploying applications. NSX provides rich integration into virtually any CMP through REST APIs. Out-of-the-box integration is also available through VMware vCloud Automation Center, vCloud Director, and OpenStack with the Neutron plug-in for NSX.

NSX Services

The NSX components work together to provide the following functional services.

Logical Switches

A cloud deployment or a virtual data center has a variety of applications across multiple tenants. These applications and tenants require isolation from each other for security, fault isolation, and non-overlapping IP addresses. The NSX logical switch creates logical broadcast domains or segments to which an application or tenant virtual machine can be logically wired. This allows for flexibility and speed of deployment while still providing all the characteristics of a physical network’s broadcast domains (VLANs) without physical Layer 2 sprawl or spanning tree issues. A logical switch is distributed and can span arbitrarily large compute clusters. This allows for virtual machine mobility (vMotion) within the data center without limitations of the physical Layer 2 (VLAN) boundary. The physical infrastructure is not constrained by MAC/FIB table limits, because the logical switch contains the broadcast domain in software.
Logical Routers

Dynamic routing provides the necessary forwarding information between Layer 2 broadcast domains, thereby allowing you to decrease the size of Layer 2 broadcast domains and improve network efficiency and scale. NSX extends this intelligence to where the workloads reside for East-West routing. This allows more direct VM-to-VM communication without the costly or timely need to extend hops. At the same time, NSX logical routers provide North-South connectivity, thereby enabling tenants to access public networks.

Logical Firewall

Logical Firewall provides security mechanisms for dynamic virtual data centers. The Distributed Firewall component of Logical Firewall allows you to segment virtual datacenter entities like virtual machines based on VM names and attributes, user identity, vCenter objects like datacenters, and hosts, as well as traditional networking attributes like IP addresses, VLANs, and so on. The Edge Firewall component helps you meet key perimeter security requirements, such as building DMZs based on IP/VLAN constructs, tenant-to-tenant isolation in multi-tenant virtual data centers, Network Address Translation (NAT), partner (extranet) VPNs, and user-based SSL VPNs.

The Flow Monitoring feature displays network activity between virtual machines at the application protocol level. You can use this information to audit network traffic, define and refine firewall policies, and identify threats to your network.

Logical Virtual Private Networks (VPN)s

SSL VPN-Plus allows remote users to access private corporate applications. IPSec VPN offers site-to-site connectivity between an NSX Edge instance and remote sites. L2 VPN allows you to extend your datacenter by allowing virtual machines to retain network connectivity across geographical boundaries.

Logical Load Balancer

The NSX Edge load balancer enables network traffic to follow multiple paths to a specific destination. It distributes incoming service requests evenly among multiple servers in such a way that the load distribution is transparent to users. Load balancing thus helps in achieving optimal resource utilization, maximizing throughput, minimizing response time, and avoiding overload. NSX Edge provides load balancing up to Layer 7.

Service Composer

Service Composer helps you provision and assign network and security services to applications in a virtual infrastructure. You map these services to a security group, and the services are applied to the virtual machines in the security group.

Data Security provides visibility into sensitive data stored within your organization’s virtualized and cloud environments. Based on the violations reported by NSX Data Security, you can ensure that sensitive data is adequately protected and assess compliance with regulations around the world.

NSX Extensibility

VMware partners can integrate their solutions with the NSX platform, thus enabling customers to have an integrated experience across VMware products and partner solutions. Data center operators can provision complex, multi-tier virtual networks in seconds, independent of the underlying network topology or components.
Logical Switches

A cloud deployment or a virtual data center has a variety of applications across multiple tenants. These applications and tenants require isolation from each other for security, fault isolation, and avoidance of overlapping IP addressing issues. The NSX logical switch creates logical broadcast domains or segments to which an application or tenant virtual machine can be logically wired. This allows for flexibility and speed of deployment while still providing all the characteristics of a physical network’s broadcast domains (VLANs) without physical Layer 2 sprawl or spanning tree issues.

A logical switch is distributed and can span arbitrarily large compute clusters. This allows for virtual machine mobility (vMotion) within the datacenter without the limitations of the physical Layer 2 (VLAN) boundary. The physical infrastructure is not constrained by MAC/FIB table limits because the logical switch contains the broadcast domain in software.

A logical switch is mapped to a unique VXLAN, which encapsulates the virtual machine traffic and carries it over the physical IP network.

The NSX controller is the central control point for all logical switches within a network and maintains information about all virtual machines, hosts, logical switches, and VXLANs. The controller supports two new logical switch control plane modes, Unicast and Hybrid. These modes decouple NSX from the physical network. VXLANs no longer require the physical network to support multicast in order to handle the Broadcast, Unknown unicast, and Multicast (BUM) traffic within a logical switch. The unicast mode replicates all the BUM traffic locally on the host and requires no physical network configuration. In the hybrid mode, some of the BUM traffic replication is offloaded to the first hop physical switch to achieve better performance. This mode requires IGMP snooping to be enabled on the first hop physical switch. Virtual machines within a logical switch can use and send any type of traffic including IPv6 and multicast.
You can extend a logical switch to a physical device by adding an L2 bridge. See Chapter 3, “L2 Bridges,” on page 43.

You must have the Super Administrator or Enterprise Administrator role permissions to manage logical switches.

This chapter includes the following topics:

- “Create a Logical Switch,” on page 20
- “Connect Virtual Machines to a Logical Switch,” on page 32
- “Test Logical Switch Connectivity,” on page 32
- “Prevent Spoofing on a Logical Switch,” on page 33
- “Edit a Logical Switch,” on page 33
- “Working with Transport Zones,” on page 33
- “Logical Switch Scenario,” on page 38

Create a Logical Switch

Prerequisites

- You have the Super Administrator or Enterprise Administrator role permission to configure and manage logical switches.
- You have prepared clusters that are to be part of the logical switch. See *Prepare Clusters for Network Virtualization* in the *NSX Installation Guide*.
- You have configured VXLAN on the appropriate clusters. See *Configure VXLAN Transport Parameters* in the *NSX Installation Guide*.
- You have the minimum required software versions. See *System Requirements* in the *NSX Installation Guide*.
- VXLAN UDP port is opened on firewall rules (if applicable). The VXLAN UDP port can be configured through the API. IANA has assigned the value 4789 for the VXLAN UDP port. The default is 4789.
- Port 80 is opened from NSX Manager to the hosts. This is used to download the VIB/agent.
- Physical infrastructure MTU is at least 50 bytes more than the MTU of the virtual machine vNIC.
- Managed IP address is set for each vCenter Server in the vCenter Server Runtime Settings. See *vCenter Server and Host Management*.
- DHCP is available on VXLAN transport VLANs if you are using DHCP for IP assignment for VMKNNics.
- A consistent distributed virtual switch type (vendor, and so on) and version is being used across a given transport zone. Inconsistent switch types can lead to undefined behavior in your logical switch.
- You have configured an appropriate LACP teaming policy and connected physical NICs to the ports. For more information on teaming modes, refer to the VMware vSphere documentation.
- 5-tuple hash distribution is enabled for Link Aggregation Control Protocol (LACP).
- For multicast mode, multicast routing is enabled if VXLAN traffic is traversing routers. You have acquired a multicast address range from your network administrator.
- Port 1234 (the default controller listening port) is opened on firewall for the ESX host to communicate with controllers.
For multicast and hybrid modes, you have enabled IGMP snooping on the L2 switches to which VXLAN participating hosts are attached. If IGMP snooping is enabled on L2, IGMP querier must be enabled on the router or L3 switch with connectivity to multicast enabled networks.

Add a Transport Zone

A transport zone controls to which hosts a logical switch can reach. It can span one or more vsphere clusters. Transport zones dictate which clusters and, therefore, which VMs can participate in the use of a particular network.

An NSX environment can contain one or more transport zones based on your requirements. A host cluster can belong to multiple transport zones. A logical switch can belong to only one transport zone.

NSX does not allow connection of VMs that are in different transport zones. The span of a logical switch is limited to a transport zone, so virtual machines in different transport zones cannot be on the same Layer 2 network. A distributed logical router cannot connect to logical switches that are in different transport zones. After you connect the first logical switch, the selection of further logical switches is limited to those that are in the same transport zone. Similarly, an edge services gateway (ESG) has access to logical switches from only one transport zone.

The following guidelines are meant to help you design your transport zones:

- If a cluster requires Layer 3 connectivity, the cluster must be in a transport zone that also contains an edge cluster, meaning a cluster that has Layer 3 edge devices (distributed logical routers and edge services gateways).

- Suppose you have two clusters, one for web services and another for application services. To have VXLAN connectivity between the VMs in these two clusters, both of the clusters must be included in the transport zone.

- Keep in mind that all logical switches included in the transport zone will be available and visible to all VMs within the clusters that are included in the transport zone. If a cluster includes secured environments, you might not want to make it available to VMs in other clusters. Instead, you can place your secure cluster in a more isolated transport zone.

- The span of the vsphere distributed switch (VDS or DVS) should match the transport zone span. When creating transport zones in multi-cluster VDS configurations, make sure all clusters in the selected VDS are included in the transport zone. This is to ensure that the DLR is available on all clusters where VDS dvPortgroups are available.

The following diagram shows a transport zone correctly aligned to the VDS boundary.
If you do not follow this best practice, keep in mind that if a VDS spans more than one host cluster and the transport zone includes only one (or a subset) of these clusters, any logical switch included within this transport zone can access VMs within all clusters spanned by the VDS. In other words, the transport zone will not be able to constrain the logical switch span to a subset of the clusters. If this logical switch is later connected to a DLR, you must ensure that the router instances are created only in the cluster included in the transport zone to avoid any Layer 3 issues.
For example, when a transport zone is not aligned to the VDS boundary, the scope of the logical switches (5001, 5002 and 5003) and the DLR instances that these logical switches are connected to becomes disjointed, causing VMs in cluster Comp A to have no access to the DLR logical interfaces (LIFs).

Procedure

1. In vCenter, navigate to **Home > Networking & Security > Installation** and select the **Logical Network Preparation** tab.
2. Click **Transport Zones** and click the **New Transport Zone ()** icon.

 For example:
3. In the New Transport Zone dialog box, type a name and an optional description for the transport zone.

4. Depending on whether you have a controller node in your environment, or you want to use multicast addresses, select the control plane mode.

 - **Multicast**: Multicast IP addresses in the physical network are used for the control plane. This mode is recommended only when you are upgrading from older VXLAN deployments. Requires PIM/IGMP in the physical network.
 - **Unicast**: The control plane is handled by an NSX controller. All unicast traffic leverages optimized headend replication. No multicast IP addresses or special network configuration is required.
 - **Hybrid**: Offloads local traffic replication to the physical network (L2 multicast). This requires IGMP snooping on the first-hop switch and access to an IGMP querier in each VTEP subnet, but does not require PIM. The first-hop switch handles traffic replication for the subnet.

5. Select the clusters to be added to the transport zone.

 For example:

 ![New Transport Zone](image)

 ![Select clusters](image)

 What to do next

 Now that you have a transport zone, you can add logical switches.
Add a Logical Switch

An NSX logical switch reproduces switching functionality (unicast, multicast, broadcast) in a virtual environment completely decoupled from underlying hardware. Logical switches are similar to VLANs, in that they provide network connections to which you can attach virtual machines. The VMs can then communicate with each other over VXLAN if the VMs are connected to the same logical switch. Each logical switch has a segment ID, like a VLAN ID. Unlike VLAN IDs, it’s possible to have up to 16 million segment IDs.

When you are adding logical switches, it is important to have in mind a particular topology that you are building. For example, the following simple topology shows two logical switches connected to a single distributed logical router (DLR). In this diagram, each logical switch is connected to a single VM. The two VMs can be on different hosts or the same host, in different host clusters or in the same host cluster. If a DLR does not separate the VMs, the underlying IP addresses configured on the VMs can be in the same subnet. If a DLR does separate them, the IP addresses on the VMs must be in different subnets (as shown in the example).

Prerequisites

- vSphere distributed switches must be configured.
- NSX Manager must be installed.
- Controllers must be deployed.
- Host clusters must be prepared for NSX.
- VXLAN must be configured.
- A segment ID pool must be configured.
- A transport zone must be created.

Procedure

1. In the vSphere Web Client, navigate to Home > Networking & Security > Logical Switches.
2 Click the New Logical Switch (+] icon.

For example:

3 Type a name and optional description for the logical switch.

4 Select the transport zone in which you want to create the logical switch.

By default, the logical switch inherits the control plane replication mode from the transport zone. You can change it to one of the other available modes. The available modes are unicast, hybrid, and multicast.

The case in which you might want to override the inherited transport zone’s control plane replication mode for an individual logical switch is when the logical switch you are creating has significantly different characteristics in terms of the amount of BUM traffic it will to carry. In this case, you might create a transport zone that uses as unicast mode, and use hybrid or multicast mode for the individual logical switch.
5 (Optional) Click **Enable IP Discovery** to enable ARP suppression.

This setting minimizes ARP traffic flooding within individual VXLAN segments—in other words, between VMs connected to the same logical switch. IP discovery is enabled by default.

This example shows the app logical switch with default settings.

6 Attach a VM to the logical switch by selecting the switch and clicking the **Add Virtual Machine** icon.

For example:
7 Select the VM and click the right-arrow button.

For example:

8 Select a vNIC.

Each logical switch that you create receives an ID from the segment ID pool, and a virtual wire is created. A virtual wire is a dvPortgroup that is created on each vSphere distributed switch. The virtual wire descriptor contains the name of the logical switch and the logical switch’s segment ID. Assigned segment IDs appear in multiple places, as shown in the following examples.

In **Home > Networking & Security > Logical Switches**:

In **Home > Networking**:

![Image of vSphere Web Client](image-url)
Notice that the virtual wires are created on both of the vSphere distributed switches, Compute_VDS and Mgmt_VDS. This is because both of these vSphere distributed switches are members of the transport zone that is associated with the web and app logical switches.

In Home > Hosts and Clusters > VM > Summary:
On the hosts that are running the VMs that are attached to the logical switch, log in and execute the following commands to view local VXLAN configuration and state information.

- Displays host-specific VXLAN details.

```bash
~ # esxcli network vswitch dvs vmware vxlan list
```

<table>
<thead>
<tr>
<th>VDS ID</th>
<th>Gateway MAC</th>
<th>Network Count</th>
<th>VDS Name</th>
<th>MTU</th>
<th>Segment ID</th>
<th>Gateway IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>88 eb 0e 50 96 af 1d f1-36 fe c1 ef a1 51 51 49</td>
<td>192.168.250.1 ff:ff:ff:ff:ff:ff</td>
<td>0</td>
<td>Compute_VDS</td>
<td>1600</td>
<td>192.168.250.0</td>
<td>192.168.250.1 ff:ff:ff:ff:ff:ff</td>
</tr>
</tbody>
</table>

NOTE If the `esxcli network vswitch dvs vmware vxlan` command produces the "Unknown command or namespace" error message, run the `/etc/init.d/hostd restart` command on the host and then try again.

VDS Name displays the vSphere distributed switch to which the host is attached.
The Segment ID is the IP network used by VXLAN.
The Gateway IP is the gateway IP address used by VXLAN.
The Gateway MAC address remains ff:ff:ff:ff:ff:ff.
The Network Count remains 0 unless a DLR is attached to the logical switch.
The Vmknic count should match the number of VMs attached to the logical switch.

- Test IP VTEP interface connectivity, and verify the MTU has been increased to support VXLAN encapsulation. Ping the vmknic interface IP address, which can be found on the host's Manage > Networking > Virtual switches page in the vCenter Web Client.
The `-d` flag sets the don't-fragment (DF) bit on IPv4 packets. The `-s` flag sets the packet size.

```
root@esxcomp-02a ~ # vmkping ++netstack=vxlans -d -s 1570 192.168.250.100
PING 192.168.250.100 (192.168.250.100): 1570 data bytes
1578 bytes from 192.168.250.100: icmp_seq=0 ttl=64 time=1.294 ms
1578 bytes from 192.168.250.100: icmp_seq=1 ttl=64 time=0.686 ms
1578 bytes from 192.168.250.100: icmp_seq=2 ttl=64 time=0.758 ms

--- 192.168.250.100 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.686/0.913/1.294 ms
```

```
root@esxcomp-01a ~ # vmkping ++netstack=vxlans -d -s 1570 192.168.250.101
1578 bytes from 192.168.250.101: icmp_seq=0 ttl=64 time=0.065 ms
1578 bytes from 192.168.250.101: icmp_seq=1 ttl=64 time=0.118 ms

--- 192.168.250.101 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.065/0.091/0.118 ms
```

What to do next

Create a DLR and attach it to your logical switches to enable connectivity between VMs that are connected to different logical switches.

Connect a Logical Switch to an NSX Edge

Connecting a Logical Switch to an NSX Edge services gateway or an NSX Edge logical router provides East-West traffic routing (among the logical switches) or North-South traffic routing to the external world or to provide advanced services.

Procedure

1. In Logical Switches, select the logical switch to which you want to connect an NSX Edge.

2. Click the **Connect an Edge** icon.

3. Select the NSX Edge to which you want to connect the logical switch and click **Next**.

4. Select the interface that you want to connect to the logical switch and click **Next**.

 A logical network is typically connected to an internal interface.

5. On the Edit NSX Edge interface page, type a name for the NSX Edge interface.

6. Click **Internal** or **Uplink** to indicate whether this is an internal or uplink interface.

7. Select the connectivity status of the interface.

8. If the NSX Edge to which you are connecting the logical switch has **Manual HA Configuration** selected, specify two management IP addresses in CIDR format.

9. Edit the default MTU if required.

10. Click **Next**.

11. Review the NSX Edge connection details and click **Finish**.
Deploy Services on a Logical Switch

You can deploy third party services on a Logical Switch.

Prerequisites

One or more third party virtual appliances must have been installed in your infrastructure.

Procedure

1. In **Logical Switches**, select the logical switch on which you want to deploy services.
2. Click the **Add Service Profile** icon.
3. Select the service and service profile that you want to apply.
4. Click **OK**.

Connect Virtual Machines to a Logical Switch

You can connect virtual machines to a Logical Switch. This makes it easy to identify the port groups that belong to a Logical Switch in your vCenter inventory.

Procedure

1. In **Logical Switches**, select the Logical Switch to which you want to add virtual machines.
2. Click the **Add** icon.
3. Select the vNics that you want to connect.
4. Click **Next**.
5. Review the vNics you selected.
6. Click **Finish**.

Test Logical Switch Connectivity

A ping test checks if two hosts in a VXLAN transport network can reach each other.

1. In **Logical Switches**, click the logical network that you want to test in the **Name** column.
2. Click the **Hosts** tab.
3. Select a host.
4. Click the **More Actions** icon and select **Test Connectivity**.

 The Test Connectivity Between Hosts in the Network dialog box opens. The host you selected in step 4 appears in the Source host field. Click **Browse** to select a different source host.
5. Select the size of the test packet.

 VXLAN standard size is 1550 bytes (should match the physical infrastructure MTU) without fragmentation. This allows NSX to check connectivity and verify that the infrastructure is prepared for VXLAN traffic.

 Minimum packet size allows fragmentation. Hence, with packet size minimized, NSX can check connectivity but not whether the infrastructure is ready for the larger frame size.
6. In the **Destination** panel, click **Browse Hosts**.
7. In the Select Host dialog box, select the destination host.
Click Select.

Click Start Test.

The host-to-host ping test results are displayed.

Prevent Spoofing on a Logical Switch

After synchronizing with the vCenter Server, NSX Manager collects the IP addresses of all vCenter guest virtual machines from VMware Tools on each virtual machine. NSX does not trust all IP addresses provided by VMware Tools on a virtual machine. If a virtual machine has been compromised, the IP address can be spoofed and malicious transmissions can bypass firewall policies.

SpoofGuard allows you to authorize the IP addresses reported by VMware Tools, and alter them if necessary to prevent spoofing. SpoofGuard inherently trusts the MAC addresses of virtual machines collected from the VMX files and vSphere SDK. Operating separately from the Firewall rules, you can use SpoofGuard to block traffic identified as spoofed.

For more information, see “Using SpoofGuard,” on page 72.

Edit a Logical Switch

You can edit the name, description, and control plane mode of a logical switch.

Procedure

1 In Logical Switches, select the logical switch that you want to edit.
2 Click the Edit icon.
3 Make the desired changes.
4 Click OK.

Working with Transport Zones

Add a Transport Zone

A transport zone controls to which hosts a logical switch can reach. It can span one or more vSphere clusters. Transport zones dictate which clusters and, therefore, which VMs can participate in the use of a particular network.

An NSX environment can contain one or more transport zones based on your requirements. A host cluster can belong to multiple transport zones. A logical switch can belong to only one transport zone.

NSX does not allow connection of VMs that are in different transport zones. The span of a logical switch is limited to a transport zone, so virtual machines in different transport zones cannot be on the same Layer 2 network. A distributed logical router cannot connect to logical switches that are in different transport zones. After you connect the first logical switch, the selection of further logical switches is limited to those that are in the same transport zone. Similarly, an edge services gateway (ESG) has access to logical switches from only one transport zone.

The following guidelines are meant to help you design your transport zones:

- If a cluster requires Layer 3 connectivity, the cluster must be in a transport zone that also contains an edge cluster, meaning a cluster that has Layer 3 edge devices (distributed logical routers and edge services gateways).
- Suppose you have two clusters, one for web services and another for application services. To have VXLAN connectivity between the VMs in these two clusters, both of the clusters must be included in the transport zone.

- Keep in mind that all logical switches included in the transport zone will be available and visible to all VMs within the clusters that are included in the transport zone. If a cluster includes secured environments, you might not want to make it available to VMs in other clusters. Instead, you can place your secure cluster in a more isolated transport zone.

- The span of the vSphere distributed switch (VDS or DVS) should match the transport zone span. When creating transport zones in multi-cluster VDS configurations, make sure all clusters in the selected VDS are included in the transport zone. This is to ensure that the DLR is available on all clusters where VDS dvPortgroups are available.

The following diagram shows a transport zone correctly aligned to the VDS boundary.

![Transport Zone Diagram]

If you do not follow this best practice, keep in mind that if a VDS spans more than one host cluster and the transport zone includes only one (or a subset) of these clusters, any logical switch included within this transport zone can access VMs within all clusters spanned by the VDS. In other words, the transport zone will not be able to constrain the logical switch span to a subset of the clusters. If this logical switch is later connected to a DLR, you must ensure that the router instances are created only in the cluster included in the transport zone to avoid any Layer 3 issues.
For example, when a transport zone is not aligned to the VDS boundary, the scope of the logical switches (5001, 5002 and 5003) and the DLR instances that these logical switches are connected to becomes disjointed, causing VMs in cluster Comp A to have no access to the DLR logical interfaces (LIFs).

Procedure

1. In vCenter, navigate to **Home > Networking & Security > Installation** and select the **Logical Network Preparation** tab.

2. Click **Transport Zones** and click the **New Transport Zone (➕)** icon.

For example:
3 In the New Transport Zone dialog box, type a name and an optional description for the transport zone.

4 Depending on whether you have a controller node in your environment, or you want to use multicast addresses, select the control plane mode.

 - **Multicast**: Multicast IP addresses in the physical network are used for the control plane. This mode is recommended only when you are upgrading from older VXLAN deployments. Requires PIM/IGMP in the physical network.

 - **Unicast**: The control plane is handled by an NSX controller. All unicast traffic leverages optimized headend replication. No multicast IP addresses or special network configuration is required.

 - **Hybrid**: Offloads local traffic replication to the physical network (L2 multicast). This requires IGMP snooping on the first-hop switch and access to an IGMP querier in each VTEP subnet, but does not require PIM. The first-hop switch handles traffic replication for the subnet.

5 Select the clusters to be added to the transport zone.

For example:

![New Transport Zone dialog box](image)

What to do next

Now that you have a transport zone, you can add logical switches.
View and Edit a Transport Zone

You can view the logical networks in a selected transport zone, the clusters in, and the control plane mode for that transport zone.

Procedure

1. In Transport Zones, double-click a transport zone.
 - The Summary tab displays the name and description of the transport zone as well as the number of logical switches associated with it. Transport Zone Details displays the clusters in the transport zone.

2. Click the Edit Settings icon in the Transport Zone Details section to edit the name, description, or control plane mode of the transport zone.
 - If you change the transport zone control plane mode, select Migrate existing Logical Switches to the new control plane mode to change the control plane mode for existing logical switches linked to this transport zone. If you do not select this check box, only the logical switches linked to this transport zone after the edit is done will have the new control plane mode.

3. Click OK.

Expand a Transport Zone

You can add clusters to a transport zone. All existing transport zones become available on the newly added clusters.

Prerequisites

The clusters you add to a transport zone have the network infrastructure installed and are configured for VXLAN. See the NSX Installation and Upgrade Guide.

Procedure

1. In Transport Zones, click a transport zone.

2. In Transport Zones Details, click the Add Cluster icon.

3. Select the clusters you want to add to the transport zone.

4. Click OK.

Contract a Transport Zone

You can remove clusters from a transport zone. The size of existing transport zones is reduced to accommodate the contracted scope.

Procedure

1. In Transport Zones, double-click a transport zone.

2. In Transport Zones Details, click the Remove Clusters icon.

3. Select the clusters that you want to remove.

4. Click OK.
Logical Switch Scenario

This scenario presents a situation where company ACME Enterprise has several ESX hosts on two clusters in a datacenter, ACME_Datacenter. The Engineering (on port group PG-Engineering) and Finance departments (on port group PG-Finance) are on Cluster1. The Marketing department (PG-Marketing) is on Cluster2. Both clusters are managed by a single vCenter Server 5.5.

Figure 2-1. ACME Enterprise network before implementing logical switches

ACME is running out of compute space on Cluster1 while Cluster2 is under-utilized. The ACME network supervisor asks John Admin (ACME’s virtualization administrator) to figure out a way to extend the Engineering department to Cluster2 in a way that virtual machines belonging to Engineering on both clusters can communicate with each other. This would enable ACME to utilize the compute capacity of both clusters by stretching ACME’s L2 layer.

If John Admin were to do this the traditional way, he would need to connect the separate VLANs in a special way so that the two clusters can be in the same L2 domain. This might require ACME to buy a new physical device to separate traffic, and lead to issues such as VLAN sprawl, network loops, and administration and management overhead.

John Admin remembers seeing a logical network demo at VMworld, and decides to evaluate NSX. He concludes that building a logical switch across dvSwitch1 and dvSwitch2 will allow him to stretch ACME’s L2 layer. Since John can leverage the NSX controller, he will not have to touch ACME’s physical infrastructure as NSX works on top of existing IP networks.
Once John Admin builds a logical switch across the two clusters, he can vMotion virtual machines within the vDS.

Let us walk through the steps that John Admin follows to build a logical network at ACME Enterprise.
John Admin Assigns Segment ID Pool and Multicast Address Range to NSX Manager

John Admin must specify the segment ID pool he received to isolate Company ABC's network traffic.

Prerequisites

1. John Admin verifies that dvSwitch1 and dvSwitch2 are VMware distributed switches version 5.5.
2. John Admin sets the Managed IP address for the vCenter Server.
 a. Select Administration > vCenter Server Settings > Runtime Settings.
 b. In vCenter Server Managed IP, type 10.115.198.165.
 c. Click OK.
4. John Admin gets a segment ID pool (5000 - 5250) from ACME's NSX Manager administrator. Since he is leveraging the NSX controller, he does not require multicast in his physical network.
5. John Admin creates an IP pool so that he can assign a static IP address to the VXLAN VTEPs from this IP pool. See “Add an IP Pool,” on page 85.

Procedure

1. In the vSphere Web Client, click Networking & Security > Installation.
2. Click the Logical Network Preparation tab and then click Segment ID.
3. Click Edit.
4. In Segment ID pool, type 5000 – 5250.
5. Do not select Enable multicast addressing.
6. Click OK.

John Admin Configures VXLAN Transport Parameters

John Admin configures VXLAN on Cluster 1 and Cluster 2, where he maps each cluster to a vDS. When he maps a cluster to a switch, each host in that cluster is enabled for logical switches.

Procedure

1. Click the Host Preparation tab.
2. For Cluster1, select Configure in the VXLAN column.
3. In the Configuring VXLAN networking dialog box, select dvSwitch1 as the virtual distributed switch for the cluster.
4. Type 10 for dvSwitch1 to use as the ACME transport VLAN.
5. In Specify Transport Attributes, leave 1600 as the Maximum Transmission Units (MTU) for dvSwitch1. MTU is the maximum amount of data that can be transmitted in one packet before it is divided into smaller packets. John Admin knows that VXLAN logical switch traffic frames are slightly larger in size because of the encapsulation, so the MTU for each switch must be set to 1550 or higher.
6. In VMKNic IP Addressing, select Use IP Pool and select an IP pool.
For **VMKNic Teaming Policy**, select **Failover**.

John Admin wants to maintain the quality of service in his network by keeping the performance of logical switches the same in normal and fault conditions. Hence, he chooses **Failover** as the teaming policy.

8 Click **Add**.

9 Repeat steps 4 through step 8 to configure VXLAN on Cluster2.

After John admin maps Cluster1 and Cluster2 to the appropriate switch, the hosts on those clusters are prepared for logical switches:

1 A VXLAN kernel module and vmknic is added to each host in Cluster 1 and Cluster 2.

2 A special dvPortGroup is created on the vSwitch associated with the logical switch and the VMKNic is connected to it.

John Admin Adds a Transport Zone

The physical network backing a logical network is called a transport zone. A transport zone is the compute diameter spanned by a virtualized network.

Procedure

1 Click **Logical Network Preparation** and then click **Transport Zones**.

2 Click the **New Transport Zone** icon.

3 In Name, type **ACME Zone**.

4 In Description, type **Zone containing ACME's clusters**.

5 Select Cluster 1 and Cluster 2 to add to the transport zone.

6 In **Control Plane Mode**, select **Unicast**.

7 Click **OK**.

John Admin Creates a Logical Switch

After John Admin configures VXLAN transport parameters, he is ready to create a logical switch.

Procedure

1 Click **Logical Switches** and then click the **New Logical Network** icon.

2 In Name, type **ACME logical network**.

3 In Description, type **Logical Network for extending ACME Engineering network to Cluster2**.

4 In **Transport Zone**, select ACME Zone.

5 Click **OK**.

 NSX creates a logical switch providing L2 connectivity between dvSwitch1 and dvSwitch2.

What to do next

John Admin can now connect ACME's production virtual machines to the logical switch, and connect the logical switch to an NSX Edge services gateway or Logical Router.
L2 Bridges

You can create an L2 bridge between a logical switch and a VLAN, which enables you to migrate virtual workloads to physical devices with no impact on IP addresses. A logical network can leverage a physical L3 gateway and access existing physical networks and security resources by bridging the logical switch broadcast domain to the VLAN broadcast domain.

The L2 bridge runs on the host that has the NSX Edge logical router virtual machine. An L2 bridge instance maps to a single VLAN, but there can be multiple bridge instances. The logical router cannot be used as a gateway for devices connected to a bridge.

If High Availability is enabled on the Logical Router and the primary NSX Edge virtual machine goes down, the bridge is automatically moved over to the host with the secondary virtual machine. For this seamless migration to happen, a VLAN must have been configured on the host that has the secondary NSX Edge virtual machine.

Note that you should not use an L2 bridge to connect a logical switch to another logical switch, a VLAN network to another VLAN network, or to interconnect datacenters.
Add L2 Bridge

You can add a bridge from a logical switch to a distributed virtual port group.

Prerequisites
An NSX logical router must be deployed in your environment.
You cannot use a universal logical router to configure bridging, and you cannot add a bridge to a universal logical switch.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double click a logical router.
4. Click Manage and then click Bridging.
5. Click the Add (++) icon.
6. Type a name for the bridge.
7. Select the logical switch that you want to create a bridge for.
8. Select the distributed virtual port group to which you want to bridge the logical switch.
9. Click OK.
Logical Router

You can specify static and dynamic routing for each NSX Edge.

Dynamic routing provides the necessary forwarding information between Layer 2 broadcast domains, thereby allowing you to decrease Layer 2 broadcast domains and improve network efficiency and scale. NSX extends this intelligence to where the workloads reside for doing East-West routing. This allows more direct virtual machine to virtual machine communication without the added cost or time needed to extend hops. At the same time, NSX also provides North-South connectivity, thereby enabling tenants to access public networks.

This chapter includes the following topics:

- “Specify Global Configuration,” on page 45
- “Add a Static Route,” on page 46
- “Configure OSPF on a Logical (Distributed) Router,” on page 47
- “Configure BGP,” on page 52
- “Configure IS-IS Protocol,” on page 56
- “Configure Route Redistribution,” on page 57

Specify Global Configuration

You can configure the default gateway for static routes and specify dynamic routing details for an Edge Services Gateway or Distributed Router.

You must have a working NSX Edge instance before you can configure routing on it. For information on setting up NSX Edge, see “NSX Edge Operations,” on page 188.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click Routing and then click Global Configuration.
5. To enable Equal-cost multi-path routing (ECMP), click Enable next to ECMP.

ECMP is a routing strategy that allows next-hop packet forwarding to a single destination can occur over multiple best paths. These best paths can be added statically or as a result of metric calculations by dynamic routing protocols like OSPF or BGP. Multiple paths for static routes can be added by providing multiple next hops separated by commas in the Static Routes dialog box. For more information, see “Add a Static Route,” on page 46.
The Edge Services Gateway utilizes Linux network stack implementation, a roundrobin algorithm with a randomness component. After a next hop is selected for a particular source and destination IP address pair, the route cache stores the selected next hop. All packets for that flow go to the selected next hop. The default IPv4 route cache timeout is 300 seconds (gc_timeout). If an entry is inactive for this time, it is eligible to be removed from the route cache. The actual removal happens when garbage collection timer activates (gc_interval = 60 seconds).

The Logical Router uses an XOR algorithm to determine the next hop from a list of possible ECMP next hops. This algorithm uses the source and destination IP address on the outgoing packet as sources of entropy.

Till version 6.1.2, enabling ECMP disabled Distributed Firewall on the Edge Services Gateway virtual machine. Stateful services such as NAT did not work with ECMP. From NSX vSphere version 6.1.3 onwards, ECMP and Distributed Firewall can work together.

6 To specify the default gateway, click **Edit** next to **Default Gateway**.
 a Select an interface from which the next hop towards the destination network can be reached.
 b Type the gateway IP if required.
 c Edit the MTU if required and type a description.
 d Click **Save**.

7 To configure dynamic routing, click **Edit** next to Dynamic Routing Configuration.
 a **Router ID** displays the first uplink IP address of the NSX Edge that pushes routes to the kernel for dynamic routing.
 b Do not enable any protocols here.
 c Select **Enable Logging** to save logging information and select the log level.

Note If you have IPSec VPN configured in your environment, you should not use dynamic routing.

8 Click **Publish Changes**.

What to do next
To delete routing configuration, click **Reset**. This deletes all routing configurations (default, static, OSPF, and BGP configurations, as well as route redistribution).

Add a Static Route

You can add a static route for a destination subnet or host.

Procedure

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click an NSX Edge.
4 Click the **Manage** tab and then click the **Routing** tab.
5 Select **Static Routes** from the left panel.
6 Click the **Add (✚)** icon.
7 Type the **Network** in CIDR notation.
8 Type the IP address of the **Next Hop**.
 The router must be able to directly reach the next hop.
 If ECMP is enabled, you can type multiple next hops.

9 Select the **Interface** on which you want to add a static route.

10 For **MTU**, edit the maximum transmission value for the data packets if required.
 The MTU cannot be higher than the MTU set on the NSX Edge interface.

11 If prompted, type the **Admin Distance**.
 Choose a value between 0 and 255. The admin distance is used to choose which route to use when there
 are multiple routes for a given network. The lower the admin distance, the higher the preference for the
 route.

 Table 4-1. Default Admin Distances

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Default admin distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>0</td>
</tr>
<tr>
<td>Static</td>
<td>1</td>
</tr>
<tr>
<td>OSPF Internal</td>
<td>30</td>
</tr>
<tr>
<td>OSPF External</td>
<td>110</td>
</tr>
<tr>
<td>Internal BGP</td>
<td>200</td>
</tr>
<tr>
<td>External BGP</td>
<td>20</td>
</tr>
</tbody>
</table>

12 (Optional) Type the **Locale ID**.
 By default, routes have the same locale ID as the NSX Manager. Specifying a locale ID here will
 associate the route with this locale ID. These routes will be sent only to hosts that have a matching
 locale ID. See GUID-2C4A3FFE-7939-446D-A267-2F0CD57C10F4 for more information.

13 (Optional) Type a **Description** for the static route.

14 Click **OK**.

Configure OSPF on a Logical (Distributed) Router

Configuring OSPF on a logical router enables VM connectivity across logical routers and from logical
routers to edge services gateways (ESGs).

OSPF routing policies provide a dynamic process of traffic load balancing between routes of equal cost.

An OSPF network is divided into routing areas to optimize traffic flow and limit the size of routing tables.
An area is a logical collection of OSPF networks, routers, and links that have the same area identification.
Areas are identified by an Area ID.

Prerequisites

A Router ID must be configured, as shown in “Example: Example: OSPF Configured on the Logical
(Distributed) Router,” on page 49.

When you enable a router ID, the field is populated by default with the logical router’s uplink interface.

Procedure

1 Log in to the vSphere Web Client.

2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click a logical router.
4 Click **Routing** and then click **OSPF**.
5 Enable OSPF.
 a Click **Edit** at the top right corner of the window and click **Enable OSPF**
 b In **Forwarding Address**, type an IP address that is to be used by the router datapath module in the hosts to forward datapath packets.
 c In **Protocol Address**, type a unique IP address within the same subnet as the **Forwarding Address**. The protocol address is used by the protocol to form adjacencies with the peers.
6 Configure the OSPF areas.
 a Optionally, delete the not-so-stubby area (NSSA) 51 that is configured by default.
 b In **Area Definitions**, click the **Add** icon.
 c Type an Area ID. NSX Edge supports an area ID in the form of an IP address or decimal number.
 d In **Type**, select **Normal** or **NSSA**.

 NSSAs prevent the flooding of AS-external link-state advertisements (LSAs) into NSSAs. They rely on default routing to external destinations. Hence, NSSAs must be placed at the edge of an OSPF routing domain. NSSA can import external routes into the OSPF routing domain, thereby providing transit service to small routing domains that are not part of the OSPF routing domain.
7 (Optional) Select the type of **Authentication**. OSPF performs authentication at the area level.
 All routers within the area must have the same authentication and corresponding password configured. For MD5 authentication to work, both the receiving and transmitting routers must have the same MD5 key.
 a **None**: No authentication is required, which is the default value.
 b **Password**: In this method of authentication, a password is included in the transmitted packet.
 c **MD5**: This authentication method uses MD5 (Message Digest type 5) encryption. An MD5 checksum is included in the transmitted packet.
 d For **Password** or **MD5** type authentication, type the password or MD5 key.
8 Map interfaces to the areas.
 a In **Area to Interface Mapping**, click the **Add** icon to map the interface that belongs to the OSPF area.
 b Select the interface that you want to map and the OSPF area that you want to map it to.
9 (Optional) If needed, edit the default OSPF settings.
 In most cases, it is recommended to retain the default OSPF settings. If you do change the settings, make sure that the OSPF peers use the same settings.
 a **Hello Interval** displays the default interval between hello packets that are sent on the interface.
 b **Dead Interval** displays the default interval during which at least one hello packet must be received from a neighbor before the router declares that neighbor down.
 c **Priority** displays the default priority of the interface. The interface with the highest priority is the designated router.
 d **Cost** of an interface displays the default overhead required to send packets across that interface. The cost of an interface is inversely proportional to the bandwidth of that interface. The larger the bandwidth, the smaller the cost.
10 Click Publish Changes.

Example: OSPF Configured on the Logical (Distributed) Router

One simple NSX scenario that uses OSPF is when a logical router (DLR) and an edge services gateway (ESG) are OSPF neighbors, as shown here.

Figure 4-1. NSX Topology

In the following screen, the logical router's default gateway is the ESG's internal interface IP address (192.168.10.1).

The router ID is the logical router's uplink interface—in other words, the IP address that faces the ESG (192.168.10.2).
The logical router configuration uses 192.168.10.2 as its forwarding address. The protocol address can be any IP address that is in the same subnet and is not used anywhere else. In this case, 192.168.10.3 is configured. The area ID configured is 0, and the uplink interface (the interface facing the ESG) is mapped to the area.
What to do next

Make sure the route redistribution and firewall configuration allow the correct routes to be advertised.

In this example, the logical router's connected routes (172.16.10.0/24 and 172.16.20.0/24) are advertised into OSPF.

If you enabled SSH when you created the logical router, you must also configure a firewall filter that allows SSH to the logical router's protocol address. For example:
Configure BGP

Border Gateway Protocol (BGP) makes core routing decisions. It includes a table of IP networks or prefixes, which designate network reachability among multiple autonomous systems.

An underlying connection between two BGP speakers is established before any routing information is exchanged. Keepalive messages are sent by the BGP speakers in order to keep this relationship alive. After the connection is established, the BGP speakers exchange routes and synchronize their tables.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Routing** and then click **BGP**.
5. Click **Edit**.
6. In the Edit BGP Configuration dialog box, click **Enable BGP**.
7. Click **Enable Graceful Restart** for packet forwarding to be un-interrupted during restart of BGP services.
8. Click **Enable Default Originate** to allow NSX Edge to advertise itself as a default gateway to its peers.
9. Type the router ID in **Local AS**. Type the Local AS. This is advertised when BGP peers with routers in other autonomous systems (AS). The path of ASs that a route traverses is used as one metric when selecting the best path to a destination.
10. Click **OK**.
11. In **Neighbors**, click the **Add** icon.
12. Type the IP address of the neighbor.
 - When you configure BGP peering between an edge services gateway (ESG) and a logical router, use the logical router’s protocol IP address as the ESG’s BGP neighbor address.
13. (On a logical router only) Type the forwarding address.
 - The forwarding address is the IP address that you assigned to the distributed logical router’s interface facing its BGP neighbor (its uplink interface).
14. (On a logical router only) Type the protocol address.
 - The protocol address is the IP address that the logical router uses to form a BGP neighbor relationship. It can be any IP address in the same subnet as the forwarding address (as long as its not used anywhere else). When you configure BGP peering between an edge services gateway (ESG) and a logical router, use the logical router’s protocol IP address as the ESG neighbor’s IP address.
15. Type the remote AS.
16. Edit the default weight for the neighbor connection if required.
17. **Hold Down Timer** displays interval (180 seconds) after not receiving a keep alive message that the software declares a peer dead. Edit if required.
18. **Keep Alive Timer** displays the default frequency (60 seconds) with which the software sends keepalive messages to its peer. Edit if required.
19. If authentication is required, type the authentication password. Each segment sent on the connection between the neighbors is verified. MD5 authentication must be configured with the same password on both BGP neighbors, otherwise, the connection between them will not be made.
20. To specify route filtering from a neighbor, click the Add icon in the BGP Filters area.

Caution A “block all” rule is enforced at the end of the filters.

21. Select the direction to indicate whether you are filtering traffic to or from the neighbor.
22. Select the action to indicate whether you are allowing or denying traffic.
23. Type the network in CIDR format that you want to filter to or from the neighbor.
24. Type the IP prefixes that are to be filtered and click OK.
25. Click Publish Changes.

Example: Configure BGP Between an ESG and a Logical Router

In this topology, the ESG is in AS 64511. The logical router (DLR) is in AS 64512. The logical router's forwarding address is 192.168.10.2. This is the address configured on the logical router’s uplink interface. The logical router's protocol address is 192.168.10.3. This is the address that the ESG will use to form its BGP peering relationship with the logical router.

On the logical router, configure BGP as shown:
On the ESG, configure BGP as shown:

The ESG's neighbor address is 192.168.10.3, which is the logical router's protocol address.

Run the `show ip bgp neighbors` command on the logical router, and make sure the BGP state is Established.
Run the `show ip bgp neighbors` command on the ESG, and make sure the BGP state is Established.
Configure IS-IS Protocol

Intermediate System to Intermediate System (IS-IS) is a routing protocol designed to move information by determining the best route for datagrams through a packet-switched network.

A two-level hierarchy is used to support large routing domains. A large domain may be divided into areas. Routing within an area is referred to as Level 1 routing. Routing between areas is referred to as Level 2 routing. A Level 2 Intermediate System (IS) keeps track of the paths to destination areas. A Level 1 IS keeps track of the routing within its own area. For a packet going to another area, a Level 1 IS sends the packet to the nearest Level 2 IS in its own area, regardless of what the destination area is. Then the packet travels via Level 2 routing to the destination area, where it may travel via Level 1 routing to the destination. An IS in both Level 1 and Level 2 is referred to as Level-1-2.

Note NSX support for the IS-IS protocol is currently experimental.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Routing** and then click **IS-IS**.
5. Click **Edit** and then click **Enable IS-IS**.
6. Type the System ID and select the IS-IS type. Level 1 is intra-area, Level 2 is inter-area, and Level 1-2 is both. Level 2 routers are inter-area routers that can only form relationships with other Level 2 routers. Routing information is exchanged between Level 1 routers and other Level 1 routers. Likewise Level 2 routers only exchange information with other Level 2 routers. Level 1-2 routers exchange information with both levels and are used to connect the inter-area routers with the intra-area routers.
7. Type the **Domain Password** and **Area Password**. The area password is inserted and checked for Level 1 link state packets, and the domain password for Level 2 link state packets.
8. Define the IS-IS areas.
 a. Click the **Add** icon in **Areas**.
 b. Type up to three area IP addresses.
 c. Click **Save**.
9. Configure interface mapping.
 a. Click the **Add** icon in **Interface Mapping**.
 b. Choose the Circuit Type to indicate whether you are configuring the interface for Level-1, Level-2, or Level-1-2 adjacency.
 c. **Hello Interval** displays the default interval in milliseconds between hello packets that are sent on the interface. Edit the default value if required.
 d. **Hello Multiplier** displays the default number of IS-IS hello packets a neighbor must miss before it is declared down. Edit the default value if required.
 e. **LSP Interval** displays the time delay in milliseconds between successive IS-IS link-state packet (LSP) transmissions. Edit the default value if required.
 f. **Metric** displays the default metric for the interface. This is used to calculate the cost from each interface via the links in the network to other destinations. Edit the default value if required.
g Priority displays the priority of the interface. The interface with the highest priority becomes the designated router. Edit the default value if required.

h In Mesh Group, type the number identifying the mesh group to which this interface belongs. Edit the default value if required.

i Type the authentication password for the interface and click OK. Edit the default value if required.

10 Click Publish Changes.

Configure Route Redistribution

By default, routers share routes with other routers running the same protocol. In a multi-protocol environment, you must configure route redistribution for cross-protocol route sharing.

You can exclude an interface from route redistribution by adding a deny criterion for its network. In NSX 6.2, the HA (management) interface of a logical (distributed) router is automatically excluded from route redistribution.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Routing and then click Route Redistribution.
5 Click Edit next to Route Redistribution Status.
6 Select the protocols for which you enable route redistribution and click OK.
7 Add an IP prefix.
 Entries in the IP Prefix list are processed sequentially.
 a Click the Add icon in IP Prefixes.
 b Type a name and IP address of the network.
 c Click OK.
8 Specify redistribution criteria for the IP prefix.
 a Click the Add icon in Route Redistribution table.
 b In Learner Protocol, select the protocol that is to learn routes from other protocols.
 c In Allow Learning from, select the protocols from which routes should be learned.
 d Click OK.
9 Click Publish Changes.
Logical Firewall

Logical Firewall provides security mechanisms for dynamic virtual data centers, and consists of two components to address different deployment use cases. Distributed Firewall focuses on East-West access controls, and Edge Firewall focuses on the North-South traffic enforcement at the tenant or datacenter perimeter. Together, these components address the end-to-end firewall needs of virtual datacenters. You can choose to deploy either of these technologies independently, or deploy both of them.

This chapter includes the following topics:

- “Distributed Firewall,” on page 59
- “Edge Firewall,” on page 61
- “Working with Firewall Rules,” on page 61
- “Working with Firewall Rule Sections,” on page 69
- “Working with Firewall Configurations,” on page 70
- “Excluding Virtual Machines from Firewall Protection,” on page 71
- “Using SpoofGuard,” on page 72
- “View Firewall CPU and Memory Threshold Events,” on page 75
- “Firewall Logs,” on page 75
- “Working with Local Rules,” on page 75

Distributed Firewall

Distributed firewall is a hypervisor kernel-embedded firewall that provides visibility and control for virtualized workloads and networks. You can create access control policies based on VMware vCenter objects like datacenters and clusters and virtual machine names; network constructs like IP or IPSet addresses, VLAN (DVS port-groups), VXLAN (logical switches), security groups, as well as user group identity from Active Directory. Firewall rules are enforced at the vNIC level of each virtual machine to provide consistent access control even when the virtual machine gets vMotioned. The hypervisor-embedded nature of the firewall delivers close to line rate throughput to enable higher workload consolidation on physical servers. The distributed nature of the firewall provides a scale-out architecture that automatically extends firewall capacity when additional hosts are added to a datacenter.

For L2 packets, distributed firewall creates a cache for performance boost. L3 packets are processed in the following sequence:

1. All packets are checked for an existing state. This is done for SYNs too so that bogus or retransmitted SYN for existing sessions can be detected.
2. If a state match is found, the packets are processed.
If a state match is not found, the packet is processed through the rules until a match is found.

- For TCP packets, a state is set only for packets with a SYN flag. However, rules that do not specify a protocol (service ANY), can match TCP packets with any combination of flags.
- For UDP packets, 5-tuple details are extracted from the packet. If a state does not exist in the state table, a new state is created using the extracted 5-tuple details. Subsequently received packets are matched against the state that was just created.
- For ICMP packets, ICMP type, code, and packet direction are used to create a state.

distributed firewall can help in creating identity-based rules as well. Administrators can enforce access control based on the user’s group membership as defined in the enterprise Active Directory. Here are some scenarios where identity-based firewall rules can be used:

- User accessing virtual applications using a laptop or mobile device where AD is used for user authentication
- User accessing virtual applications using VDI infrastructure where the virtual machines are Microsoft Windows based

If you have a third-party vendor firewall solution deployed in your environment, see “Redirecting Traffic to a Vendor Solution through Logical Firewall,” on page 161.

Running open VMware Tools on guest or workload virtual machines has not been validated with distributed firewall.

ESXi Threshold Parameters for Distributed Firewall Resource Utilisation

Each ESXi host is configured with three threshold parameters for DFW resource utilisation: CPU, RAM, and connections per second (CPS). An alarm is raised if the respective threshold is crossed 20 consecutive times during a 200-second period. A sample is taken every 10 seconds.

100 percent of CPU corresponds to the total CPU available on the host.

100 percent of RAM corresponds to the memory allocated for distributed firewall ("total max size"), which is dependent on the total amount of RAM installed in the host.

<table>
<thead>
<tr>
<th>Physical Memory</th>
<th>Total Max Size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 8GB</td>
<td>160</td>
</tr>
<tr>
<td>8GB - 32GB</td>
<td>608</td>
</tr>
<tr>
<td>32GB - 64GB</td>
<td>992</td>
</tr>
<tr>
<td>64GB - 96GB</td>
<td>1920</td>
</tr>
<tr>
<td>96GB - 128GB</td>
<td>2944</td>
</tr>
<tr>
<td>128GB</td>
<td>4222</td>
</tr>
</tbody>
</table>

The memory is used by distributed firewall internal data structures, which include filters, rules, containers, connection states, discovered IPs, and drop flows. These parameters can be manipulated using the following API call:

https://NSX-MGR-IP/api/4.0/firewall/stats/eventthresholds

Request body:

```xml
<eventThresholds>
  <cpu>
    <percentValue>100</percentValue>
  </cpu>
</eventThresholds>
```
Edge Firewall

Edge Firewall monitors North-South traffic to provide perimeter security functionality including firewall, Network Address Translation (NAT) as well as site-to-site IPSec and SSL VPN functionality. This solution is available in the virtual machine form factor and can be deployed in a High Availability mode.

Firewall support is limited on the Logical Router. Only the rules on management and/or uplink interfaces work - rules on internal interfaces do not work.

Working with Firewall Rules

Distributed Firewall rules and Edge Firewall rules can be managed in a centralized manner on the Firewall tab. In a multi-tenant environment, providers can define high-level traffic flow rules on the centralized Firewall user interface. Rules defined on the centralized level are referred to as pre rules. Tenants can then add rules at an individual NSX Edge level, which are referred to as local rules.

Each traffic session is checked against the top rule in the Firewall table before moving down the subsequent rules in the table. The first rule in the table that matches the traffic parameters is enforced. Rules are displayed in the following order:

1. User-defined pre rules have the highest priority, and are enforced in top-to-bottom ordering with a per-virtual NIC level precedence.
2. Auto-plumbed rules (rules that enable control traffic to flow for Edge services).
3. Local rules defined at an NSX Edge level.
4. Service Composer rules - a separate section for each policy. You cannot edit these rules in the Firewall table, but you can add rules at the top of a security policy firewall rules section. If you do so, you must re-synchronize the rules in Service Composer. For more information, see Chapter 9, “Service Composer,” on page 135.
5. Default Distributed Firewall rules

Note that firewall rules are enforced only on clusters on which you have enabled firewall. For information on preparing clusters, see the NSX Installation and Upgrade Guide.

Edit the Default Distributed Firewall Rule

Default firewall settings apply to traffic that does not match any of the user-defined firewall rules. The Distributed Firewall default rule is displayed on the centralized firewall user interface, and the default rule for each NSX Edge is displayed at the NSX Edge level.

The default Distributed Firewall rule allows all L3 and L2 traffic to pass through all prepared clusters in your infrastructure. The default rule is always at the bottom of the rules table and cannot be deleted or added to. However, you can change the Action element of the rule from Allow to Block or Reject, add comments for the rule, and indicate whether traffic for that rule should be logged.

Procedure

1. In the vSphere Web Client, navigate to Networking & Security > Firewall.
2. Expand the Default Section and make the required changes. You can only edit **Action** and **Log**, or add comments to the default rule.

Add a Firewall Rule

You add firewall rules at the NSX Manager scope. Using the Applied To field, you can then narrow down the scope at which you want to apply the rule. You can add multiple objects at the source and destination levels for each rule, which helps reduce the total number of firewall rules to be added.

The following vCenter objects can be specified as the source or destination for a firewall rule:

Table 5-2. Objects supported for firewall rules

<table>
<thead>
<tr>
<th>Source or Destination</th>
<th>Applied To</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster</td>
<td>All clusters on which Distributed Firewall has been installed (in other words, all clusters that have been prepared for network virtualization)</td>
</tr>
<tr>
<td>datacenter</td>
<td>All Edge gateways installed on prepared clusters</td>
</tr>
<tr>
<td>distributed port group</td>
<td>cluster</td>
</tr>
<tr>
<td>IP set</td>
<td>datacenter</td>
</tr>
<tr>
<td>legacy port group</td>
<td>distributed port group</td>
</tr>
<tr>
<td>logical switch</td>
<td>Edge</td>
</tr>
<tr>
<td>resource pool</td>
<td>legacy port group</td>
</tr>
<tr>
<td>security group</td>
<td>logical switch</td>
</tr>
<tr>
<td>vApp</td>
<td>security group</td>
</tr>
<tr>
<td>virtual machine</td>
<td>virtual machine</td>
</tr>
<tr>
<td>vNIC</td>
<td>vNIC</td>
</tr>
<tr>
<td>IP address (IPv4 or IPv6)</td>
<td></td>
</tr>
</tbody>
</table>

Note that universal objects in a cross-vCenter NSX environment can only be used in universal firewall rules.

Prerequisites

Make sure the state of NSX distributed firewall is not in backward compatibility mode. To check the current state, use the REST API call GET https://<nsxmgr-ip>/api/4.0/firewall/globalroot-0/state. If the current state is backward compatibility mode, you can change the state to forward by using the REST API call PUT https://<nsxmgr-ip>/api/4.0/firewall/globalroot-0/state. Do not try to publish a distributed firewall rule while the distributed firewall is in backward compatibility mode.

If you are adding universal firewall rules, see GUID-1B5D6EF1-B3BF-48D5-8953-DBEA14DBF5E4#GUID-1B5D6EF1-B3BF-48D5-8953-DBEA14DBF5E4

If you are adding an identity-based firewall rule, ensure that:

- One or more domains have been registered with NSX Manager. NSX Manager gets group and user information as well as the relationship between them from each domain that it is registered with. See “Register a Windows Domain with NSX Manager,” on page 186.

- A security group based on Active Directory objects has been created which can be used as the source or destination of the rule. See “Create a Security Group,” on page 174.

If you are adding a rule based on a VMware vCenter object, ensure that VMware Tools is installed on the virtual machines. See *NSX Installation Guide*.

Procedure

1. In the vSphere Web Client, navigate to **Networking & Security > Firewall**.

2. Ensure that you are in the **General** tab to add an L3 rule. Click the **Ethernet** tab to add an L2 rule.

3. In the section in which you add a rule, click **Add rule (➕)** icon.
4 Click Publish Changes.

A new any any allow rule is added at the top of the section. If the system-defined rule is the only rule in the section, the new rule is added above the default rule.

If you want to add a rule at a specific place in a section, select a rule. In the No. column, click and select Add Above or Add Below.

5 Point to the Name cell of the new rule and click .

6 Type a name for the new rule.
7. Point to the **Source** cell of the new rule. Additional icons are displayed as described in the table below.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Click []** | To specify source as an IP address.
 a. Select the IP address format.
 - Firewall supports both IPv4 and IPv6 formats.
 b. Type the IP address.
 - You can enter multiple IP addresses in a comma-separated list. The list can contain up to 255 characters. |
| **Click []** | To specify source as an object other than a specific IP address.
 a. In **View**, select a container from which the communication originated.
 - Objects for the selected container are displayed.
 b. Select one or more objects and click .
 - You can create a new security group or IPSet. Once you create the new object, it is added to the source column by default. For information on creating a new security group or IPSet, see Chapter 13, “Network and Security Objects,” on page 171.
 c. To exclude a source from the rule, click **Advanced options**.
 d. Select **Negate Source** to exclude this source from the rule.
 - If **Negate Source** is selected, the rule is applied to traffic coming from all sources except for the source you specified in the previous step.
 - If **Negate Source** is not selected, the rule applies to traffic coming from the source you specified in the previous step.
 e. Click **OK**. |
Point to the **Destination** cell of the new rule. Additional icons are displayed as described in the table below.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Click** | To specify destination as an IP address.
 a. Select the IP address format.
 b. Type the IP address.
 You can enter multiple IP addresses in a comma-separated list. The list can contain up to 255 characters. |

| **Click** | To specify destination as an object other than a specific IP address.
 a. In **View**, select a container which the communication is targeting.
 b. Select one or more objects and click **`.**
 You can create a new security group or IPSet. Once you create the new object, it is added to the Destination column by default. For information on creating a new security group or IPSet, see Chapter 13, “Network and Security Objects,” on page 171.
 c. To exclude a destination port, click **Advanced options**.
 d. Select **Negate Destination** to exclude this destination from the rule.
 If **Negate Destination** is selected, the rule is applied to traffic going to all destinations except for the destination you specified in the previous step.
 If **Negate Destination** is not selected, the rule applies to traffic going to the destination you specified in the previous step.
 e. Click **OK**. |

9 Point to the **Service** cell of the new rule. Additional icons are displayed as described in the table below.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Click** | To specify service as a port protocol combination.
 a. Select the service protocol.
 Distributed Firewall supports ALG (Application Level Gateway) for the following protocols: FTP, CIFS, ORACLE TNS, MS-RPC, and SUN-RPC.
 Edge supports ALG for FTP only.
 b. Type the port number and click **OK**. |

| **Click** | To select a pre-defined service/service group or define a new one.
 a. Select one or more objects and click **`.**
 You can create a new service or service group. Once you create the new object, it is added to the Selected Objects column by default.
 b. Click **OK**. |

In order to protect your network from ACK or SYN floods, you can set Service to TCP-all_ports or UDP-all_ports and set Action to Block for the default rule. For information on modifying the default rule, see “Edit the Default Distributed Firewall Rule,” on page 61.
10 Point to the **Action** cell of the new rule and click ![Action](image). Make appropriate selections as described in the table below and click **OK**.

<table>
<thead>
<tr>
<th>Action</th>
<th>Results in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow</td>
<td>Allows traffic from or to the specified source(s), destination(s), and service(s).</td>
</tr>
<tr>
<td>Block</td>
<td>Blocks traffic from or to the specified source(s), destination(s), and service(s).</td>
</tr>
<tr>
<td>Reject</td>
<td>Sends reject message for unaccepted packets. RST packets are sent for TCP connections. ICMP messages with administratively prohibited code are sent for UDP, ICMP, and other IP connections.</td>
</tr>
<tr>
<td>Log</td>
<td>Logs all sessions matching this rule. Enabling logging can affect performance.</td>
</tr>
<tr>
<td>Do not log</td>
<td>Does not log sessions.</td>
</tr>
</tbody>
</table>

11 In **Applied To**, define the scope at which this rule is applicable. Make appropriate selections as described in the table below and click **OK**.

<table>
<thead>
<tr>
<th>To apply a rule to</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>All prepared clusters in your environment</td>
<td>Select Apply this rule on all clusters on which Distributed Firewall is enabled. After you click OK, the Applied To column for this rule displays Distributed Firewall.</td>
</tr>
<tr>
<td>All NSX Edge gateways in your environment</td>
<td>Select Apply this rule on all Edge gateways. After you click OK, the Applied To column for this rule displays All Edges. If both the above options are selected, the Applied To column displays Any.</td>
</tr>
<tr>
<td>One or more cluster, datacenter, distributed virtual port group, NSX Edge, network, virtual machine, vNIC, or logical switch</td>
<td>1 In Container type, select the appropriate object. 2 In the Available list, select one or more objects and click .</td>
</tr>
</tbody>
</table>

If the rule contains virtual machines/vNICS in the source and destination fields, you must add both the source and destination virtual machines/vNICS to **Applied To** for the rule to work correctly.

12 Click **Publish Changes**.

After a few moments, a message indicating whether the publish operation was successful is displayed. In case of any failures, the hosts on which the rule was not applied are listed. For additional details on a failed publish, navigate to **NSX Managers > NSX_Manager_IP_Address > Monitor > System Events**.

When you click **Publish Changes**, the firewall configuration is automatically saved. For information on reverting to an earlier configuration, see “Load Firewall Configuration,” on page 71.

What to do next

- Disable a rule by clicking ![Disable](image), or enable a rule by clicking ![Enable](image).
- Display additional columns in the rule table by clicking ![Column](image) and selecting the appropriate columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Information Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule ID</td>
<td>Unique system generated ID for each rule</td>
</tr>
<tr>
<td>Log</td>
<td>Traffic for this rule is being logged or not</td>
</tr>
<tr>
<td>Column Name</td>
<td>Information Displayed</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Stats</td>
<td>Clicking shows the traffic related to this rule (traffic packets and size)</td>
</tr>
<tr>
<td>Comments</td>
<td>Comments for the rule</td>
</tr>
</tbody>
</table>

- Search for rules by typing text in the Search field.
- Move a rule up or down in the Firewall table.
- Merge sections by clicking the Merge section icon and selecting Merge with above section or Merge with below section.

Filter Firewall Rules

You can use a wide number of criteria to filter your ruleset, which allows for easy rule modification. Rules can be filtered by source or destination virtual machines or IP address, rule action, logging, rule name, comments, and rule ID.

Procedure

1. In the Firewall tab, click the Apply Filter (✓) icon.

2. Type or select the filtering criteria as appropriate.

3. Click Apply.

 Rules matching your filtering criteria are displayed.

What to do next

To display all rules again, click the Remove applied filter (✗) icon.
Add a Rule and Publish It at a Later Time

You can add a rule and save the configuration without publishing it. You can then load and publish the saved configuration at a later time.

Procedure

1. Add a firewall rule. See “Add a Firewall Rule,” on page 62.
2. Click **Save Changes**.
3. Type a name and description for the configuration and click **OK**.
4. Click **Preserve Configuration** to preserve this change.

 NSX can save up to 100 configurations. After this limit is exceeded, saved configurations marked with **Preserve Configuration** are preserved while older non-preserved configurations are deleted to make room for preserved configurations.
5. Do one of the following.

 - Click **Revert Changes** to go back to the configuration that existed before you added the rule. When you want to publish the rule you just added, click the **Load Configuration** icon, select the rule that you saved in step 3 and click **OK**.

 - Click **Update Changes** to continue adding rules.

Change the Order of a Firewall Rule

Firewall rules are applied in the order in which they exist in the rule table.

Rules are displayed (and enforced) in the following order:

1. User-defined pre rules have the highest priority and are enforced in top-to-bottom ordering with a per-virtual NIC level precedence.
3. Local rules defined at an NSX Edge level.
4. Service Composer rules - a separate section for each policy. You cannot edit these rules in the Firewall table, but you can add rules at the top of a security policy firewall rules section. If you do so, you must re-synchronize the rules in Service Composer. For more information, see Chapter 9, “Service Composer,” on page 135.
5. Default Distributed Firewall rule

You can move a custom rule up or down in the table. The default rule is always at the bottom of the table and cannot be moved.

Procedure

1. In the **Firewall** tab, select the rule that you want to move.
2 Click the **Move rule up** (↑) or **Move rule down** (↓) icon.

3 Click **Publish Changes**.

Delete a Firewall Rule

You can delete firewall rules that you created. You cannot delete the default rule or rules managed by Service Composer.

Procedure

1 In the **Firewall** tab, select a rule.

2 Click **Delete selected rule** (x) icon above the Firewall table.

3 Click **Publish Changes**.

Working with Firewall Rule Sections

You can add a section to segregate firewall rules. For example, you might want to have the rules for sales and engineering departments in separate sections.

Add a Firewall Rule Section

You can add a new universal or local section in the firewall table. A universal section can only be added on the primary NSX Manager.

Procedure

1 In the vSphere Web Client, navigate to **Networking & Security > Firewall**.

2 Ensure that you are in the **General** tab to add a section for L3 rules. Click the **Ethernet** tab to add a section for L2 rules.

3 Click the **Add Section** (➕) icon.

4 Type a name for the section and specify the position for the new section. Section names must be unique within NSX Manager.

5 For a universal section, select **Replicate this section on Secondary NSX Managers**.

6 Click **OK** and then click **Publish Changes**.

What to do next

Add rules to the section. You can edit the name of a section by clicking the **Edit** icon for that section.

Merge Firewall Rule Sections

You can merge sections and consolidate the rules within those sections. Note that you cannot merge a Service Composer section or the Default section.

Merging and consolidating a complex firewall configuration can help with maintenance and readability.

Procedure

1 In the vSphere Web Client, navigate to **Networking & Security > Firewall**.
For the section you want to merge, click the Merge icon and specify whether you want to merge this section with the section above or below.

Rules from both sections are merged. The new section keeps the name of the section with which the other section is merged.

3 Click Publish Changes.

Delete a Firewall Rule Section

You can delete a firewall rule section. All rules in that section are deleted.

You cannot delete a section and add it again at a different place in the firewall table. To do so, you must delete the section and publish the configuration. Then add the deleted section to the firewall table and re-publish the configuration.

Procedure

1 In the vSphere Web Client, navigate to Networking & Security > Firewall.
2 Ensure that you are in the General tab to delete a section for L3 rules. Click the Ethernet tab to delete a section for L2 rules.
3 Click the Delete section icon for the section you want to delete.
4 Click OK and then click Publish Changes.

The section as well as all rules in that section are deleted.

Working with Firewall Configurations

You can export your current firewall configuration and save them to a central location. All firewall rules including rules for NSX service composer rules are exported. The saved configuration can be used as a backup or imported for use in another NSX Manager.

Export Firewall Configuration

You can export your firewall configuration.

Procedure

1 In the vSphere Web Client, navigate to Networking & Security > Firewall.
2 Click the Export configuration icon.
3 To save the firewall configuration as an XML file, click Download.
4 Select the directory where you want to save the file and click Save.

Your firewall configuration (both L2 and L3) is saved in the specified directory.

Import Firewall Configuration

You can import a saved configuration and then load it in the Firewall table. The imported configuration overwrites the existing rules. There is no way to import a partial set of rules.

Procedure

1 In the vSphere Web Client, navigate to Networking & Security > Firewall.
2 Click the Firewall tab.
3 Click the **Saved Configurations** tab.

4 Click the **Import configuration** icon.

5 Click **Browse** and select the file containing the configuration that you want to import.

Rules are imported based on the rule names. During the import, Firewall ensures that each object referenced in the rule exists in your environment. If an object is not found, the rule is marked as invalid. If a rule references a dynamic security group, the dynamic security group is created in NSX Manager during the import.

The firewall configuration is imported, and the preexisting rule is overwritten.

Load Firewall Configuration

You can load an autosaved or imported firewall configuration. If your current configuration contains rules managed by Service Composer, these are overridden after the import.

Procedure

1 In the vSphere Web Client, navigate to **Networking & Security > Firewall**.

2 Ensure that you are in the **General** tab to load an L3 firewall configuration. Click the **Ethernet** tab to load an L2 firewall configuration.

3 Click the **Load configuration** icon.

4 Select the configuration to load and click **OK**.

The current configuration is replaced by the selected configuration.

What to do next

If Service Composer rules in your configuration were overridden by the loaded configuration, click **Actions > Synchronize Firewall Rules** in the Security Policies tab within Service Composer.

Excluding Virtual Machines from Firewall Protection

You can exclude a set of virtual machines from firewall protection.

NSX Manager, NSX Controller, and NSX Edge virtual machines are automatically excluded from firewall protection. In addition, VMware recommends that you place the following service virtual machines in the Exclusion List to allow traffic to flow freely.

- vCenter Server. It can be moved into a cluster that is protected by Firewall, but it must already exist in the exclusion list to avoid connectivity issues.
- Partner service virtual machines.
- Virtual machines that require promiscuous mode. If these virtual machines are protected by Firewall, their performance may be adversely affected.

Procedure

1 In the vSphere Web Client, click **Networking & Security**.

2 In **Networking & Security Inventory**, click **NSX Managers**.

3 In the **Name** column, click an NSX Manager.

4 Click the **Manage** tab and then click the **Exclusion List** tab.

5 Click the **Add** icon.
6 Type the name of the virtual machine that you want to exclude and click Add.

7 Click OK.

If a virtual machine has multiple vNICs, all of them are excluded from protection. If you add vNICs to a virtual machine after it has been added to the Exclusion List, Firewall is automatically deployed on the newly added vNICs. In order to exclude these vNICs from firewall protection, you must remove the virtual machine from the Exclusion List and then add it back to the Exclusion List.

Using SpoofGuard

After synchronizing with the vCenter Server, NSX Manager collects the IP addresses of all vCenter guest virtual machines from VMware Tools on each virtual machine. If a virtual machine has been compromised, the IP address can be spoofed and malicious transmissions can bypass firewall policies.

You create a SpoofGuard policy for specific networks that allows you to authorize the IP addresses reported by VMware Tools and alter them if necessary to prevent spoofing. SpoofGuard inherently trusts the MAC addresses of virtual machines collected from the VMX files and vSphere SDK. Operating separately from Firewall rules, you can use SpoofGuard to block traffic determined to be spoofed.

SpoofGuard supports both IPv4 and IPv6 addresses. When using IPv4, the SpoofGuard policy supports a single IP address assigned to a vNIC. IPv6 supports multiple IP addresses assigned to a vNIC. The SpoofGuard policy monitors and manages the IP addresses reported by your virtual machines in one of the following modes.

Automatically Trust IP Assignments On Their First Use

This mode allows all traffic from your virtual machines to pass while building a table of vNIC-to-IP address assignments. You can review this table at your convenience and make IP address changes. This mode automatically approves all ipv4 and ipv6 address on a vNIC.

Manually Inspect and Approve All IP Assignments Before Use

This mode blocks all traffic until you approve each vNIC-to-IP address assignment.

NOTE SpoofGuard inherently allows DHCP requests regardless of enabled mode. However, if in manual inspection mode, traffic does not pass until the DHCP-assigned IP address has been approved.

SpoofGuard includes a system-generated default policy that applies to port groups and logical networks not covered by the other SpoofGuard policies. A newly added network is automatically added to the default policy until you add the network to an existing policy or create a new policy for it.

Create a SpoofGuard Policy

You can create a SpoofGuard policy to specify the operation mode for specific networks. The system-generated (default) policy applies to port groups and logical switches not covered by existing SpoofGuard policies.

Procedure

1 In the vSphere Web Client, navigate to Networking & Security > SpoofGuard.

2 Click the Add icon.

3 Type a name for the policy.

4 Select Enabled or Disabled to indicate whether the policy is enabled.
5 For Operation Mode, select one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatically Trust IP Assignments on Their First Use</td>
<td>Select this option to trust all IP assignments upon initial registration with the NSX Manager.</td>
</tr>
<tr>
<td>Manually Inspect and Approve All IP Assignments Before Use</td>
<td>Select this option to require manual approval of all IP addresses. All traffic to and from unapproved IP addresses is blocked.</td>
</tr>
</tbody>
</table>

6 Click Allow local address as valid address in this namespace to allow local IP addresses in your setup.

When you power on a virtual machine and it is unable to connect to the DHCP server, a local IP address is assigned to it. This local IP address is considered valid only if the SpoofGuard mode is set to Allow local address as valid address in this namespace. Otherwise, the local IP address is ignored.

7 Click Next.

8 To specify the scope for the policy, click Add and select the networks, distributed port groups, or logical switches that this policy should apply to.

A port group or logical switch can belong to only one SpoofGuard policy.

9 Click OK and then click Finish.

What to do next

You can edit a policy by clicking the Edit icon and delete a policy by clicking the Delete icon.

Approve IP Addresses

If you set SpoofGuard to require manual approval of all IP address assignments, you must approve IP address assignments to allow traffic from those virtual machines to pass.

Procedure

1 In the SpoofGuard tab, select a policy.

Policy details are displayed below the policy table.

2 In View, click one of the option links.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Virtual NICs</td>
<td>List of all validated IP addresses</td>
</tr>
<tr>
<td>Active Virtual NICs Since Last Published</td>
<td>List of IP addresses that have been validated since the policy was last updated</td>
</tr>
<tr>
<td>Virtual NICs IP Required Approval</td>
<td>IP address changes that require approval before traffic can flow to or from these virtual machines</td>
</tr>
<tr>
<td>Virtual NICs with Duplicate IP</td>
<td>IP addresses that are duplicates of an existing assigned IP address within the selected datacenter</td>
</tr>
<tr>
<td>Inactive Virtual NICs</td>
<td>List of IP addresses where the current IP address does not match the published IP address</td>
</tr>
<tr>
<td>Unpublished Virtual NICs IP</td>
<td>List of virtual machines for which you have edited the IP address assignment but have not yet published</td>
</tr>
</tbody>
</table>

3 Do one of the following.

- To approve a single IP address, click Approve next to the IP address.
- To approve multiple IP addresses, select the appropriate vNICs and then click Approve Detected IP(s).
Edit an IP Address

You can edit the IP address assigned to a MAC address to correct the assigned IP address.

NOTE SpoofGuard accepts a unique IP address from virtual machines. However, you can assign an IP address only once. An approved IP address is unique across NSX. Duplicate approved IP addresses are not allowed.

Procedure

1. In the SpoofGuard tab, select a policy.

 Policy details are displayed below the policy table.

2. In View, click one of the option links.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Virtual NICs</td>
<td>List of all validated IP addresses</td>
</tr>
<tr>
<td>Active Virtual NICs Since Last Published</td>
<td>List of IP addresses that have been validated since the policy was last updated</td>
</tr>
<tr>
<td>Virtual NICs IP Required Approval</td>
<td>IP address changes that require approval before traffic can flow to or from these virtual machines</td>
</tr>
<tr>
<td>Virtual NICs with Duplicate IP</td>
<td>IP addresses that are duplicates of an existing assigned IP address within the selected datacenter</td>
</tr>
<tr>
<td>Inactive Virtual NICs</td>
<td>List of IP addresses where the current IP address does not match the published IP address</td>
</tr>
<tr>
<td>Unpublished Virtual NICs IP</td>
<td>List of virtual machines for which you have edited the IP address assignment but have not yet published</td>
</tr>
</tbody>
</table>

3. For the appropriate vNIC, click the **Edit** icon and make appropriate changes.

4. Click **OK**.

Clear an IP Address

You clear an approved IP address assignment from a SpoofGuard policy.

Procedure

1. In the SpoofGuard tab, select a policy.

 Policy details are displayed below the policy table.

2. In View, click one of the option links.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Virtual NICs</td>
<td>List of all validated IP addresses</td>
</tr>
<tr>
<td>Active Virtual NICs Since Last Published</td>
<td>List of IP addresses that have been validated since the policy was last updated</td>
</tr>
<tr>
<td>Virtual NICs IP Required Approval</td>
<td>IP address changes that require approval before traffic can flow to or from these virtual machines</td>
</tr>
<tr>
<td>Virtual NICs with Duplicate IP</td>
<td>IP addresses that are duplicates of an existing assigned IP address within the selected datacenter</td>
</tr>
<tr>
<td>Inactive Virtual NICs</td>
<td>List of IP addresses where the current IP address does not match the published IP address</td>
</tr>
<tr>
<td>Unpublished Virtual NICs IP</td>
<td>List of virtual machines for which you have edited the IP address assignment but have not yet published</td>
</tr>
</tbody>
</table>
Do one of the following.

- To clear a single IP address, click **Clear** next to the IP address.
- To clear multiple IP addresses, select the appropriate vNICs and then click **Clear Approved IP(s)**.

View Firewall CPU and Memory Threshold Events

When a cluster is prepared for network virtualization, the Firewall module is installed on all hosts of that cluster. This module allocates three heaps, a module heap for module parameters; a rule heap for rules, containers, and filters; and a state heap for traffic flows. Heap size allocation is determined by the available host physical memory. Depending on the number of rules, container sets, and the connections, the heap size may grow or shrink over time. The Firewall module running in the hypervisor also uses the host CPUs for packet processing.

Knowing the host resource utilization at any given time can help you in better organizing your server utilization and network designs.

The default CPU threshold is 100, and the memory threshold is 100. You can modify the default threshold values through REST API calls. The Firewall module generates system events when the memory and CPU usage crosses the thresholds. For information on configuring default threshold values, see Working with Memory and CPU Thresholds in the *NSX API Guide*.

Procedure

1. In the vSphere Web Client, click **Networking & Security** and then click **NSX Managers**.
2. In the **Name** column, click the IP address of the appropriate NSX Manager.
3. Click the **Monitor** tab and then click **System Events**.

Firewall Logs

Firewall generates and stores three types of logs:

- Rules message logs include all access decisions such as permitted or denied traffic for each rule if logging was enabled for that rule. These are stored on each host in `/var/log/vmkernel.log`.
- Audit logs include administration logs and Distributed Firewall configuration changes. These are stored in `/home/secureall/secureall/logs/vsm.log`.
- System event logs include Distributed Firewall configuration applied, filter created, deleted, or failed, and virtual machines added to security groups, etc. These are stored in `/home/secureall/secureall/logs/vsm.log`.

For more information, see Chapter 14, “Operations and Management,” on page 179.

Working with Local Rules

You can navigate to an NSX Edge to see the rules that apply to it. These are referred to as local rules.

Firewall rules applied to a Logical Router only protect control plane traffic to and from the Logical Router control virtual machine. They do not enforce any data plane protection. To protect data plane traffic, create Logical Firewall rules for East-West protection or rules at the NSX Edge Services Gateway level for North-South protection.

Rules created on the Firewall user interface applicable to this NSX Edge are displayed in a read-only mode. Rules are displayed and enforced in the following order:

1. User-defined rules from the Firewall user interface (Read Only).
2. Auto-plumbed rules (rules that enable control traffic to flow for Edge services).
3 User-defined rules on NSX Edge Firewall user interface.
4 Default rule.

Edit the Default Local Rule

Default firewall settings apply to traffic that does not match any of the user-defined firewall rules. The default Edge firewall policy blocks all incoming traffic. You can change the default action and logging settings.

Procedure

1 In the vSphere Web Client, navigate to Networking & Security > NSX Edges.
2 Double-click an NSX Edge.
3 Click the Manage tab and then click Firewall.
4 Select the Default Rule, which is the last rule in the firewall table.
5 Point to the Action cell of the new rule and click .
 a Click Accept to allow traffic from or to the specified source and destination.
 b Click Log to log all sessions matching this rule.
 Enabling logging can affect performance.
 c Type comments if required.
 d Click OK.
6 Click Publish Changes.

Add a Local Rule

The Edge Firewall tab displays rules created on the centralized Firewall tab in a read-only mode. Any rules that you add here are not displayed on the centralized Firewall tab.

You can add multiple NSX Edge interfaces and/or IP address groups as the source and destination for firewall rules.

Figure 5-1. Firewall rule for traffic to flow from an NSX Edge interface to an HTTP server

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Type</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>firewall</td>
<td>Internal</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>Accept</td>
</tr>
<tr>
<td>2</td>
<td>Traffic to HTTP server</td>
<td>User</td>
<td>vimc-index-0</td>
<td>HTTP Address Group</td>
<td>For HTTP server</td>
<td>Accept</td>
</tr>
<tr>
<td>3</td>
<td>Default Rule</td>
<td>Default</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Figure 5-1. Firewall rule for traffic to flow from an NSX Edge interface to an HTTP server
Figure 5-2. Firewall rule for traffic to flow from all internal interfaces (subnets on portgroups connected to internal interfaces) of a NSX Edge to an HTTP Server

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>firewall</td>
<td>Internal</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>Accept</td>
</tr>
<tr>
<td>2</td>
<td>Traffic to HTTP server</td>
<td>User</td>
<td>any</td>
<td>any</td>
<td>HTTP Address Group: 10.20.222.34</td>
<td>For HTTP server</td>
</tr>
<tr>
<td>3</td>
<td>Default Rule</td>
<td>Default</td>
<td>any</td>
<td>any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

NOTE If you select internal as the source, the rule is automatically updated when you configure additional internal interfaces.

Figure 5-3. Firewall rule for traffic to allow SSH into a m/c in internal network

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>firewall</td>
<td>Internal</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>Accept</td>
</tr>
<tr>
<td>2</td>
<td>Traffic to internal network</td>
<td>User</td>
<td>any</td>
<td>any</td>
<td>VM in internal network</td>
<td>Internal VM</td>
</tr>
<tr>
<td>3</td>
<td>Default Rule</td>
<td>Default</td>
<td>any</td>
<td>any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Procedure

1. In the vSphere Web Client, navigate to Networking & Security > NSX Edges.
2. Double-click an NSX Edge.
3. Click the Manage tab and then click the Firewall tab.
4. Do one of the following.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **To add a rule at a specific place in the firewall table** | a. Select a rule.
 b. In the No. column, click ☐ and select Add Above or Add Below.
 A new any any allow rule is added below the selected rule. If the system defined rule is the only rule in the firewall table, the new rule is added above the default rule. |
| **To add a rule by copying a rule** | a. Select a rule.
 b. Click the Copy (_Copy_) icon.
 c. Select a rule.
 d. In the No. column, click ☐ and select Paste Above or Paste Below. |
| **To add a rule anywhere in the firewall table** | a. Click the Add (_Add_) icon.
 A new any any allow rule is added below the selected rule. If the system defined rule is the only rule in the firewall table, the new rule is added above the default rule. |

The new rule is enabled by default.

5. Point to the Name cell of the new rule and click ☐.
6. Type a name for the new rule.
7 Point to the **Source** cell of the new rule and click ✪ or ✫.

If you clicked ✪, type an IP address.

a Select an object from the drop-down and then make the appropriate selections.

If you select **vNIC Group** and then select **vse**, the rule applies to traffic generated by the NSX Edge. If you select **internal** or **external**, the rule applies to traffic coming from any internal or uplink interface of the selected NSX Edge instance. The rule is automatically updated when you configure additional interfaces. Note that firewall rules on internal interfaces do not work for a Logical Router.

If you select **IP Sets**, you can create a new IP address group. After you create the new group, it is automatically added to the source column. For information on creating an IP Set, see “Create an IP Address Group,” on page 171.

b Click **OK**.

8 Point to the **Destination** cell of the new rule and click ✪ or ✫.

a Select an object from the drop-down and then make the appropriate selections.

If you select **vNIC Group** and then select **vse**, the rule applies to traffic generated by the NSX Edge. If you select **internal** or **external**, the rule applies to traffic going to any internal or uplink interface of the selected NSX Edge instance. The rule is automatically updated when you configure additional interfaces. Note that firewall rules on internal interfaces do not work for a Logical Router.

If you select **IP Sets**, you can create a new IP address group. After you create the new group, it is automatically added to the source column. For information on creating an IP Set, see “Create an IP Address Group,” on page 171.

b Click **OK**.

9 Point to the **Service** cell of the new rule and click ✪ or ✫.

- If you clicked ✪, select a service. To create a new service or service group, click **New**. After you create the new service, it is automatically added to the Service column. For more information on creating a new service, see “Create a Service,” on page 176.

- If you clicked ✫, select a protocol. You can specify the source port by clicking the arrow next to **Advanced options**. VMware recommends that you avoid specifying the source port from release 5.1 and later. Instead, you can create a service for a protocol-port combination.

Note NSX Edge only supports services defined with L3 protocols.

10 Point to the **Action** cell of the new rule and click ✪. Make appropriate selections as described in the table below and click **OK**.

<table>
<thead>
<tr>
<th>Action selected</th>
<th>Results in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow</td>
<td>Allows traffic from or to the specified source and destination.</td>
</tr>
<tr>
<td>Block</td>
<td>Blocks traffic from or to the specified source and destination.</td>
</tr>
<tr>
<td>Reject</td>
<td>Sends reject message for unaccepted packets. RST packets are sent for TCP packets. ICMP unreachable (administratively restricted) packets are sent for other packets.</td>
</tr>
<tr>
<td>Log</td>
<td>Logs all sessions matching this rule. Enabling logging can affect performance.</td>
</tr>
<tr>
<td>Action selected</td>
<td>Results in</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Do not log</td>
<td>Does not log sessions.</td>
</tr>
<tr>
<td>Comments</td>
<td>Type comments if required.</td>
</tr>
<tr>
<td>Advanced options > Match on Translated</td>
<td>Applies the rule to the translated IP address and services for a NAT rule</td>
</tr>
<tr>
<td>Enable Rule Direction</td>
<td>Indicates whether the rule is incoming or outgoing.</td>
</tr>
<tr>
<td></td>
<td>VMware does not recommend specifying the direction for firewall rules.</td>
</tr>
</tbody>
</table>

11 Click **Publish Changes** to push the new rule to the NSX Edge instance.

What to do next

- Disable a rule by clicking ✔️ next to the rule number in the **No.** column.
- Hide generated rules or pre rules (rules added on the centralized Firewall tab) by clicking **Hide Generated rules** or **Hide Pre rules**.
- Display additional columns in the rule table by clicking and selecting the appropriate columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Information Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Tag</td>
<td>Unique system generated ID for each rule</td>
</tr>
<tr>
<td>Log</td>
<td>Traffic for this rule is being logged or not</td>
</tr>
<tr>
<td>Stats</td>
<td>Clicking shows the traffic affected by this rule (number of sessions, traffic packets, and size)</td>
</tr>
<tr>
<td>Comments</td>
<td>Comments for the rule</td>
</tr>
</tbody>
</table>

- Search for rules by typing text in the Search field.

Edit a Local Rule

You can edit only the user-defined firewall rules that were added in the Edge Firewall tab. Rules added on the centralized Firewall tab are not editable on the Edge Firewall tab.

Procedure

1. In the vSphere Web Client, navigate to **Networking & Security > NSX Edges**.
2. Double-click an NSX Edge.
3. Click the **Monitor** tab and then click the **Firewall** tab.
4. Select the rule to edit

 Note You cannot change an auto-generated rule or the default rule.

5. Make the desired changes and click **OK**.
6. Click **Publish Changes**.
Change the Priority of an NSX Edge Firewall Rule

You can change the order of user-defined firewall rules that were added in the Edge Firewall tab to customize traffic flowing through the NSX Edge. For example, suppose you have a rule to allow load balancer traffic. You can now add a rule to deny load balancer traffic from a specific IP address group, and position this rule above the LB allow traffic rule.

Procedure

1. In the vSphere Web Client, navigate to Networking & Security > NSX Edges.
2. Double-click an NSX Edge.
3. Click the Monitor tab and then click the Firewall tab.
4. Select the rule for which you want to change the priority.

 NOTE You cannot change the priority of auto-generated rules or the default rule.

5. Click the Move Up (↑) or Move Down (↓) icon.
6. Click OK.
7. Click Publish Changes.

Delete a Local Rule

You can delete a user-defined firewall rule that was added in the NSX Edge Firewall tab. Rules added on the centralized Firewall tab cannot be deleted here.

Procedure

1. In the vSphere Web Client, navigate to Networking & Security > NSX Edges.
2. Double-click an NSX Edge.
3. Click the Monitor tab and then click the Firewall tab.
4. Select the rule to delete.

 NOTE You cannot delete an auto-generated rule or the default rule.

5. Click the Delete (×) icon.

Managing NAT Rules

NSX Edge provides network address translation (NAT) service to assign a public address to a computer or group of computers in a private network. Using this technology limits the number of public IP addresses that an organization or company must use, for economy and security purposes. You must configure NAT rules to provide access to services running on privately addressed virtual machines.

The NAT service configuration is separated into source NAT (SNAT) and destination NAT (DNAT) rules.
Add an SNAT Rule

You can create a source NAT (SNAT) rule to change the source IP address from a public to private IP address or the reverse.

Prerequisites

The translated (public) IP address must have been added to the NSX Edge interface on which you want to add the rule.

Procedure

1. In the vSphere Web Client, navigate to Networking & Security > NSX Edges.
2. Double-click an NSX Edge.
3. Click the Manage tab and then click the NAT tab.
4. Click the Add (➕) icon and select Add SNAT Rule.
5. Select the interface on which to add the rule.
6. Type the original source IP address in one of the following formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>192.0.2.0</td>
</tr>
<tr>
<td>IP address range</td>
<td>192.0.2.0-192.0.2.24</td>
</tr>
<tr>
<td>IP address/subnet</td>
<td>192.0.2.0/24</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

7. Type the translated (public) source IP address in one of the following formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>192.0.2.0</td>
</tr>
<tr>
<td>IP address range</td>
<td>192.0.2.0-192.0.2.24</td>
</tr>
<tr>
<td>IP address/subnet</td>
<td>192.0.2.0/24</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

8. Select Enabled to enable the rule.
9. Click Enable logging to log the address translation.
10. Click OK to add the rule.
11. Click Publish Changes.

Add a DNAT Rule

You can create a destination NAT (DNAT) rule to change the destination IP address from a public to private IP address or the reverse.

Prerequisites

The original (public) IP address must have been added to the NSX Edge interface on which you want to add the rule.

Procedure

1. Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.

3 Double-click an NSX Edge.

4 Click the Manage tab and then click the NAT tab.

5 Click the Add (верхний) icon and select Add DNAT Rule.

6 Select the interface on which to apply the DNAT rule.

7 Type the original (public) IP address in one of the following formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>192.0.2.0</td>
</tr>
<tr>
<td>IP address range</td>
<td>192.0.2.0 - 192.0.2.24</td>
</tr>
<tr>
<td>IP address/subnet</td>
<td>192.0.2.0 /24</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

8 Type the protocol.

9 Type the original port or port range.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port number</td>
<td>80</td>
</tr>
<tr>
<td>Port range</td>
<td>80-85</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

10 Type the translated IP address in one of the following formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>192.0.2.0</td>
</tr>
<tr>
<td>IP address range</td>
<td>192.0.2.0 - 192.0.2.24</td>
</tr>
<tr>
<td>IP address/subnet</td>
<td>192.0.2.0 /24</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

11 Type the translated port or port range.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port number</td>
<td>80</td>
</tr>
<tr>
<td>Port range</td>
<td>80-85</td>
</tr>
<tr>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

12 Select Enabled to enable the rule.

13 Select Enable logging to log the address translation.

14 Click Add to save the rule.
Virtual Private Networks (VPN)s

NSX Edge supports several types of VPNs. SSL VPN-Plus allows remote users to access private corporate applications. IPSec VPN offers site-to-site connectivity between an NSX Edge instance and remote sites. L2 VPN allows you to extend your datacenter by allowing virtual machines to retain network connectivity across geographical boundaries.

You must have a working NSX Edge instance before you can use VPN. For information on setting up NSX Edge, see “NSX Edge Operations,” on page 188.

This chapter includes the following topics:

- “SSL VPN-Plus Overview,” on page 83
- “IPSec VPN Overview,” on page 104
- “L2 VPN Overview,” on page 108

SSL VPN-Plus Overview

With SSL VPN-Plus, remote users can connect securely to private networks behind a NSX Edge gateway. Remote users can access servers and applications in the private networks.

The following client operating systems are supported:

- Windows XP and above (Windows 8 is supported).
Mac OS X Tiger, Leopard, Snow Leopard, Lion, Mountain Lion, and Maverick. These can be installed either manually or using the Java installer.

Linux - TCL-TK is required for UI to work. If not present, Linux client can be used using CLI.

Configure Network Access SSL VPN-Plus

In network access mode, a remote user can access private networks after downloading and installing an SSL client.

Prerequisites

The SSL VPN gateway requires port 443 to be accessible from external networks and the SSL VPN client requires the NSX Edge gateway IP and port 443 to be reachable from client system.

Procedure

1. **Add SSL VPN-Plus Server Settings** on page 84
 You must add SSL VPN server settings to enable SSL on a NSX Edge interface.

2. **Add an IP Pool** on page 85
 The remote user is assigned a virtual IP address from the IP pool that you add.

3. **Add a Private Network** on page 85
 Add the network that you want the remote user to be able to access.

4. **Add Authentication** on page 86
 Instead of a local user, you can add an external authentication server (AD, LDAP, Radius, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.

5. **Add Installation Package** on page 89
 Create an installation package of the SSL VPN-Plus client for the remote user.

6. **Add a User** on page 90
 Add a remote user to the local database.

7. **Enable the SSL VPN-Plus Service** on page 90
 After configuring the SSL VPN-Plus service, enable the service for remote users to begin accessing private networks.

8. **Add a Script** on page 91
 You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com. When the remote user logs in to the SSL client, Internet Explorer opens up gmail.com.

9. **Install SSL Client on Remote Site** on page 91
 This section describes the procedure a remote user can follow on his/her desktop after SSL VPN-Plus is configured. Windows, MAC, and Linux desktops are supported.

Add SSL VPN-Plus Server Settings

You must add SSL VPN server settings to enable SSL on a NSX Edge interface.

Procedure

1. In the **SSL VPN-Plus** tab, **Server Settings** from the left panel.
2. Click **Change**.
3. Select the IPv4 or IPv6 address.
4. Edit the port number if required. This port number is required to configure the installation package.
5. Select the encryption method.
6. (Optional) From the Server Certificates table, select the server certificate that you want to add.
7. Click OK.

Add an IP Pool
The remote user is assigned a virtual IP address from the IP pool that you add.

Procedure
1. In the SSL Vpn-Plus tab, select IP Pools from the left panel.
2. Click the Add (+) icon.
3. Type the begin and end IP address for the IP pool.
4. Type the netmask of the IP pool.
5. Type the IP address which is to add the routing interface in the NSX Edge gateway.
6. (Optional) Type a description for the IP pool.
7. Select whether to enable or disable the IP pool.
8. (Optional) In the Advanced panel, type the DNS name.
9. (Optional) Type the secondary DNS name.
10. Type the connection-specific DNS suffix for domain based host name resolution.
11. Type the WINS server address.
12. Click OK.

Add a Private Network
Add the network that you want the remote user to be able to access.

Procedure
1. In the SSL Vpn-Plus tab, select Private Networks from the left panel.
2. Click the Add (+) icon.
3. Type the private network IP address.
4. Type the netmask of the private network.
5. (Optional) Type a description for the network.
6. Specify whether you want to send private network and internet traffic over the SSL VPN-Plus enabled NSX Edge or directly to the private server by bypassing the NSX Edge.
7. If you selected Send traffic over the tunnel, select Enable TCP Optimization to optimize the internet speed.

Conventional full-access SSL VPNs tunnel sends TCP/IP data in a second TCP/IP stack for encryption over the internet. This results in application layer data being encapsulated twice in two separate TCP streams. When packet loss occurs (which happens even under optimal internet conditions), a performance degradation effect called TCP-over-TCP meltdown occurs. In essence, two TCP instruments are correcting a single packet of IP data, undermining network throughput and causing connection timeouts. TCP Optimization eliminates this TCP-over-TCP problem, ensuring optimal performance.
8 When optimization is enabled, specify the port numbers for which traffic should be optimized.
 Traffic for remaining ports for that specific network will not be optimized.
 When TCP traffic is optimized, the TCP connection is opened by the SSL VPN server on behalf of the
 client. Because the TCP connection is opened by the SSLVPN server, the first automatically generated
 rule is applied, which allows all connections opened from the Edge to get passed. Traffic that is not
 optimized will be evaluated by the regular Edge firewall rules. The default rule is allow any any.

9 Specify whether you want to enable or disable the private network.

10 Click OK.

What to do next
Add a corresponding firewall rule to allow the private network traffic.

Add Authentication

Instead of a local user, you can add an external authentication server (AD, LDAP, Radius, or RSA) which is
bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.

The maximum time to authenticate over SSL VPN is 3 minutes. This is because non-authentication timeout
is 3 minutes and is not a configurable property. So in scenarios where AD authentication timeout is set to
more than 3 minutes or there are multiple authentication servers in chain authorization and the time taken
for user authentication is more than 3 minutes, you will not be authenticated.

Procedure
1 In the SSL Vpn-Plus tab, select Authentication from the left panel.

2 Click the Add button.

3 Select the type of authentication server.

4 Depending on the type of authentication server you selected, complete the following fields.

 AD authentication server

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL</td>
<td>Enabling SSL establishes an encrypted link between a web server and a browser.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the authentication server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Search base</td>
<td>Part of the external directory tree to search. The search base may be something equivalent to the organization, group, or domain name (AD) of external directory.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>User on the external AD server permitted to search the AD directory within the defined search base. Most of the time, the bind DN is permitted to search the entire directory. The role of the bind DN is to query the directory using the query filter and search base for the DN (distinguished name) for authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.</td>
</tr>
<tr>
<td>Bind Password</td>
<td>Password to authenticate the AD user.</td>
</tr>
<tr>
<td>Retype Bind Password</td>
<td>Retype the password.</td>
</tr>
</tbody>
</table>
Table 6-1. AD Authentication Server Options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Name against which the user ID entered by the remote user is matched with. For Active Directory, the login attribute name is sAMAccountName.</td>
</tr>
<tr>
<td>Search Filter</td>
<td>Filter values by which the search is to be limited. The search filter format is attribute operator value.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this AD server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ LDAP authentication server

Table 6-2. LDAP Authentication Server Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL</td>
<td>Enabling SSL establishes an encrypted link between a web server and a browser.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Search base</td>
<td>Part of the external directory tree to search. The search base may be something equivalent to the organization, group, or domain name (AD) of external directory.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>User on the external server permitted to search the AD directory within the defined search base. Most of the time, the bind DN is permitted to search the entire directory. The role of the bind DN is to query the directory using the query filter and search base for the DN (distinguished name) for authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.</td>
</tr>
<tr>
<td>Bind Password</td>
<td>Password to authenticate the AD user.</td>
</tr>
<tr>
<td>Retype Bind Password</td>
<td>Re-type the password.</td>
</tr>
<tr>
<td>Login Attribute Name</td>
<td>Name against which the user ID entered by the remote user is matched with. For Active Directory, the login attribute name is sAMAccountName.</td>
</tr>
<tr>
<td>Search Filter</td>
<td>Filter values by which the search is to be limited. The search filter format is attribute operator value.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ RADIUS authentication server

Table 6-3. RADIUS authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
</tbody>
</table>
Table 6-3. RADIUS authentication server options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Secret</td>
<td>Shared secret specified while adding the authentication agent in the RSA security console.</td>
</tr>
<tr>
<td>Retype secret</td>
<td>Retype the shared secret.</td>
</tr>
<tr>
<td>NAS IP Address</td>
<td>IP address to be configured and used as RADIUS attribute 4, NAS-IP-Address, without changing the source IP address in the IP header of the RADIUS packets.</td>
</tr>
<tr>
<td>Retry Count</td>
<td>Number of times the RADIUS server is to be contacted if it does not respond before the authentication fails.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

RSA-ACE authentication server

Table 6-4. RSA-ACE authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Configuration File</td>
<td>Click Browse to select the sdconf.rec file that you downloaded from the RSA Authentication Manager.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>IP address of the NSX Edge interface through which the RSA server is accessible.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

Local authentication server

Table 6-5. Local authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password policy</td>
<td>If selected, defines a password policy. Specify the required values.</td>
</tr>
<tr>
<td>Enable password policy</td>
<td>If selected, defines an account lockout policy. Specify the required values.</td>
</tr>
<tr>
<td>1</td>
<td>In Retry Count, type the number of times a remote user can try to access his or her account after entering an incorrect password.</td>
</tr>
<tr>
<td>2</td>
<td>In Retry Duration, type the time period in which the remote user's account gets locked on unsuccessful login attempts.</td>
</tr>
<tr>
<td></td>
<td>For example, if you specify Retry Count as 5 and Retry Duration as 1 minute, the remote user's account will be locked if he makes 5 unsuccessful login attempts within 1 minute.</td>
</tr>
<tr>
<td>3</td>
<td>In Lockout Duration, type the time period for which the user account remains locked. After this time, the account is automatically unlocked.</td>
</tr>
</tbody>
</table>
Table 6-5. Local authentication server options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

Add Installation Package

Create an installation package of the SSL VPN-Plus client for the remote user.

Procedure

1. In the SSL Vpn-Plus tab, select Installation Package from the left panel.
2. Click the Add (✚) icon.
3. Type a profile name for the installation package.
4. In Gateway, type the IP address or FQDN of the public interface of NSX Edge.
 This IP address or FQDN is binded to the SSL client. When the client is installed, this IP address or FQDN is displayed on the SSL client.
5. Type the port number that you specified in the server settings for SSL VPN-Plus. See “Add SSL VPN-Plus Server Settings,” on page 84.
6. (Optional) To bind additional NSX Edge uplink interfaces to the SSL client,
 a. Click the Add (✚) icon.
 b. Type the IP address and port number.
 c. Click OK.
7. The installation package is created for Windows operating system by default. Select Linux or Mac to create an installation package for Linux or Mac operating systems as well.
8. (Optional) Enter a description for the installation package.
9. Select Enable to display the installation package on the Installation Package page.
10. Select the following options as appropriate.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start client on logon</td>
<td>The SSL VPN client is started when the remote user logs on to his system.</td>
</tr>
<tr>
<td>Allow remember password</td>
<td>Enables the option.</td>
</tr>
<tr>
<td>Enable silent mode installation</td>
<td>Hides installation commands from remote user.</td>
</tr>
<tr>
<td>Hide SSL client network adapter</td>
<td>Hides the VMware SSL VPN-Plus Adapter, which is installed on the remote user’s computer along with the SSL VPN installation package.</td>
</tr>
<tr>
<td>Hide client system tray icon</td>
<td>Hides the SSL VPN tray icon which indicates whether the VPN connection is active or not.</td>
</tr>
<tr>
<td>Create desktop icon</td>
<td>Creates an icon to invoke the SSL client on the user’s desktop.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Enable silent mode operation</td>
<td>Hides the pop-up that indicates that installation is complete.</td>
</tr>
<tr>
<td>Server security certificate validation</td>
<td>The SSL VPN client validates the SSL VPN server certificate before establishing the secure connection.</td>
</tr>
</tbody>
</table>

11 Click OK.

Add a User

Add a remote user to the local database.

Procedure

1 In the SSL Vpn-Plus tab, select Users from the left panel.

2 Click the **Add** (+) icon.

3 Type the user ID.

4 Type the password.

5 Retype the password.

6 (Optional) Type the first and last name of the user.

7 (Optional) Type a description for the user.

8 In Password Details, select **Password never expires** to always keep the same password for the user.

9 Select **Allow change password** to let the user change the password.

10 Select **Change password on next login** if you want the user to change the password the next time he logs in.

11 Set the user status.

12 Click **OK**.

Enable the SSL VPN-Plus Service

After configuring the SSL VPN-Plus service, enable the service for remote users to begin accessing private networks.

Procedure

1 In the SSL Vpn-Plus tab, select Dashboard from the left panel.

2 Click the **Enable** icon.

The dashboard displays the status of the service, number of active SSL VPN sessions, and session statistics and data flow details. Click **Details** next to Number of Active Sessions to view information about the concurrent connections to private networks behind the NSX Edge gateway.

What to do next

1 Add an SNAT rule to translate the IP address of the NSX Edge appliance to the VPN Edge IP address.

2 Using a web browser, navigate to the IP address of the NSX Edge interface by typing `https://NSXEdgeIPAddress`.

3 Login using the user name and password that you created in the “Add a User,” on page 90 section and download the installation package.
4 Enable port forwarding on your router for the port number used in “Add SSL VPN-Plus Server Settings,” on page 84.

5 Launch the VN client, select your VPN server, and login. You can now navigate to the services on your network. SSL VPN-Plus gateway logs are sent to the syslog server configured on the NSX Edge appliance. SSL VPN-Plus client logs are stored in the following directory on the remote user’s computer: %PROGRAMFILES%/VMware/SSLVPN Client/

Add a Script

You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com. When the remote user logs in to the SSL client, Internet Explorer opens up gmail.com.

Procedure

1 In the SSL Vpn-Plus tab, select Login/Logoff Scripts from the left panel.

2 Click the Add (), icon.

3 In Script, click Browse and select the script you want to bind to the NSX Edge gateway.

4 Select the Type of script.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Performs the script action when remote user logs in to SSL VPN.</td>
</tr>
<tr>
<td>Logoff</td>
<td>Performs the script action when remote user logs out of SSL VPN.</td>
</tr>
<tr>
<td>Both</td>
<td>Performs the script action both when remote user logs in and logs out of SSL VPN.</td>
</tr>
</tbody>
</table>

5 Type a description for the script.

6 Select Enabled to enable the script.

7 Click OK.

Install SSL Client on Remote Site

This section describes the procedure a remote user can follow on his/her desktop after SSL VPN-Plus is configured. Windows, MAC, and Linux desktops are supported.

Procedure

1 On the client site, the remote user can type (https://ExternalEdgeInterfaceIP/sslvpn-plus/) in a browser window where ExternalEdgeInterfaceIP is the IP address of the Edge external interface where you enabled SSL VPN-Plus.

2 Login to the portal using the user’s credentials.

3 Click Full Access tab.

The SSL client is downloaded.

4 Login to the SSL client with the credentials specified in the Users section.

The SSL VPN server certificate is validated depending on the client operating system.

- Windows client

 Windows client is authenticated if the Server security certificate validation option was selected when the installation package was created.

- Linux client
The SSL VPN Linux client validates the server certificate against Firefox’s certificate store by default from NSX vSphere version 6.1.3 onwards. If server certificate validation fails, you are prompted to contact your system administrator. If server certificate validation succeeds, a log in prompt is displayed.

Adding a trusted CA to the trust store i.e Firefox’s certificate store is independent of SSL VPN work flow.

OS X client

The SSL VPN OS X client validates the server certificate against Keychain, a database used to store certificates on OS X, by default from NSX vSphere version 6.1.3 onwards. If server certificate validation fails, you are prompted to contact your system administrator. If server certificate validation succeeds, a log in prompt is displayed.

Adding a trusted CA to the trust store i.e Keychain is independent of SSL VPN work flow.

The remote user can now access the private network.

Configure Web Access SSL VPN-Plus

In web access mode, a remote user can access private networks without a hardware or software SSL client.

Procedure

1. **Create a Web Resource** on page 92
 Add a server that the remote user can connect to via a web browser.

2. **Add a User** on page 93
 Add a remote user to the local database.

3. **Add Authentication** on page 93
 Instead of a local user, you can add an external authentication server (AD, LDAP, Radius, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.

4. **Add SSL VPN-Plus Server Settings** on page 96
 You must add SSL VPN server settings to enable SSL on a NSX Edge interface.

5. **Enable the SSL VPN-Plus Service** on page 97
 After configuring the SSL VPN-Plus service, enable the service for remote users to begin accessing private networks.

6. **Add a Script** on page 97
 You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com. When the remote user logs in to the SSL client, Internet Explorer opens up gmail.com.

Create a Web Resource

Add a server that the remote user can connect to via a web browser.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Manage** tab and then click the **SSL VPN-Plus** tab.
5. Select **Web Resource** from the left panel.
6 Click the **Add** (➕) icon.

7 Type a name for the web resource.

8 Type the URL of the web resource that you want the remote user to access.

9 Depending on whether the remote user wants to read from or write to the web resource, select the **HTTPMethod** and type the GET or POST call.

10 Type the description for the web resource. This description is displayed on the web portal when the remote user accesses the web resource.

11 Select **Enable** to enable the web resource. The web resource must be enabled for the remote user to access it.

Add a User
Add a remote user to the local database.

Procedure

1 In the **SSL Vpn-Plus** tab, select **Users** from the left panel.

2 Click the **Add** (➕) icon.

3 Type the user ID.

4 Type the password.

5 Retype the password.

6 (Optional) Type the first and last name of the user.

7 (Optional) Type a description for the user.

8 In Password Details, select **Password never expires** to always keep the same password for the user.

9 Select **Allow change password** to let the user change the password.

10 Select **Change password on next login** if you want the user to change the password the next time he logs in.

11 Set the user status.

12 Click **OK**.

Add Authentication

Instead of a local user, you can add an external authentication server (AD, LDAP, Radius, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.

The maximum time to authenticate over SSL VPN is 3 minutes. This is because non-authentication timeout is 3 minutes and is not a configurable property. So in scenarios where AD authentication timeout is set to more than 3 minutes or there are multiple authentication servers in chain authorization and the time taken for user authentication is more than 3 minutes, you will not be authenticated.

Procedure

1 In the **SSL Vpn-Plus** tab, select **Authentication** from the left panel.

2 Click the **Add** (➕) icon.

3 Select the type of authentication server.
4 Depending on the type of authentication server you selected, complete the following fields.

◆ **AD authentication server**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL</td>
<td>Enabling SSL establishes an encrypted link between a web server and a browser.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the authentication server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Search base</td>
<td>Part of the external directory tree to search. The search base may be something equivalent to the organization, group, or domain name (AD) of external directory.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>User on the external AD server permitted to search the AD directory within the defined search base. Most of the time, the bind DN is permitted to search the entire directory. The role of the bind DN is to query the directory using the query filter and search base for the DN (distinguished name) for authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.</td>
</tr>
<tr>
<td>Bind Password</td>
<td>Password to authenticate the AD user.</td>
</tr>
<tr>
<td>Retype Bind Password</td>
<td>Retype the password.</td>
</tr>
<tr>
<td>Login Attribute Name</td>
<td>Name against which the user ID entered by the remote user is matched with. For Active Directory, the login attribute name is sAMAccountName.</td>
</tr>
<tr>
<td>Search Filter</td>
<td>Filter values by which the search is to be limited. The search filter format is attribute operator value.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this AD server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ **LDAP authentication server**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable SSL</td>
<td>Enabling SSL establishes an encrypted link between a web server and a browser.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Search base</td>
<td>Part of the external directory tree to search. The search base may be something equivalent to the organization, group, or domain name (AD) of external directory.</td>
</tr>
<tr>
<td>Bind DN</td>
<td>User on the external server permitted to search the AD directory within the defined search base. Most of the time, the bind DN is permitted to search the entire directory. The role of the bind DN is to query the directory using the query filter and search base for the DN (distinguished name) for authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.</td>
</tr>
<tr>
<td>Bind Password</td>
<td>Password to authenticate the AD user.</td>
</tr>
</tbody>
</table>
Table 6-7. LDAP Authentication Server Options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retype Bind Password</td>
<td>Retype the password.</td>
</tr>
<tr>
<td>Login Attribute Name</td>
<td>Name against which the user ID entered by the remote user is matched with. For Active Directory, the login attribute name is <code>sAMAccountName</code>.</td>
</tr>
<tr>
<td>Search Filter</td>
<td>Filter values by which the search is to be limited. The search filter format is <code>attribute operator value</code>.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ RADIUS authentication server

Table 6-8. RADIUS authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Secret</td>
<td>Shared secret specified while adding the authentication agent in the RSA security console.</td>
</tr>
<tr>
<td>Retype secret</td>
<td>Retype the shared secret.</td>
</tr>
<tr>
<td>NAS IP Address</td>
<td>IP address to be configured and used as RADIUS attribute 4, NAS-IP-Address, without changing the source IP address in the IP header of the RADIUS packets.</td>
</tr>
<tr>
<td>Retry Count</td>
<td>Number of times the RADIUS server is to be contacted if it does not respond before the authentication fails.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ RSA-ACE authentication server

Table 6-9. RSA-ACE authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>Period in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Configuration File</td>
<td>Click Browse to select the <code>sdconf.rec</code> file that you downloaded from the RSA Authentication Manager.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>IP address of the NSX Edge interface through which the RSA server is accessible.</td>
</tr>
</tbody>
</table>
Table 6-9. RSA-ACE authentication server options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

◆ Local authentication server

Table 6-10. Local authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password policy</td>
<td>If selected, defines a password policy. Specify the required values.</td>
</tr>
<tr>
<td>Enable password policy</td>
<td>If selected, defines an account lockout policy. Specify the required values.</td>
</tr>
<tr>
<td>1 In Retry Count, type the number of times a</td>
<td>remote user can try to access his or her account after entering an incorrect</td>
</tr>
<tr>
<td>remote user can try to access his or her account</td>
<td>password.</td>
</tr>
<tr>
<td>2 In Retry Duration, type the time period in</td>
<td>which the remote user's account gets locked on unsuccessful login attempts.</td>
</tr>
<tr>
<td>which the remote user's account gets locked on</td>
<td>For example, if you specify Retry Count as 5 and Retry Duration as 1 minute,</td>
</tr>
<tr>
<td>unsuccessful login attempts.</td>
<td>the remote user's account will be locked if he makes 5 unsuccessful login</td>
</tr>
<tr>
<td>3 In Lockout Duration, type the time period for</td>
<td>attempts within 1 minute.</td>
</tr>
<tr>
<td>which the user account remains locked.</td>
<td>After this time, the account is automatically unlocked.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled or Disabled to indicate whether the server is enabled.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>If selected, this server is used as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>When selected, the session is ended if authentication fails.</td>
</tr>
</tbody>
</table>

Add SSL VPN-Plus Server Settings

You must add SSL VPN server settings to enable SSL on a NSX Edge interface.

Procedure

1. In the SSL VPN-Plus tab, Server Settings from the left panel.
2. Click Change.
3. Select the IPv4 or IPv6 address.
4. Edit the port number if required. This port number is required to configure the installation package.
5. Select the encryption method.
6. (Optional) From the Server Certificates table, select the server certificate that you want to add.
7. Click OK.
Enable the SSL VPN-Plus Service

After configuring the SSL VPN-Plus service, enable the service for remote users to begin accessing private networks.

Procedure

1. In the SSL Vpn-Plus tab, select Dashboard from the left panel.
2. Click the Enable icon.

The dashboard displays the status of the service, number of active SSL VPN sessions, and session statistics and data flow details. Click Details next to Number of Active Sessions to view information about the concurrent connections to private networks behind the NSX Edge gateway.

What to do next

1. Add an SNAT rule to translate the IP address of the NSX Edge appliance to the VPN Edge IP address.
2. Using a web browser, navigate to the IP address of the NSX Edge interface by typing https://NSXEdgeIPAddress.
3. Login using the user name and password that you created in the “Add a User,” on page 90 section and download the installation package.
4. Enable port forwarding on your router for the port number used in “Add SSL VPN-Plus Server Settings,” on page 84.
5. Launch the VN client, select your VPN server, and login. You can now navigate to the services on your network. SSL VPN-Plus gateway logs are sent to the syslog server configured on the NSX Edge appliance. SSL VPN-Plus client logs are stored in the following directory on the remote user’s computer: %PROGRAMFILES%/VMWARE/SSLVPN Client/.

Add a Script

You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com. When the remote user logins in to the SSL client, Internet Explorer opens up gmail.com.

Procedure

1. In the SSL Vpn-Plus tab, select Login/Logoff Scripts from the left panel.
2. Click the Add (+) icon.
3. In Script, click Browse and select the script you want to bind to the NSX Edge gateway.
4. Select the Type of script.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Performs the script action when remote user logs in to SSL VPN.</td>
</tr>
<tr>
<td>Logoff</td>
<td>Performs the script action when remote user logs out of SSL VPN.</td>
</tr>
<tr>
<td>Both</td>
<td>Performs the script action both when remote user logs in and logs out of SSL VPN.</td>
</tr>
</tbody>
</table>

5. Type a description for the script.
6. Select Enabled to enable the script.
7. Click OK.
SSL VPN-Plus Logs

SSL VPN-Plus gateway logs are sent to the syslog server configured on the NSX Edge appliance. SSL VPN-Plus client logs are stored in the following directory on the remote user’s computer: %PROGRAMFILES%/VMWARE/SSL VPN Client/.

Edit Client Configuration

You can change the way the SSL VPN client tunnel responds when the remote user logs in to SSL VPN.

Procedure

1. In the SSL VPN-Plus tab, select Client Configuration from the left panel.
2. Select the Tunneling Mode.
 In split tunnel mode, only the VPN flows through the NSX Edge gateway. In full tunnel, the NSX Edge gateway becomes the remote user’s default gateway and all traffic (VPN, local, and internet) flows through this gateway.
3. If you selected the full tunnel mode:
 a. Select Exclude local subnets to exclude local traffic from flowing through the VPN tunnel.
 b. Type the IP address for the default gateway of the remote user’s system.
4. Select Enable auto reconnect if you would like the remote user to automatically reconnect to the SSL VPN client after getting disconnected.
5. Select Client upgrade notification for the remote user to get a notification when an upgrade for the client is available. The remote user can then choose to install the upgrade.
6. Click OK.

Edit General Settings

You can edit the default VPN settings.

Procedure

1. In the SSL VPN-Plus tab, select General Settings from the left panel.
2. Make required selections.

<table>
<thead>
<tr>
<th>Select</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevent multiple logon using same username</td>
<td>Allow a remote user to login only once with a username.</td>
</tr>
<tr>
<td>Enable compression</td>
<td>Enable TCP based intelligent data compression and improve data transfer speed.</td>
</tr>
<tr>
<td>Enable logging</td>
<td>Maintain a log of the traffic passing through the SSL VPN gateway.</td>
</tr>
<tr>
<td>Force virtual keyboard</td>
<td>Allow remote users to enter web or client login information only via the virtual keyboard.</td>
</tr>
<tr>
<td>Randomize keys of virtual keyboard</td>
<td>Make the virtual keyboard keys random.</td>
</tr>
<tr>
<td>Enable forced timeout</td>
<td>Disconnect the remote user after the specified timeout period is over. Type the timeout period in minutes.</td>
</tr>
<tr>
<td>Session idle timeout</td>
<td>If there is no activity on the user session for the specified period, end the user session after that period is over.</td>
</tr>
<tr>
<td>Select</td>
<td>To</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>User notification</td>
<td>Type a message to be displayed to the remote user after he logs in.</td>
</tr>
<tr>
<td>Enable public URL access</td>
<td>Allow remote user to access any site which is not configured (and not listed on web portal) by administrator.</td>
</tr>
</tbody>
</table>

3 Click **OK**.

Edit Web Portal Design

You can edit the client banner bound to the SSL VPN client.

Procedure

1 In the **NSX Edges** tab, double-click an NSX Edge.
2 Click the **Monitor** tab and then click the **SSL VPN-Plus** tab.
3 Select **Portal Customization** from the left panel.
4 Type the portal title.
5 Type the remote user’s company name.
6 In **Logo**, click **Change** and select the image file for the remote user’s logo.
7 In **Colors**, click the color box next to numbered item for which you want to change the color, and select the desired color.
8 If desired, change the client banner.
9 Click **OK**.

Working with IP Pools

You can edit or delete an IP pool.

For information on adding an IP pool, see “Configure Network Access SSL VPN-Plus,” on page 84 or “Configure Web Access SSL VPN-Plus,” on page 92.

Edit an IP Pool

You can edit an IP pool.

Procedure

1 In the **SSL VPN-Plus** tab, click **IP Pool** in the left panel.
2 Select the IP pool that you want to edit.
3 Click the **Edit** (-pencil) icon.
 The Edit IP Pool dialog box opens.
4 Make the required edits.
5 Click **OK**.

Delete an IP Pool

You can delete an IP pool.

Procedure

1 In the **SSL VPN-Plus** tab, click **IP Pool** in the left panel.
2 Select the IP pool that you want to delete.

3 Click the Delete (x) icon.

 The selected IP pool is deleted.

Enable an IP Pool
You can enable an IP pool if you want an IP address from that pool to be assigned to the remote user.

Procedure
1 In the SSL VPN-Plus tab, click IP Pool in the left panel.
2 Select the IP pool that you want to enable.
3 Click the Enable (✓) icon.

Disable an IP Pool
You can disable an IP pool if you do not want the remote user to be assigned an IP address from that pool.

Procedure
1 In the SSL VPN-Plus tab, select IP Pool from the left panel.
2 Select the IP pool that you want to disable.
3 Click the Disable (🔴) icon.

Change the Order of an IP Pool
SSL VPN assigns an IP address to a remote user from an IP pool based on its order in the IP pool table.

Procedure
1 In the SSL VPN-Plus tab, click IP Pool in the left panel.
2 Select the IP pool that you want to change the order for.
3 Click the Move Up (↑) or Move Down (↓) icon.

Working with Private Networks
You can edit or delete a private network that a remote user can access.

For information on adding a private network, see “Configure Network Access SSL VPN-Plus,” on page 84 or “Configure Web Access SSL VPN-Plus,” on page 92.

Delete a Private Network
You can delete a private network

Procedure
1 In the SSL VPN-Plus tab, click Private Networks in the left panel.
2 Select the network that you want to delete and click the Delete (x) icon.
Enable a Private Network
When you enable a private network, the remote user can access it through SSL VPN-Plus.

Procedure
1. In the SSL VPN-Plus tab, click Private Networks in the left panel.
2. Click the network that you want to enable.
3. Click the Enable icon (✔).
 The selected network is enabled.

Disable a Private Network
When you disable a private network, the remote user cannot access it through SSL VPN-Plus.

Procedure
1. In the SSL VPN-Plus tab, click Private Networks in the left panel.
2. Click the network that you want to disable.
3. Click the Disable (🚫) icon.
 The selected network is disabled.

Change the Sequence of a Private Network
SSL VPN-Plus allows remote users to access private networks in the sequence in which they are displayed on the Private Networks panel.

If you select Enable TCP Optimization for a private network, some applications such as FTP in Active mode may not work within that subnet. To add an FTP server configured in Active mode, you must add another private network for that FTP server with TCP Optimization disabled. Also, the active TCP private network must be enabled, and must be placed above the subnet private network.

Procedure
1. In the SSL VPN-Plus tab, click Private Networks in the left panel.
2. Click the Change Order (ثانیه) icon.
3. Select the network that you want to change the order of.
4. Click the Move Up (соответственно) or Move Down (向下) icon.
5. Click OK.

Working with Installation Packages
You can delete or edit an installation package for the SSL client.

For information on creating an installation package, see “Configure Network Access SSL VPN-Plus,” on page 84 or “Configure Web Access SSL VPN-Plus,” on page 92.
Edit an Installation Package
You can edit an installation package.

Procedure
1. In the SSL VPN-Plus tab, click Installation Package in the left panel.
2. Select the installation package that you want to edit.
3. Click the Edit (📝) icon.
 The Edit Installation Package dialog box opens.
4. Make the required edits.
5. Click OK.

Delete an Installation Package
You can delete an installation package.

Procedure
1. In the SSL VPN-Plus tab, click Installation Package in the left panel.
2. Select the installation package that you want to delete.
3. Click the Delete (✗) icon.

Working with Users
You can edit or delete users from the local database.

For information on adding a user, see “Configure Network Access SSL VPN-Plus,” on page 84 or “Configure Web Access SSL VPN-Plus,” on page 92.

Edit a User
You can edit the details for a user except for the user ID.

Procedure
1. In the SSL VPN-Plus tab, click Users in the left panel.
2. Click the Edit (📝) icon.
3. Make the required edits.
4. Click OK.

Delete a User
You can delete a user.

Procedure
1. In the SSL VPN-Plus tab, click Users in the left panel.
2. UsersIn the Configure panel, click Users.
3. Select the user that you want to delete and click the Delete (✗) icon.
Change the Password for a User

You can change the password for a user.

Procedure
1. In the SSL VPN-Plus tab, click Users in the left panel.
2. Click the Change Password icon.
3. Type and re-type the new password.
4. Click Change password on next login to change the password when the user logs in to his system next time.
5. Click OK.

Working with Login and Logoff Scripts

You can bind a login or logoff script to the NSX Edge gateway.

Edit a Script

You can edit the type, description, and status of a login or logoff script that is bound to the NSX Edge gateway.

Procedure
1. In the SSL VPN-Plus tab, click Login/Logoff Scripts in the left panel.
2. Select a script and click the Edit (✏️) icon.
3. Make the appropriate changes.
4. Click OK.

Delete a Script

You can delete a login or logoff script.

Procedure
1. In the SSL VPN-Plus tab, click Login/Logoff Scripts in the left panel.
2. Select a script and click the Delete (✗) icon.

Enable a Script

You must enable a script for it to work.

Procedure
1. In the SSL VPN-Plus tab, click Login/Logoff Scripts in the left panel.
2. Select a script and click the Enable (✔️) icon.
Disable a Script
You can disable a login/logoff script.

Procedure
1. In the SSL VPN-Plus tab, click Login/Logoff Scripts in the left panel.
2. Select a script and click the Disable (🚫) icon.

Change the Order of a Script
You can change the order of a script. For example, suppose you have a login script for opening gmail.com in Internet Explorer placed above a login script for opening yahoo.com. When the remote user logs in to SSL VPN, gmail.com is displayed before yahoo.com. If you now reverse the order of the login scripts, yahoo.com is displayed before gmail.com.

Procedure
1. In the SSL VPN-Plus tab, click Login/Logoff Scripts in the left panel.
2. Select the script that you want to change the order of and click the Move Up (.moveToTop) or Move Down (moveToBottom) icon.
3. Click OK.

IPSec VPN Overview
NSX Edge supports site-to-site IPSec VPN between an NSX Edge instance and remote sites. Certificate authentication, preshared key mode, IP unicast traffic, and no dynamic routing protocol are supported between the NSX Edge instance and remote VPN routers.

NSX Edge supports Behind each remote VPN router, you can configure multiple subnets to connect to the internal network behind an NSX Edge through IPSec tunnels. These subnets and the internal network behind a NSX Edge must have address ranges that do not overlap.

You can deploy an NSX Edge agent behind a NAT device. In this deployment, the NAT device translates the VPN address of an NSX Edge instance to a publicly accessible address facing the Internet. Remote VPN routers use this public address to access the NSX Edge instance.

You can place remote VPN routers behind a NAT device as well. You must provide the VPN native address and the VPN Gateway ID to set up the tunnel. On both ends, static one-to-one NAT is required for the VPN address.

The number of tunnels needed is defined by the number of local subnets multiplied by the number of peer subnets. For example, if there are 10 local subnets and 10 peer subnets you need 100 tunnels. The maximum number of tunnels supported is determined by the ESG size, as shown below.

Table 6-11. Number of IPSec Tunnels per ESG

<table>
<thead>
<tr>
<th>ESG</th>
<th>Number of IPSec Tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact</td>
<td>512</td>
</tr>
<tr>
<td>Large</td>
<td>1600</td>
</tr>
<tr>
<td>Quad-Large</td>
<td>4096</td>
</tr>
<tr>
<td>X-Large</td>
<td>6000</td>
</tr>
</tbody>
</table>
The following IPSec VPN algorithms are supported:

- AES (AES128-CBC)
- AES256 (AES256-CBC)
- Triple DES (3DES192-CBC)
- AES-GCM (AES128-GCM)
- DH-2 (Diffie–Hellman group 2)
- DH-5 (Diffie–Hellman group 5)

For IPSec VPN configuration examples, see Chapter 15, “NSX Edge VPN Configuration Examples,” on page 227.

Configuring IPSec VPN Service

You can set up an NSX Edge tunnel between a local subnet and a peer subnet.

NOTE If you connect to a remote site via IPSec VPN, the IP address of that site cannot be learnt by Dynamic Routing on the Edge uplink.

1. **Enable IPSec VPN Service** on page 105

 You must enable the IPSec VPN service for traffic to flow from the local subnet to the peer subnet.

2. **Specify Global IPSec VPN Configuration** on page 105

 This enables IPSec VPN on the NSX Edge instance.

3. **Enable Logging for IPSec VPN** on page 106

 You can enable logging of all IPSec VPN traffic.

4. **Configure IPSec VPN Parameters** on page 106

 You must configure at least one external IP address on the NSX Edge to provide IPSec VPN service.

Enable IPSec VPN Service

You must enable the IPSec VPN service for traffic to flow from the local subnet to the peer subnet.

Procedure

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click an NSX Edge.
4. Click the *Manage* tab and then click the *VPN* tab.
5. Click IPSec VPN.
6. Click Enable.

Specify Global IPSec VPN Configuration

This enables IPSec VPN on the NSX Edge instance.

Prerequisites

If you want to enable certificate authentication, server certificates, CA certificates, or CRLs must have been imported.
Procedure

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click an NSX Edge.
4. Click the *Manage* tab and then click the *VPN* tab.
5. Click *IPSec VPN*.
6. Click *Change* next to Global configuration status.
7. Type a global pre-shared key for those sites whose peer endpoint is set to any and select *Display shared key* to display the key.
8. Select Enable certificate authentication and select the appropriate certificate.
9. Click *OK*.

Enable Logging for IPSec VPN

You can enable logging of all IPSec VPN traffic.

Procedure

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click an NSX Edge.
4. Click the *Manage* tab and then click the *VPN* tab.
5. Click *IPSec VPN*.
6. Click next to *Logging Policy* and click *Enable logging* to log the traffic flow between the local subnet and peer subnet and select the logging level.
7. Select the log level and click *Publish Changes*.

Configure IPSec VPN Parameters

You must configure at least one external IP address on the NSX Edge to provide IPSec VPN service.

Procedure

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click an NSX Edge.
4. Click the *Monitor* tab and then click the *VPN* tab.
5. Click *IPSec VPN*.
6. Click the *Add (➕)* icon.
7. Type a name for the IPSec VPN.
8. Type the IP address of the NSX Edge instance in *Local Id*. This will be the peer Id on the remote site.
9. Type the IP address of the local endpoint.
 - If you are adding an IP to IP tunnel using a pre-shared key, the local Id and local endpoint IP can be the same.
10 Type the subnets to share between the sites in CIDR format. Use a comma separator to type multiple subnets.

11 Type the Peer Id to uniquely identify the peer site. For peers using certificate authentication, this ID must be the common name in the peer's certificate. For PSK peers, this ID can be any string. VMware recommends that you use the public IP address of the VPN or a FQDN for the VPN service as the peer ID.

12 Type the IP address of the peer site in Peer Endpoint. If you leave this blank, NSX Edge waits for the peer device to request a connection.

13 Type the internal IP address of the peer subnet in CIDR format. Use a comma separator to type multiple subnets.

14 Select the Encryption Algorithm.

15 In Authentication Method, select one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSK (Pre Shared Key)</td>
<td>Indicates that the secret key shared between NSX Edge and the peer site is to be used for authentication. The secret key can be a string with a maximum length of 128 bytes.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Indicates that the certificate defined at the global level is to be used for authentication.</td>
</tr>
</tbody>
</table>

16 Type the shared key in if anonymous sites are to connect to the VPN service.

17 Click Display Shared Key to display the key on the peer site.

18 In Diffie-Hellman (DH) Group, select the cryptography scheme that will allow the peer site and the NSX Edge to establish a shared secret over an insecure communications channel.

19 In Extension, type one of the following:
 - securelocaltrafficbyip=IPAddress to re-direct Edge's local traffic over the IPSec VPN tunnel. This is the default value.
 - passthroughSubnets=PeerSubnetIPAddress to support overlapping subnets.

20 Click OK.

NSX Edge creates a tunnel from the local subnet to the peer subnet.

What to do next

Enable the IPSec VPN service.

Edit IPSec VPN Service

You can edit an IPSec VPN service.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click VPN tab.
5 Click IPSec VPN.
6 Select the IPSec service that you want to edit.
7 Click the Edit (📝) icon.
8 Make the appropriate edits.
9 Click OK.

Disable IPSec Service

You can disable an IPSec service.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click VPN tab.
5 Click IPSec VPN.
6 Select the IPSec service that you want to disable.
7 Click the Disable (🚫) icon.

Delete IPSec Service

You can delete an IPSec service.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click VPN tab.
5 Click IPSec VPN.
6 Select the IPSec service that you want to delete.
7 Click the Delete (❌) icon.

L2 VPN Overview

With L2 VPN, you can stretch multiple logical networks (both VLAN and VXLAN) across geographical sites. In addition, you can configure multiple sites on an L2 VPN server. Virtual machines remain on the same subnet when they are moved between sites and their IP addresses do not change. Egress optimization enables Edge to route any packets sent towards the Egress Optimization IP address locally, and bridge everything else.

L2 VPN thus allows enterprises to seamlessly migrate workloads backed by VXLAN or VLAN between physically separated locations. For cloud providers, L2 VPN provides a mechanism to on-board tenants without modifying existing IP addresses for workloads and applications.
The L2 VPN client and server learn the MAC addresses on both local and remote sites based on the traffic flowing through them. Egress optimization maintains local routing since the default gateway for all virtual machines are always resolved to the local gateway using firewall rules. Virtual machines that have been moved to Site B can also access L2 segments that are not stretched on Site A.

If one of the sites is not backed by NSX, a standalone NSX Edge can be deployed on that site.

In the following graphic, L2 VPN stretches network VLAN 10 to VXLAN 5010 and VLAN 11 to VXLAN 5011. So VM 1 bridged with VLAN 10 can access VMs 2, 5, and 6.
Figure 6-2. Extending Non-NSX Site with VLAN Based Network to NSX-Site with VXLAN Based Network

Configuring L2 VPN

To stretch your network using L2 VPN, you configure an L2 VPN server (destination Edge) and an L2 VPN client (source Edge). You must then enable the L2 VPN service on both the server and the client.

Prerequisites

A sub interface must have been added on a trunk interface of the NSX Edge. See “Add a Sub Interface,” on page 194.

Procedure

1. **Configure L2 VPN Server** on page 111

 The L2 VPN server is the destination NSX Edge to which the client is to be connected.

2. **Add Peer Sites** on page 111

 You can connect multiple sites to the L2 VPN server.
3 **Enable L2 VPN Service on Server** on page 112
 You must enable the L2 VPN service on the L2 VPN server (destination NSX Edge). If HA is already configured on this Edge appliance, ensure that Edge has more than one internal interface configured on it. If only a single interface is present and that has already been used by HA, L2 VPN configuration on the same internal interface will fail.

4 **Configure L2 VPN Client** on page 112
 The L2 VPN client is the source NSX Edge that initiates communication with the destination Edge (L2 VPN server).

5 **Enable L2 VPN Service on Client** on page 113
 You must enable the L2 VPN service on the L2 VPN client (source NSX Edge).

Configure L2 VPN Server
The L2 VPN server is the destination NSX Edge to which the client is to be connected.

Procedure
1. In the **L2 VPN** tab, select **Server** and click **Change**.
2. In **Listener IP**, type the primary or secondary IP address of an external interface of the NSX Edge.
3. The default port for the L2 VPN service is 443. Edit this if required.
4. Select the encryption algorithm for communication between the server and the client.
 The following encryption algorithms are supported:
 - RC4-MD5
 - AES128-SHA
 - AES256-SHA
 - DES-CBC3-SHA
 - AES128-GCM-SHA256
 - NULL-MD5
5. Select the certificate to be bound to SSL VPN server.
6. Click **OK**.

Add Peer Sites
You can connect multiple sites to the L2 VPN server.

Procedure
1. In the L2 VPN tab, ensure that the **L2 VPN Mode** is **Server**.
2. In **Site Configuration Details**, click the **Add** icon.
3. Type a unique name for the peer site.
4. Type the user name and password with which the peer site is to be authenticated. User credentials on the peer site should be the same as those on the client side.
5 In **Stretched Interfaces**, click **Select Sub Interfaces** to select the sub interfaces to be stretched with the client.
 a In **Select Object**, select the trunk interface for the Edge.
 Sub interfaces configured on the trunk vNIC are displayed.
 b Double-click the sub interfaces to be stretched.
 c Click **OK**.

6 If the default gateway for virtual machines is same across the two sites, type the gateway IP addresses for which the traffic should be locally routed or for which traffic is to be blocked over the tunnel in **Egress Optimization Gateway Address**.

7 Click **OK** and then click **Publish Changes**.

Enable L2 VPN Service on Server

You must enable the L2 VPN service on the L2 VPN server (destination NSX Edge). If HA is already configured on this Edge appliance, ensure that Edge has more than one internal interface configured on it. If only a single interface is present and that has already been used by HA, L2 VPN configuration on the same internal interface will fail.

Procedure

1 For the destination NSX Edge, navigate to **Manage > VPN > L2 VPN**.
2 In **L2VPN Service Configuration**, click **Enable**.

What to do next

Create NAT or firewall rule on the internet facing firewall side to enable the client and server to connect to each other.

Configure L2 VPN Client

The L2 VPN client is the source NSX Edge that initiates communication with the destination Edge (L2 VPN server).

You can also configure a standalone Edge as the L2 VPN client. See “Configure Standalone Edge as L2 VPN Client,” on page 113.

Procedure

1 In the L2 VPN tab, set the **L2 VPN Mode** to **Client** and click **Change**.
2 Type the address of the L2 VPN server to which this client is to be connected. The address can be the host name or IP address.
3 If required, edit the default port to which the L2 VPN client should connect to.
4 Select the encryption algorithm for communicating with the server.
5 In **Stretched Interfaces**, click **Select Sub Interfaces** to select the sub interfaces to be stretched to the server.
 a In **Select Object**, select the trunk interface for the Edge.
 Sub interfaces configured on the trunk vNIC are displayed.
 b Double-click the sub interfaces to be stretched.
 c Click **OK**.
6 Type a description.
7 In Egress Optimization Gateway Address, type the gateway IP address of the sub interfaces or the IP addresses to which traffic should not flow over the tunnel.

8 In User Details, type the user credentials to get authenticated at the server.

9 Click the Advanced tab.

 If the client NSX Edge does not have direct access to the internet and needs to reach the source (server) NSX Edge via a proxy server, specify Proxy Settings.

10 To enable only secure proxy connections, select Enable Secure Proxy.

11 Type the proxy server address, port, user name, and password.

12 To enable server certificate validation, select Validate Server Certificate and select the appropriate CA certificate.

13 Click OK and then click Publish Changes.

What to do next

Ensure that the internet facing firewall allows traffic to flow from L2 VPN Edge to the internet. The destination port is 443.

Enable L2 VPN Service on Client

You must enable the L2 VPN service on the L2 VPN client (source NSX Edge).

Procedure

1 For the source NSX Edge, navigate to Manage > VPN > L2 VPN.

2 In L2VPN Service Configuration, click Enable.

What to do next

- Create NAT or firewall rule on the internet facing firewall side to enable the client and server to connect to each other.

- If a trunk vNic backed by standard portgroup is being stretched, enable L2 VPN traffic manually by the following steps:
 a Set Promiscuous mode to Accept.
 b Set Forged Transmits to Accept.

For more information, see ESXi and vCenter Server 5.5 Documentation.

Configure Standalone Edge as L2 VPN Client

If one of the sites that you want to stretch is not backed by NSX, you can deploy a standalone Edge as the L2 VPN client on that site.

Procedure

1 Copy the NSX-l2vpn-client.ovf file to your computer.

2 Using vSphere Web Client, log in to the vCenter Server that manages the non-NSX environment.

3 Select Datacenters > Hosts and Clusters > Hosts.

4 Right-click the host where you want to install the standalone Edge and select Deploy OVF Template.

5 Enter the URL to download and install the OVF file from the internet or click Browse to locate the folder on your computer that contains the standalone Edge OVF file and click Next.

6 On the OVF Template Details page, verify the template details and click Next.
7 On the Name and Location page, type a name for the standalone Edge and select the location where you want to deploy. Then click Next.

8 On the Network Mapping page, select the network in your environment that you want to map to the OVF network. Then click Next.

9 On the Properties page, specify the following values.
 a Type and retype the admin CLI password.
 b Type and retype the root CLI password.
 c Type the uplink IP address, prefix length, default gateway, and DNS IP address.
 d Select the cipher to be used for authentication.
 e To enable Egress Optimization, type the gateway IP addresses for which traffic should be locally routed or for which traffic is to be blocked over the tunnel.
 f Type the L2 VPN server address.
 g Type the user name and password with which the peer site is to be authenticated.
 h In VLAN ID, type VLAN ID(s) of the network(s) you want to stretch. You can list the VLAN IDs as a comma separated list or range. For example, 2,3,10-20. If you want to change the VLAN ID of the network before stretching it to the standalone Edge site, you can type the VLAN ID of the network and then type the tunnel ID in brackets. For example, 2(100),3(200). The Tunnel ID is used to map the networks that are being stretched. However, you cannot specify the tunnel ID with a range. So this would not be allowed: 10(100)-14(104). You would need to rewrite this as 10(100),11(101),12(102),13(103),14(104).
 i If the standalone NSX Edge does not have direct access to the internet and needs to reach the source (server) NSX Edge via a proxy server, type the proxy address, port, user name, and password.
 j Click Next.

10 On the Ready to complete page, review the standalone Edge settings and click Finish.

Power on the standalone Edge virtual machine.

View L2 VPN Statistics

You can view L2 VPN statistics such as tunnel status, bytes sent and received etc. for the source and destination NSX Edge.

Procedure

1 In the L2 VPN tab, ensure that the L2 VPN Mode is Client.

2 Click Fetch Status and expand Tunnel Status.

 If the L2 VPN server has multiple peer sites, statistics are displayed for all the peer sites.

What to do next

To see the networks configured on a trunk interface, navigate to Manage > Settings > Interfaces for the Edge and click Trunk in the Type column.
Logical Load Balancer

The NSX Edge load balancer enables network traffic to follow multiple paths to a specific destination. It distributes incoming service requests evenly among multiple servers in such a way that the load distribution is transparent to users. Load balancing thus helps in achieving optimal resource utilization, maximizing throughput, minimizing response time, and avoiding overload. NSX Edge provides load balancing up to Layer 7.

You map an external, or public, IP address to a set of internal servers for load balancing. The load balancer accepts TCP, HTTP, or HTTPS requests on the external IP address and decides which internal server to use. Port 8090 is the default listening port for TCP, port 80 is the default port for HTTP, and port 443 is the default port for HTTPS.

You must have a working NSX Edge instance before you can load balancing. For information on setting up NSX Edge, see “NSX Edge Operations,” on page 188.

For information on configuring an NSX Edge certificate, see “Working with Certificates,” on page 188.

This chapter includes the following topics:

- “Set Up Load Balancing,” on page 115
- “Load Balance Web Servers using NTLM Authentication,” on page 125
- “Working with Application Profiles,” on page 125
- “Working with Service Monitors,” on page 126
- “Working with Server Pools,” on page 127
- “Working with Virtual Servers,” on page 127
- “Working with Application Rules,” on page 128

Set Up Load Balancing

The NSX Edge load balancer distributes network traffic across multiple servers to achieve optimal resource utilization.

You begin by setting global options for the load balancer. You then create an application profile to define the behavior of a particular type of network traffic. Next, you create a service monitor to define health check parameters for the load balancer.

You now create a server pool consisting of backend server members and associate a service monitor with the pool to manage and share the backend servers flexibly and efficiently.

When the virtual server receives a request, it chooses the appropriate pool to distribute the traffic comprising one or more members based on the associated algorithm.
Each pool is monitored by the associated service monitor. When the load balancer detects a problem with a pool member, it is marked as down.

Configure Load Balancer Service

You can specify global load balancer configuration parameters.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Manage** and then click the **Load Balancer** tab.
5. Click **Edit**.
6. Select the check boxes next to the options you want to enable.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Loadbalancer</td>
<td>Allows the NSX Edge load balancer to distribute traffic to internal servers for load balancing.</td>
</tr>
<tr>
<td>Enable Service Insertion</td>
<td>Allows the load balancer to work with third party vendor services. If you have a third party vendor load balancer service deployed in your environment, see “Using a Partner Load Balancer,” on page 161.</td>
</tr>
<tr>
<td>Acceleration Enabled</td>
<td>When enabled, the NSX Edge load balancer uses the faster L4 LB engine rather than L7 LB engine. The L4 TCP VIP is processed before the Edge Firewall so no Allow firewall rule is required. L7 HTTP/HTTPS VIPs are processed after the Edge Firewall. Hence, if Acceleration Enabled is not selected, an Edge Firewall rule must exist to allow access to the L7 HTTP/HTTPS VIP. If the Acceleration Enabled flag is selected and the server pool is in non-transparent mode, an SNAT rule will be added. Therefore ensure that Firewall is enabled on NSX Edge.</td>
</tr>
<tr>
<td>Logging</td>
<td>NSX Edge load balancer collects traffic logs. You can also choose the log level.</td>
</tr>
</tbody>
</table>

7. Click **OK**.

Create a Service Monitor

You create a service monitor to define health check parameters for a particular type of network traffic. When you associate a service monitor with a pool, the pool members are monitored according to the service monitor parameters.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Manage** and then click the **Load Balancer** tab.
5. In the left navigation panel, click **Service Monitoring**.
6. Click the **Add** icon.
7. Type a name for the service monitor.
Type the interval at which a server is to be pinged.

Type the maximum time in seconds within which a response from the server must be received.

Type the number of times the server must be pinged before it is declared down.

Select the way in which you want to send the health check request to the server.

For HTTP and HTTPS traffic, perform the steps below.

a In **Expect**, type the string that the monitor expects to match in the status line of HTTP response (for example, HTTP/1.1).

b Select the method to be used to detect server status.

c Type the URL to be used in the sample request.

d If you selected the POST method, type the data to be sent.
In **Receive**, type the string to be matched in the response content.

If **Expect** is not matched, the monitor does not try to match the **Receive** content.

(Optional) In **Extension**, type advanced monitor parameters as key=value pairs. For example, warning=10 indicates that if a server does not respond within 10 seconds, its status is set as warning. All extension items should be separated with a carriage return character. For example:

```xml
<extension>
  delay=2
  critical=3
  escape
</extension>
```

Refer to the table below for extensions supported for each protocol.

Table 7-1. Extensions for TCP Protocol

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>escape</td>
<td>Can use \n, \r, \t, or \ in send or quit string. Must come before send or quit option. Default: nothing added to send, \r\n added to end of quit.</td>
</tr>
<tr>
<td>all</td>
<td>All expect strings need to occur in server response. Default is any.</td>
</tr>
<tr>
<td>quit=STRING</td>
<td>String to send to server to initiate a clean close of the connection.</td>
</tr>
<tr>
<td>refuse=ok</td>
<td>warn</td>
</tr>
<tr>
<td>mismatch=ok</td>
<td>warn</td>
</tr>
<tr>
<td>jail</td>
<td>Hide output from TCP socket.</td>
</tr>
<tr>
<td>maxbytes=INTEGER</td>
<td>Close connection once more than the specified number of bytes are received.</td>
</tr>
<tr>
<td>delay=INTEGER</td>
<td>Seconds to wait between sending string and polling for response.</td>
</tr>
<tr>
<td>certificate=INTEGER[,INTEGER]</td>
<td>Minimum number of days a certificate has to be valid. The first value is #days for warning and the second value is critical (if not specified - 0).</td>
</tr>
<tr>
<td>ssl</td>
<td>Use SSL for the connection.</td>
</tr>
<tr>
<td>warning=DOUBLE</td>
<td>Response time in seconds to result in warning status.</td>
</tr>
<tr>
<td>critical=DOUBLE</td>
<td>Response time in seconds to result in critical status.</td>
</tr>
</tbody>
</table>

Table 7-2. Extensions for HTTP/HTTPS Protocol

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-body</td>
<td>Do not wait for document body: stop reading after headers. Note that this still does an HTTP GET or POST, not a HEAD.</td>
</tr>
<tr>
<td>max-age=SECONDS</td>
<td>Warn if document is more than SECONDS old. The number can also be in the form 10m for minutes, 10h for hours, or 10d for days.</td>
</tr>
<tr>
<td>content-type=STRING</td>
<td>specify Content-Type header media type in POST calls.</td>
</tr>
<tr>
<td>linespan</td>
<td>Allow regex to span newlines (must precede -r or -R).</td>
</tr>
<tr>
<td>regex=STRING or ereg=STRING</td>
<td>Search page for regex STRING.</td>
</tr>
<tr>
<td>eregi=STRING</td>
<td>Search page for case-insensitive regex STRING.</td>
</tr>
</tbody>
</table>
Table 7-2. Extensions for HTTP/HTTPS Protocol (Continued)

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>invert-regex</td>
<td>Return CRITICAL if found, OK if not.</td>
</tr>
<tr>
<td>proxy-authorization=AUTH_PAIR</td>
<td>Username:password on proxy-servers with basic authentication.</td>
</tr>
<tr>
<td>useragent=STRING</td>
<td>String to be sent in HTTP header as User Agent.</td>
</tr>
<tr>
<td>header=STRING</td>
<td>Any other tags to be sent in HTTP header. Use multiple times for additional headers.</td>
</tr>
<tr>
<td>onredirect=ok</td>
<td>warning</td>
</tr>
<tr>
<td>pagesize=INTEGER:INTEGER</td>
<td>Minimum page size required (bytes) : Maximum page size required (bytes).</td>
</tr>
<tr>
<td>warning=DOUBLE</td>
<td>Response time in seconds to result in warning status.</td>
</tr>
<tr>
<td>critical=DOUBLE</td>
<td>Response time in seconds to result in critical status.</td>
</tr>
</tbody>
</table>

Table 7-3. Extensions for HTTPS Protocol

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sni</td>
<td>Enable SSL/TLS hostname extension support (SNI).</td>
</tr>
<tr>
<td>certificate=INTEGER</td>
<td>Minimum number of days a certificate has to be valid. Port defaults to 443. When this option is used the URL is not checked.</td>
</tr>
<tr>
<td>authorization=AUTH_PAIR</td>
<td>Username:password on sites with basic authentication.</td>
</tr>
</tbody>
</table>

13 Click **OK**.

What to do next

Associate a service monitor with a pool.

Add a Server Pool

You can add a server pool to manage and share backend servers flexibly and efficiently. A pool manages load balancer distribution methods and has a service monitor attached to it for health check parameters.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click **Manage** and then click the **Load Balancer** tab.
5. In the left navigation panel, click **Pools**.
6. Type a name and description for the load balancer pool.
7 Select a balancing method for each enabled service.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP_HASH</td>
<td>Selects a server based on a hash of the source and destination IP address of each packet.</td>
</tr>
<tr>
<td>LEAST_CONN</td>
<td>Distributes client requests to multiple servers based on the number of connections already on the server. New connections are sent to the server with the fewest connections.</td>
</tr>
<tr>
<td>ROUND_ROBIN</td>
<td>Each server is used in turn according to the weight assigned to it. This is the smoothest and fairest algorithm when the server's processing time remains equally distributed.</td>
</tr>
<tr>
<td>URI</td>
<td>The left part of the URI (before the question mark) is hashed and divided by the total weight of the running servers. The result designates which server will receive the request. This ensures that a URI is always directed to the same server as long as no server goes up or down.</td>
</tr>
</tbody>
</table>

8 Add members to the pool.
 a Click the Add icon.
 b Type the name and IP address of the server member.
 c Type the port where the member is to receive traffic on and the monitor port where the member is to receive health monitor pings.
 d In Weight, type the proportion of traffic this member is to handle.
 e Type the maximum number of concurrent connections the member can handle.
 If the incoming requests goes higher than the maximum, they will be queued and will wait for a connection be released.
 f Type the minimum number of concurrent connections a member must always accept.
 g Click OK.

9 Transparent indicates whether client IP addresses are visible to the backend servers. If Transparent is not selected (default value), backend servers see the traffic source IP as a Load balancer internal IP. If Transparent is selected, source IP is the real client IP and NSX Edge must be set as the default gateway to ensure that return packets go through the NSX Edge device.

10 Click OK.

Create an Application Profile

You create an application profile to define the behavior of a particular type of network traffic. After configuring a profile, you associate the profile with a virtual server. The virtual server then processes traffic according to the values specified in the profile. Using profiles enhances your control over managing network traffic, and makes traffic-management tasks easier and more efficient.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Application Profiles.
6 Click the Add icon.
7 Type a name for the profile and select the traffic type for which you are creating the profile.

8 Type the URL to which you want to re-direct HTTP traffic. For example, you can direct traffic from http://myweb.com to https://myweb.com.

9 Specify persistence for the profile. Persistence tracks and stores session data, such as the specific pool member that serviced a client request. This ensures that client requests are directed to the same pool member throughout the life of a session or during subsequent sessions.

 Cookie persistence inserts a cookie to uniquely identify the session the first time a client accessed the site and then refers to that cookie in subsequent requests to persist the connection to the appropriate server. Type the cookie name and select the mode by which the cookie should be inserted. The following cookie insertion modes are supported:

 - **Insert**
 NSX Edge sends a cookie. If the server sends one or more cookie, the client will receive one extra cookie (the server cookie(s) + the Edge cookie). If the server does not send any cookie, the client will receive the Edge cookie.

 - **Prefix**
 This option is selected if your client does not support more than one cookie.

 Note: All browsers accept multiple cookies. But you may have a proprietary application using a proprietary client that supports only one cookie. The web servers sends its cookie as usual. NSX Edge injects (as a prefix) its cookie information in the server cookie value. This cookie added information is removed when Edge sends it to the server.

 - **App Session**
 In this option, the server does not send a cookie; instead, it sends the user session information as a URL. For example, http://mysite.com/admin/UpdateUserServlet;jsessionid=OI24B9ASD78SSD, where jsessionid is the user session information and is used for the persistence. It is not possible to see the App Session persistence table for troubleshooting.

SOURCEIP persistence tracks sessions based on the source IP address. When a client requests a connection to a virtual server that supports source address affinity persistence, the load balancer checks to see if that client previously connected, and if so, returns the client to the same pool member.

Microsoft Remote Desktop Protocol (MSRDP) persistence maintains persistent sessions between Windows clients and servers that are running the Microsoft Remote Desktop Protocol (RDP) service. The recommended scenario for enabling MSRDP persistence is to create a load balancing pool that consists of members running Windows Server 2003 or Windows Server 2008, where all members belong to a Windows cluster and participate in a Windows session directory.

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Persistence Method Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>SOURCEIP, MSRDP</td>
</tr>
<tr>
<td>HTTP</td>
<td>Cookie, SOURCEIP</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Cookie, ssl_session_id (SSL Passthrough enabled), SOURCEIP</td>
</tr>
<tr>
<td>UDP</td>
<td>SOURCEIP</td>
</tr>
</tbody>
</table>

10 If you are creating a profile for HTTPS traffic, complete the steps below. The following HTTPS traffic pattern are allowed.

 - Client -> HTTPS -> LB (terminate SSL) -> HTTP -> servers
 - Client -> HTTPS -> LB (terminate SSL) -> HTTPS -> servers
Client -> HTTPS-> LB (SSL passthrough) -> HTTPS -> servers
Client -> HTTP-> LB -> HTTP -> servers

a Select Insert X-Forwarded-For HTTP header for identifying the originating IP address of a client connecting to a web server through the load balancer.
b Select the certificate/CAs/CRLs used to decrypt HTTPS traffic in Virtual Server Certificates.
c Define the certificate/CAs/CRLs used to authenticate the load balancer from the server side in Pool Certificates.

11 In Cipher, select the cipher algorithms (or cipher suite) negotiated during the SSL/TLS handshake.
12 Specify whether client authentication is to be ignored or required. If set to required, the client must provide a certificate after the request or the handshake is aborted.
13 Click OK.

Add an Application Rule

You can write an application rule to directly manipulate and manage IP application traffic. For application rule examples, see .

“Application Rule Examples,” on page 122.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Application Rules and click the Add icon.
6 Type the name and script for the rule.
 For information on the application rule syntax, see http://cbonte.github.io/haproxy-dconv/configuration-1.5.html.
7 Click OK.

Application Rule Examples

HTTP/HTTPS redirection based on condition

An application profile allows you to specify HTTP/HTTPS redirection, which always redirects traffic regardless of the request URLs. You also have the flexibility to specify the conditions in which HTTP/HTTPS traffic should be redirected.

move the login URL only to HTTPS.

acl clear dst_port 80
acl secure dst_port 8080
acl login_page url_beg /login
acl logout url_beg /logout
acl uid_given url_reg /login?userid=\[^&\]+
cookie_set hdr_sub(cookie) SEEN=1
redirect prefix https://mysite.com set-cookie SEEN=1 if !cookie_set
redirect prefix https://mysite.com if login_page !secure
redirect prefix http://mysite.com drop-query if login_page !uid_given
redirect location http://mysite.com/ if !login_page secure
 redirect location / clear-cookie USERID= if logout

Routing by domain name
You can create an application rule to direct requests to a specific load balancer pool according to domain name. The following rule direct requests to foo.com to pool_1, and requests to bar.com to pool_2.

 acl is_foo hdr_dom(host) -i foo
 acl is_bar hdr_dom(host) -i bar
 use_backend pool_1 if is_foo
 use_backend pool_2 if is_bar

Microsoft RDP load balancing and protection
In the following sample scenario, the load balancer balances a new user to the less loaded server and also resumes a broken session. The NSX Edge internal interface IP for this scenario is 10.0.0.18, internal interface IP is 192.168.1.1, and the virtual servers are 192.168.1.100, 192.168.1.101, and 192.168.1.102.

1. Create a application profile for TCP traffic with MSRDP persistence.
2. Create a TCP health monitor (tcp_monitor).
4. Create the following application rule.

 tcp-request content track-sc1 rdp_cookie(mstshash) table rdp-pool
 tcp-request content track-sc2 src table ipv4_ip_table

 # each single IP can have up to 2 connections on the VDI infrastructure
 tcp-request content reject if { sc2_conn_cur ge 2 }

 # each single IP can try up to 5 connections in a single minute
 tcp-request content reject if { sc2_conn_rate ge 10 }

 # Each user is supposed to get a single active connection at a time, block the second one
 tcp-request content reject if { sc1_conn_cur ge 2 }

 # if a user tried to get connected at least 10 times over the last minute,
 # it could be a brute force
 tcp-request content reject if { sc1_conn_rate ge 10 }

5. Create a virtual server (named rdp-vs). Associate the application profile to this virtual server and add the application rule created in step 4.

Advanced Logging
By default, NSX load balancer supports basical logging. You can create an application rule as follows to view more detailed logging messages for troubleshooting.

 # log the name of the virtual server
 capture request header Host len 32

 # log the amount of data uploaded during a POST
 capture request header Content-Length len 10
 # log the beginning of the referrer
capture request header Referer len 20

server name (useful for outgoing proxies only)
capture response header Server len 20

logging the content-length is useful with "option logasap"
capture response header Content-Length len 10

log the expected cache behaviour on the response
capture response header Cache-Control len 8

the Via header will report the next proxy's name
capture response header Via len 20

log the URL location during a redirection
capture response header Location len 20

After you associate the application rule to the virtual server, logs include detailed messages such as the following example.

```
2013-04-25T09:18:17+00:00 edge-187 loadbalancer[18498]: [org1]: 10.117.7.117 - -
[25/Apr/2013:09:18:16 +0000] "GET /favicon.ico HTTP/1.1" 404 1440 "" "" 51656 856 "vip-http-complete"
"pool-http-complete" "m2" 145 0 1 26 172 --NI 1 1 0 0 0 0 "" "" 10.117.35.187 "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.31 (KHTML, like Gecko) Chrome/26.0.1410.64 Safari/537.31" "Apache/2.2.15 (Linux"

2013-04-25T09:18:17+00:00 edge-187 loadbalancer[18498]: [org1]: 10.117.7.117 - -
[25/Apr/2013:09:18:16 +0000] "GET /favicon.ico HTTP/1.1" 404 1440 "" "" 51657 856 "vip-http-complete"
"pool-http-complete" "m2" 412 0 0 2 414 --NI 0 0 0 0 0 0 "" "" 10.117.35.187 "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.31 (KHTML, like Gecko) Chrome/26.0.1410.64 Safari/537.31" "Apache/2.2.15 (Linux"
```

To troubleshoot the HTTPS traffic, you may need to add more rules. Most web application use 301/302 responses with a location header to redirect the client to a page (most of the time after a login or a POST call) and also require an application cookie. So your application server may have difficulty in getting to know client connection information and may not be able to provide the correct responses: it may even stop the application from working.

To allow the web application to support SSL offloading, add the following rule.

```
# See clearly in the log if the application is setting up response for HTTP or HTTPS
capture response header Location len 32
capture response header Set-Cookie len 32

# Provide client side connection info to application server over HTTP header
http-request set-header X-Forwarded-Proto https if { ssl_fc }
http-request set-header X-Forwarded-Proto http if !{ ssl_

The load balancer inserts the following header when the connection is made over SSL.
X-Forwarded-Proto: https

The load balancer inserts the following header when the connection is made over HTTP.
X-Forwarded-Proto: http
Add Virtual Servers

Add an NSX Edge internal or uplink interface as a virtual server.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click Manage and then click the Load Balancer tab.
5. In the left navigation panel, click Virtual Servers.
6. Click the Add (➕) icon.
7. Type a name for the virtual server.
8. (Optional) Type a description for the virtual server.
9. Click Select IP Address to specify the IP address that the load balancer is listening on and type the protocol that the virtual server will handle.
   The Select IP Address dialog box only shows the primary IP address. If you are creating a VIP using a secondary IP address, type it manually.
10. Type the protocol that the virtual server will handle.
11. Type the port number that the load balancer will listen on.
12. Select the application profile to be associated with the virtual server. You can associate only an application profile with the same protocol as the virtual server that you are adding.
   The services supported by the selected pool appear.
13. Select the application rule to be associated with the virtual server.
14. In Connection Limit, type the maximum concurrent connections that the virtual server can process.
15. In Connection Rate Limit, type the maximum incoming new connection requests per second.
16. Click OK.

Load Balance Web Servers using NTLM Authentication

By default NSX Load Balancer closes the server TCP connection after each client request. Since NTLM authentication requires multiple HTTP requests in the same TCP session, authentication through NSX Load Balancer is broken.

Prerequisites

To work around this, add the following application rule on the VIP load balancing the web servers using NTLM authentication:

```
add # NTLM authentication (do not close session on the server side after each request)
no option http-server-close
```

This rule keeps the server connection open as long as the client connection remains open.

Working with Application Profiles
Delete an Application Profile
You can delete an application profile.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click Manage and then click the Load Balancer tab.
5. In the left navigation panel, click Application Profiles.
6. Select a profile and click the Delete icon.

Edit an Application Profile
You can edit an application profile.

Working with Service Monitors

Edit a Service Monitor
You can edit a service monitor.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click Manage and then click the Load Balancer tab.
5. In the left navigation panel, click Service Monitoring.
6. Select a service monitor and click the Edit icon.
7. Make the appropriate changes and click OK.

Delete a Service Monitor
You can delete a service monitor.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click Manage and then click the Load Balancer tab.
5. In the left navigation panel, click Service Monitoring.
6. Select a service monitor and click the Delete icon.
Working with Server Pools

**Edit a Server Pool**

You can edit a server pool.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Monitor** tab and then click the **Load Balancer** tab.
5. Ensure that you are in the Pool tab.
6. Select the pool to edit.
7. Click the **Edit (tıp)** icon.
8. Make the appropriate changes and click **Finish**.

**Delete a Server Pool**

You can delete a server pool.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Monitor** tab and then click the **Load Balancer** tab.
5. Ensure that you are in the Pool tab.
6. Select the pool to delete.
7. Click the **Delete (x)** icon.

Working with Virtual Servers

**Edit a Virtual Server**

You can edit a virtual server.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click an NSX Edge.
4. Click the **Monitor** tab and then click the **Load Balancer** tab.
5. Click **Virtual Servers** tab.
6 Select the virtual server to edit.
7 Click the Edit (-pencil) icon.
8 Make the appropriate changes and click Finish.

Delete a Virtual Server

You can delete a virtual server.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the Load Balancer tab.
5 Click Virtual Servers tab.
6 Select the virtual server to delete.
7 Click the Delete (×) icon.

Working with Application Rules

Edit an Application Rule

You can edit an application rule.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Application Rules.
6 Select a rule and click the Edit icon.
7 Make the appropriate changes and click OK.

Delete an Application Rule

You can delete an application rule.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click Manage and then click the Load Balancer tab.
5 In the left navigation panel, click Application Profiles.
6 Select a profile and click the Delete icon.
Other Edge Services

An NSX services gateway offers IP address pooling and one-to-one static IP address allocation and external DNS server configuration.

You must have a working NSX Edge instance before you can use any of the above services. For information on setting up NSX Edge, see “NSX Edge Operations,” on page 188.

This chapter includes the following topics:
- “Managing DHCP Service,” on page 129
- “Configuring DHCP Relay,” on page 132
- “Configure DNS Servers,” on page 134

Managing DHCP Service

NSX Edge supports IP address pooling and one-to-one static IP address allocation. Static IP address binding is based on the vCenter managed object ID and interface ID of the requesting client.

NSX Edge DHCP service adheres to the following guidelines:
- Listens on the NSX Edge internal interface for DHCP discovery.
- Uses the IP address of the internal interface on NSX Edge as the default gateway address for all clients, and the broadcast and subnet mask values of the internal interface for the container network.

You must restart the DHCP service on client virtual machines in the following situations:
- You changed or deleted a DHCP pool, default gateway, or DNS server.
- You changed the internal IP address of the NSX Edge instance.

Add a DHCP IP Pool

DHCP service requires a pool of IP addresses. An IP pool is a sequential range of IP addresses within the network. Virtual machines protected by NSX Edge that do not have an address binding are allocated an IP address from this pool. An IP pool’s range cannot intersect one another, thus one IP address can belong to only one IP pool.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the DHCP tab.
5 Click the Add (➕) icon.
6 Configure the pool.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Configure DNS</td>
<td>Select to use the DNS service configuration for the DHCP binding.</td>
</tr>
<tr>
<td>Lease never expires</td>
<td>Select to bind the address to the MAC address of the virtual machine forever. If you select this, Lease Time is disabled.</td>
</tr>
<tr>
<td>Start IP</td>
<td>Type the starting IP address for the pool.</td>
</tr>
<tr>
<td>End IP</td>
<td>Type the ending IP address for the pool.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Type the domain name of the DNS server. This is optional.</td>
</tr>
<tr>
<td>Primary Name Server</td>
<td>If you did not select Auto Configure DNS, type the Primary Nameserver for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution. This is optional.</td>
</tr>
<tr>
<td>Secondary Name Server</td>
<td>If you did not select Auto Configure DNS, type the Secondary Nameserver for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution. This is optional.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>Type the default gateway address. If you do not specify the default gateway IP address, the internal interface of the NSX Edge instance is taken as the default gateway. This is optional.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>Select whether to lease the address to the client for the default time (1 day), or type a value in seconds. You cannot specify the lease time if you selected Lease never expires. This is optional.</td>
</tr>
</tbody>
</table>

7 Click OK.

Enable the DHCP Service

Enable the DHCP service to allow NSX Edge to automatically assign an IP address to a virtual machine from a defined IP pool.

Prerequisites

A DHCP IP pool must have been added.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the DHCP tab.
5 Click Enable.
6 Select Enable logging if required and select the log level.
7 Click Publish Changes.

What to do next

Create an IP pool and bindings.

Edit DHCP IP Pool

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the DHCP tab.
5 Select a DHCP pool and click the Edit icon.
6 Make the appropriate changes and click OK.

Add a DHCP Static Binding

If you have services running on a virtual machine and do not want the IP address to be changed, you can bind an IP address to the MAC address of a virtual machine. The IP address you bind must not overlap an IP pool.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then click the DHCP tab.
5 Select Bindings from the left panel.
6 Click the Add (➕) icon.
7 Configure the binding.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Configure DNS</td>
<td>Select to use the DNS service configuration for the DHCP binding.</td>
</tr>
<tr>
<td>Lease never expires</td>
<td>Select to bind the address to the MAC address of the virtual machine forever.</td>
</tr>
<tr>
<td>Interface</td>
<td>Select the NSX Edge interface to bind.</td>
</tr>
<tr>
<td>VM Name</td>
<td>Select the virtual machine to bind.</td>
</tr>
<tr>
<td>VM vNIC Index</td>
<td>Select the virtual machine NIC to bind to the IP address.</td>
</tr>
<tr>
<td>Host Name</td>
<td>Type the host name of the DHCP client virtual machine.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Type the address to which to bind the MAC address of the selected virtual machine.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Specify the subnet mask. The subnet mask should be same as the subnet mask of the Edge interface or the DHCP Relay, in case of distributed router.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Type the domain name of the DNS server.</td>
</tr>
<tr>
<td>Primary Name Server</td>
<td>If you did not select Auto Configure DNS, type the Primary Nameserver for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution.</td>
</tr>
<tr>
<td>Secondary Name Server</td>
<td>If you did not select Auto Configure DNS, type the Secondary Nameserver for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>Type the default gateway address. If you do not specify the default gateway IP address, the internal interface of the NSX Edge instance is taken as the default gateway.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>If you did not select Lease never expires, select whether to lease the address to the client for the default time (1 day), or type a value in seconds.</td>
</tr>
</tbody>
</table>

8 Click Add.
9 Click Publish Changes.

**Edit DHCP Binding**

**Procedure**

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the DHCP tab.
5. Select Bindings from the left panel and click the binding to edit.
6. Click the Edit icon.
7. Make the appropriate changes and click OK.

**Configuring DHCP Relay**

Dynamic Host Configuration Protocol (DHCP) relay enables you to leverage your existing DHCP infrastructure from within NSX without any interruption to the IP address management in your environment. DHCP messages are relayed from virtual machine(s) to the designated DHCP server(s) in the physical world. This enables IP addresses within NSX to continue to be in synch with IP addresses in other environments.

DHCP configuration is applied on the logical router port and can list several DHCP servers. Requests are sent to all listed servers. While relaying the DHCP request from the client, the relay adds a Gateway IP Address to the request. The external DHCP server uses this gateway address to match a pool and allocate an IP address for the request. The gateway address must belong to a subnet of the NSX port on which the relay is running.
You can specify a different DHCP server for each logical switch and can configure multiple DHCP servers on each logical router to provide support for multiple IP domains.

**NOTE**
- DHCP relay does not support overlapping IP address space (option 82).
- DHCP Relay and DHCP service cannot run on a port/vNic at the same time. If a relay agent is configured on a port, a DHCP pool cannot be configured on the subnet(s) of this port.

**Add DHCP Relay Server**

Add the external relay server(s) to which you want the DHCP messages to be relayed to. The relay server can be an IP set, IP address block, domain, or a combination of all of these. Messages are relayed to each listed DHCP server.

**Procedure**

1. In the vSphere Web Client, navigate to Networking & Security > NSX Edges.
2. Double-click the appropriate Edge and ensure that you are in the Manage > DHCP tab.
3. Click Edit next to DHCP Relay Global Configuration.
4. To add an IP set as the a server:
   - Click the Add icon and select the IP set.
   - Move the selected IP set to the Selected Objects list by clicking the icon.
   - Click OK.
5. To add IP addresses or domain names, type the address or name in the appropriate area.
6. Click OK.
Add Relay Agents

Add Relay Agents

Add the Edge interfaces from which DHCP messages are to be relayed to the external DHCP relay server(s).

**Procedure**

1. In the **DHCP Relay Agents** area, click the **Add** icon.
2. In **vNIC**, ensure that an internal vNIC is selected.
   - The **Gateway IP Address** displays the primary IP address of the selected vNic.
3. Click **OK**.

Configure DNS Servers

Configure DNS Servers

You can configure external DNS servers to which NSX Edge can relay name resolution requests from clients. NSX Edge will relay client application requests to the DNS servers to fully resolve a network name and cache the response from the servers.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **NSX Edges**.
3. Double-click a NSX Edge.
4. Click the **Manage** tab and then click the **Settings** tab.
5. In the **DNS Configuration** panel, click **Change**.
6. Click **Enable DNS Service** to enable the DNS service.
7. Type IP addresses for both DNS servers.
8. Change the default cache size if required.
9. Click **Enable Logging** to log DNS traffic and select the log level.
   - Generated logs are sent to the syslog server.
10. Click **Ok**.
Service Composer

Service Composer helps you provision and assign network and security services to applications in a virtual infrastructure. You map these services to a security group, and the services are applied to the virtual machines in the security group.

Security Group

You begin by creating a security group to define assets that you want to protect. Security groups may be static (including specific virtual machines) or dynamic where membership may be defined in one or more of the following ways:

- vCenter containers (clusters, port groups, or datacenters)
- Security tags, IPset, MACset, or even other security groups. For example, you may include a criteria to add all members tagged with the specified security tag (such as AntiVirus.virusFound) to the security group.
- Directory Groups (if NSX Manager is registered with Active Directory)
- Regular expressions such as virtual machines with name VM1

Note that security group membership changes constantly. For example, a virtual machine tagged with the AntiVirus.virusFound tag is moved into the Quarantine security group. When the virus is cleaned and this tag is removed from the virtual machine, it again moves out of the Quarantine security group.

Security Policy

A security policy is a collection of the following service configurations.

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>Applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall rules</td>
<td>Rules that define the traffic to be allowed to, from, or within the security group.</td>
<td>vNIC</td>
</tr>
<tr>
<td>Endpoint service</td>
<td>Data Security or third party solution provider services such as anti-virus or vulnerability management services.</td>
<td>virtual machines</td>
</tr>
<tr>
<td>Network introspection services</td>
<td>Services that monitor your network such as IPS.</td>
<td>virtual machines</td>
</tr>
</tbody>
</table>

During service deployment in NSX, the third party vendor selects the service category for the service being deployed. A default service profile is created for each vendor template.

When third party vendor services are upgraded to NSX 6.1, default service profiles are created for the vendor templates being upgraded. Existing service policies that include Guest Introspection rules are updated to refer to the service profiles created during the upgrade.
Mapping Security Policy to Security Group

You map a security policy (say SP1) to a security group (say SG1). The services configured for SP1 are applied to all virtual machines that are members of SG1.

Figure 9-1. Service Composer overview

If a virtual machine belongs to more than one security group, the services that are applied to the virtual machine depends on the precedence of the security policy mapped to the security groups.

Service Composer profiles can be exported and imported as backups or for use in other environments. This approach to managing network and security services helps you with actionable and repeatable security policy management.

This chapter includes the following topics:

- “Using Service Composer,” on page 136
- “Graphical View of Service Composer,” on page 142
- “Export a Service Composer Configuration,” on page 145
- “Import a Service Composer Configuration,” on page 145
- “Working with Security Tags,” on page 146
- “Viewing Effective Services,” on page 148
- “Working with Security Policies,” on page 149
- “Edit a Security Group,” on page 150
- “Service Composer Scenarios,” on page 150

Using Service Composer

Service Composer helps you consume security services with ease.

Let us walk through an example to show how Service Composer helps you protect your network end-to-end. Let us say you have the followings security policies defined in your environment:

- An initial state security policy that includes a vulnerability scanning service (InitStatePolicy)
- A remediation security policy that includes a network IPS service in addition to firewall rules and an anti-virus service (RemPolicy)

Ensure that the RemPolicy has higher weight (precedence) than InitStatePolicy.

You also have the followings security groups in place:

- An applications assets group that includes the business critical applications in your environment (AssetGroup)
- A remediation security group defined by a tag that indicates the virtual machine is vulnerable (VULNERABILITY_MGMT.VulnerabilityFound.threat=medium) named RemGroup
You now map the InitStatePolicy to AssetGroup to protect all business critical applications in your environment. You also map RemPolicy to RemGroup to protect vulnerable virtual machines. When you initiate a vulnerability scan, all virtual machines in AssetGroup are scanned. If the scan identifies a virtual machine with a vulnerability, it applies the VULNERABILITY_MGMT.VulnerabilityFound.threat=medium tag to the virtual machine.

Service Composer instantly adds this tagged virtual machine to RemGroup, where a network IPS solution is already in place to protect this vulnerable virtual machine.

**Figure 9-2.** Service Composer in action

This topic will now take you through the steps required to consume the security services offered by Service Composer.

1. **Create a Security Group in Service Composer** on page 137
   You create a security group at the NSX Manager level.

2. **Create a Security Policy** on page 139
   A security policy is a set of Guest Introspection, firewall, and network introspection services that can be applied to a security group. The order in which security policies are displayed is determined by the weight associated with the policy. By default, a new policy is assigned the highest weight so that it is at the top of the table. However, you can modify the default suggested weight to change the order assigned to the new policy.

3. **Map a Security Policy to a Security Group** on page 142
   You can apply a security policy to a security group to secure your virtual desktops, business critical applications, and the connections between them. You can also view a list of the services that were not applied and the reason they failed to apply.

**Create a Security Group in Service Composer**

You create a security group at the NSX Manager level.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Service Composer**.
3 Click the **Security Groups** tab and then click the **Add Security Group** icon.

4 Type a name and description for the security group and click **Next**.

5 On the Dynamic Membership page, define the criteria that an object must meet for it to be added to the security group you are creating.

   For example, you may include a criteria to add all members tagged with the specified security tag (such as AntiVirus.virusFound) to the security group. Security tags are case sensitive.

   **NOTE** If you define a security group by virtual machines that have a certain security tag applied to them, you can create a dynamic or conditional workflow. The moment the tag is applied to a virtual machine, the virtual machine is automatically added to that security group.

   Or you can add all virtual machines containing the name w2008 AND virtual machines that are in the logical switch global_wire to the security group.

6 Click **Next**.

7 On the Select objects to include page, select the object type from the drop-down.

8 Double-click the object you want to add to the include list. You can include the following objects in a security group.

   - Other security groups to nest within the security group you are creating.
   - Cluster
   - Logical switch
   - Network
   - Virtual App
   - Datacenter
   - IP sets
   - AD groups

   **NOTE** The AD configuration for NSX security groups is different from the AD configuration for vSphere SSO. NSX AD group configuration is for end users accessing guest virtual machines while vSphere SSO is for administrators using vSphere and NSX.

   - MAC Sets
   - Security tag
   - vNIC
   - Virtual Machine
Resource Pool

Distributed Virtual Port Group

The objects selected here are always included in the security group regardless of whether or not they match the dynamic criteria.

When you add a resource to a security group, all associated resources are automatically added. For example, when you select a virtual machine, the associated vNIC is automatically added to the security group.

9 Click Next and double-click the objects that you want to exclude from the security group.

The objects selected here are always excluded from the security group even if they match the dynamic criteria or are selected in the include list.

10 Click Finish.

Membership of a security group is determined as follows:

\[ \text{Expression result (derived from step 4)} + \text{Inclusions (specified in step 6)} - \text{Exclusion (specified in step 7)} \]

which means that inclusion items are first added to the expression result. Exclusion items are then subtracted from the combined result.

Create a Security Policy

A security policy is a set of Guest Introspection, firewall, and network introspection services that can be applied to a security group. The order in which security policies are displayed is determined by the weight associated with the policy. By default, a new policy is assigned the highest weight so that it is at the top of the table. However, you can modify the default suggested weight to change the order assigned to the new policy.

Prerequisites

Ensure that:

- the required VMware built in services (such as Distributed Firewall, Data Security, and Guest Introspection) are installed.
- the required partner services have been registered with NSX Manager.

Procedure

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click Service Composer.

3 Click the Security Policies tab.

4 Click the Create Security Policy ( 创建 ) icon.

5 In the Add Security Policy dialog box, type a name for the security policy.

6 Type a description for the security policy.

NSX assigns a default weight (highest weight +1000) to the policy. For example, if the highest weight amongst the existing policy is 1200, the new policy is assigned a weight of 2200.

Security policies are applied according to their weight - a policy with the higher weight has precedence over a policy with a lower weight.

7 Select Inherit security policy from specified policy if you want the policy that you are creating to receive services from another security policy. Select the parent policy.

All services from the parent policy are inherited by the new policy.
8 Click Next.

9 In the Guest Introspection Services page, click the Add Guest Introspection Service (➕) icon.
   a In the Add Guest Introspection Service dialog box, type a name and description for the service.
   b Specify whether you want to apply the service or block it.
      When you inherit a security policy, you may choose to block a service from the parent policy.
      If you apply a service, you must select a service and service profile. If you block a service, you must
      select the type of service to block.
   c If you chose to block the service, select the type of service.
      If you select Data Security, you must have a data security policy in place. See Chapter 10, “Data
      Security,” on page 155.
   d If you chose to apply the Guest Introspection service, select the service name.
      The default service profile for the selected service is displayed, which includes information about
      the service functionality types supported by the associated vendor template.
   e In State, specify whether you want to enable the selected Guest Introspection service or disable it.
      You can add Guest Introspection services as placeholders for services to be enabled at a later time.
      This is especially useful for cases where services need to be applied on-demand (for example, new
      applications).
   f Select whether the Guest Introspection service is to be enforced (i.e. it cannot be overridden). If the
      selected service profile supports multiple service functionality types, then this is set to Enforce by
      default and cannot be changed.
      If you enforce an Guest Introspection service in a security policy, other policies that inherit this
      security policy would require that this policy be applied before the other child policies. If this
      service is not enforced, an inheritance selection would add the parent policy after the child policies
      are applied.
   g Click OK.
      You can add additional Guest Introspection services by following the above steps. You can manage the
      Guest Introspection services through the icons above the service table.
      You can export or copy the services on this page by clicking the icon on the bottom right side of
      the Guest Introspection Services page.

10 Click Next.

11 On the Firewall page, click the Add Firewall Rule (➕) icon.
   Here, you are defining firewall rules for the security groups(s) that this security policy will be applied to.
   a Type a name and description for the firewall rule you are adding.
   b Select Allow or Block to indicate whether the rule needs to allow or block traffic to the selected
      destination.
   c Select the source for the rule. By default, the rule applies to traffic coming from the security groups
      to which this policy gets applied to. To change the default source, click Change and select the
      appropriate security groups.
d Select the destination for the rule.

**Note** Either the Source or Destination (or both) must be security groups to which this policy gets applied to.

Say you create a rule with the default Source, specify the Destination as Payroll, and select **Negate Destination**. You then apply this security policy to security group Engineering. This would result in Engineering being able to access everything except for the Payroll server.

e Select the services and/or service groups to which the rule applies to.

f Select **Enabled** or **Disabled** to specify the rule state.

g Select **Log** to log sessions matching this rule.

Enabling logging may affect performance.

h Click **OK**.

You can add additional firewall rules by following the above steps. You can manage the firewall rules through the icons above the firewall table.

You can export or copy the rules on this page by clicking the **icon on the bottom right side of the Firewall page.**

The firewall rules you add here are displayed on the Firewall table. VMware recommends that you do not edit Service Composer rules in the firewall table. If you must do so for an emergency troubleshooting, you must re-synchronize Service Composer rules with firewall rules by selecting **Synchronize Firewall Rules** from the **Actions** menu in the Security Policies tab.

12 Click **Next**.

The Network Introspection Services page displays NetX services that you have integrated with your VMware virtual environment.

13 Click the **Add Network Introspection Service** (➕) icon.

a In the Add Network Introspection Service dialog box, type a name and description for the service you are adding.

b Select whether or not to redirect to service.

c Select the service name and profile.

d Select the source and destination

e Select the network service that you want to add.

You can make additional selections based on the service you selected.

f Select whether to enable or disable the service.

g Select Log to log sessions matching this rule.

h Click **OK**.

You can add additional network introspection services by following the above steps. You can manage the network introspection services through the icons above the service table.

You can export or copy the services on this page by clicking the **icon on the bottom right side of the Network Introspection Service page.**

**Note** Bindings created manually for the Service Profiles used in Service Composer policies will be overwritten.
14 Click Finish.

The security policy is added to the policies table. You can click the policy name and select the appropriate tab to view a summary of the services associated with the policy, view service errors, or edit a service.

**What to do next**

Map the security policy to a security group.

**Map a Security Policy to a Security Group**

You can apply a security policy to a security group to secure your virtual desktops, business critical applications, and the connections between them. You can also view a list of the services that were not applied and the reason they failed to apply.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Service Composer**.
3. Click the **Security Policy** tab.
4. Select a security policy and click the **Apply Security Policy** icon.
5. Select the security group that you want to apply the policy to.
   - If you select a security group defined by virtual machines that have a certain security tag applied to them, you can create a dynamic or conditional workflow. The moment the tag is applied to a virtual machine, the virtual machine is automatically added to that security group.
   - Network Introspection rules and Endpoint rules associated with the policy will not take effect for security groups containing IPSet and/or MacSet members.
6. Click the **Preview Service Status** icon to see the services that cannot be applied to the selected security group and the reason for the failure.
   - For example, the security group may include a virtual machine that belongs to a cluster on which one of the policy services has not been installed. You must install that service on the appropriate cluster for the security policy to work as intended.
7. Click **OK**.

**Graphical View of Service Composer**

Service Composer offers a canvas view displaying all security groups within the selected NSX Manager. The view also displays details such as members of each security group as well as the security policy applied on it.

This topic introduces Service Composer by walking you through a partially configured system so that you can visualize the mappings between security groups and security policy objects at a high level from the canvas view.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click **Service Composer**.
3. Click the **Canvas** tab.

All security groups within the selected NSX Manager (that are not contained within another security group) are displayed along with the policies applied on them. The **NSX Manager** drop-down lists all NSX Managers on which the currently logged in user has a role assigned.

**Figure 9-3. Service Composer canvas top level view**

Each rectangular box in the canvas represents a security group and the icons within the box represents security group members and details about the security policy mapped to the security group.

**Figure 9-4. Security group**

A number next to each icon indicates the number of instances - for example, ![1](image) indicates that 1 security policy is mapped to that security group.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Click to display</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Folder" /></td>
<td>Security groups nested within the main security group.</td>
</tr>
<tr>
<td><img src="image" alt="Cloud" /></td>
<td>Virtual machines that are currently part of the main security group as well as nested security groups. Click the Errors tab to see virtual machines with service errors.</td>
</tr>
<tr>
<td><img src="image" alt="Folder" /></td>
<td>Effective security policies mapped to the security group.</td>
</tr>
<tr>
<td><img src="image" alt="Create Policy" /></td>
<td>You can create a new security policy by clicking the Create <strong>Security Policy</strong> ( <img src="image" alt="Create Policy" /> ) icon. The newly created security policy object is automatically mapped to the security group.</td>
</tr>
<tr>
<td><img src="image" alt="Apply Policy" /></td>
<td>Map additional security policies to the security group by clicking the <strong>Apply Security Policy</strong> ( <img src="image" alt="Apply Policy" /> ) icon.</td>
</tr>
</tbody>
</table>
You can search for security groups by name. For example, if you type PCI in the search field in the top right corner of the canvas view, only the security groups with PCI in their names are displayed.

To see the security group hierarchy, click the Top Level (▼) icon at the top left of the window and select the security group you want to display. If a security group contains nested security groups, click ▷ to display the nested groups. The top bar displays the name of the parent security group and the icons in the bar display the total number of security policies, endpoint services, firewall services, and network introspection services applicable to the parent group. You can navigate back up to the top level by clicking the Go up one level (⬆️) icon in the top left part of the window.

You can zoom in and out of the canvas view smoothly by moving the zoom slider on the top right corner of the window. The Navigator box shows a zoomed out view of the entire canvas. If the canvas is much bigger than what fits on your screen, it will show a box around the area that is actually visible and you can move it to change the section of the canvas that is being displayed.

What to do next

Now that we have seen how the mapping between security groups and security policies work, you can begin creating security policies to define the security services you want to apply to your security groups.

Map Security Group to Security Policy

You can map the selected security group to a security policy.

Procedure

1. Select the security policy that you want to apply to the security group.
2. To create a new policy, select New Security Group.
   
   See “Create a Security Policy,” on page 139.
3. Click Save.
Export a Service Composer Configuration

You can export a Service Composer configuration (along with the security groups to which the security policies are mapped) and save it to your desktop. The saved configuration can be used as a backup for situations where you may accidentally delete a policy configuration, or it can be exported for use in another NSX Manager environment.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Select the security policy that you want to export.
5. Click Actions and then click the Export Service Configuration icon.
6. Type a name and description for the configuration that you are exporting.
7. If desired, type a prefix to be added to the security policies and security groups that are being exported.
   - If you specify a prefix, it is added to the target security policy names thus ensuring that they have unique names.
8. Click Next.
9. In the Select security policies page, select the security policy that you want to export and click Next.
10. The Ready to complete page displays the security policies along with associated objects (security groups on which these have been applied, as well as Endpoint services, firewall rules, and network introspection services) to be exported.
11. Click Finish.
12. Select the directory on your computer where you want to download the exported blueprint and click Save.
   - The configuration file is saved at the specified location.

Import a Service Composer Configuration

You can import a saved Service Composer configuration (along with the security groups to which the security policies are mapped) either as a backup or to restore configuration on a different NSX Manager.

Note that you cannot directly import a pre-6.1 policy to Service Composer 6.1.x. In versions prior to 6.1, Network Introspection rules accepted Port and Protocol separately in the input. From version 6.1, the accepted input is Application, which includes both the port and protocol. To import a pre-6.1 policy, you must edit the policy XML file to replace the port and protocol values with a reference to an application.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Click Actions and then click the Import Service Configuration icon.
5. Select the configuration file that you want to import.
6 If desired, type a suffix to be added to the security policies and security groups that are being imported. If you specify a suffix, it is added to the security policy names being imported thus ensuring that they have unique names.

7 Click Next.

Service Composer verifies that all services referred to in the configuration are available in the destination environment. If not, the Manage Missing Services page is displayed, where you can map missing services to available target services.

The Ready to complete page displays the security policies along with associated objects (security groups on which these have been applied, as well as Endpoint services, firewall rules, and network introspection services) to be imported.

8 Click Finish.

The imported security policies are added to the top of the security policy table (above the existing policies) in the target NSX Manager. The original order of the imported policies is preserved.

**Working with Security Tags**

You can view security tags applied on a virtual machine or create a user defined security tag.

**View Applied Security Tags**

You can view the security tags applied to virtual machines in your environment.

**Prerequisites**

A data security or antivirus scan must have been run and a tag applied to the appropriate virtual machine.

**Note** Refer to the third party solution documentation for details of the tags applied by those solutions.

**Procedure**

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click NSX Managers.

3 Click an NSX Manager in the Name column and then click the Manage tab.

4 Click the Security Tags tab.

A list of tags applied in your environment is displayed along with details about the virtual machines to which those tags have been applied. Note down the exact tag name if you plan on adding a security group to include virtual machines with a specific tag.

5 Click the number in the VM Count column to view the virtual machines to which that tag in that row has been applied.

**Add a Security Tag**

You can manually add a security tag and apply it to a virtual machine. This is especially useful when you are using a non-NSX solution in your environment and hence, cannot register the solution tags with NSX Manager.

**Prerequisites**

**Procedure**

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click the Security Tags tab.
5 Click the New Security Tag (.addButton) icon.
6 Type a name and description for the tag and click OK.

### Assign a Security Tag

In addition to creating a conditional workflow with a dynamic membership-based security tag, you can manually assign a security tag to a virtual machine.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Security Tags tab.
5. Select a security tag and click the Assign Security Tag (assignButton) icon.
6. Select one or more virtual machines and click OK.

### Edit a Security Tag

You can edit a user-defined security tag. If a security group is based on the tag you are editing, changes to the tag may affect security group membership.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Security Tags tab.
5. Select a security tag and click the Edit Security Tag (editButton) icon.
6. Make the appropriate changes and click OK.

### Delete a Security Tag

You can delete a user-defined security tag. If a security group is based on the tag you are deleting, changes to the tag may affect security group membership.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Security Tags tab.
5. Select a security tag and click the Delete Security Tag (deleteButton) icon.
Viewing Effective Services

You can view the services that are effective on a security policy object or on a virtual machine.

View Effective Services on a Security Policy

You can view the services effective on a security policy, including those services inherited from a parent policy.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Click a security policy in the Name column.
5. Ensure that you are in the Manage > Information Security tab.

Each of the three tabs (Endpoint Services, Firewall, Network Introspection Services) displays the corresponding services for the security policy.

Services that are not effective are greyed out. The Overridden column displays the services that are actually applied on the security policy and the Inherited from column displays the security policy from which services are inherited.

View Service Failures for a Security Policy

You can see the services associated with a security policy that failed to apply to the security group(s) mapped to the policy.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Policies tab.
4. Click a security policy in the Name column.
5. Ensure that you are in the Monitor > Service Errors tab.

Clicking the link in the Status column takes you to the Service Deployment page where you can correct service errors.

View Effective Services on a Virtual Machine

You can view the services effective on a virtual machine. If multiple security policies are getting applied on a virtual machine (i.e. a virtual machine is part of multiple security groups that have policies mapped to them), then this view lists all effective services from all these policies, in the order in which they get applied. The service status column displays the status for each service.

Procedure
1. Log in to the vSphere Web Client.
2. Click vCenter and then click Virtual Machines.
3. Click a virtual machine in the Name column.
4 Ensure that you are in the Monitor > Service Composer tab.

Working with Security Policies

A security policy is a group of network and security services.

The following network and security services can be grouped into a security policy:

- Endpoint services - data security, anti-virus, and vulnerability management
- Distributed Firewall rules
- Network introspection services - network IPS and network forensics

Manage Security Policy Priority

Security policies are applied according to their weight - a security policy with a higher weight has a higher priority. When you move a policy up or down in the table, its weight is adjusted accordingly.

Multiple security policies may be applied to a virtual machine either because the security group that contains the virtual machine is associated with multiple policies or because the virtual machine is part of multiple security groups associated with different policies. If there is a conflict between services grouped with each policy, the weight of the policy determines the services that will be applied to the virtual machine. For example, say policy 1 blocks internet access and has a weight value of 1000 while policy 2 allows internet access and has a weight value of 2000. In this particular case, policy 2 has a higher weight and hence the virtual machine will be allowed internet access.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click Service Composer.
3 Click the Security Policies tab.
4 Click the Manage Precedence (↑) icon.
5 In the Manage Precedence dialog box, select the security policy that you want to change the precedence for and click the Move Up (↑) or Move Down (↓) icon.
6 Click OK.

Edit a Security Policy

You can edit the name or description of a security policy, as well as the associated services and rules.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click Service Composer.
3 Click the Security Policies tab.
4 Select the security policy that you want to edit and click the Edit Security Policy (📝) icon.
5 In the Edit Security Policy dialog box, make the appropriate changes and click Finish.
Delete a Security Policy
You can delete a security policy.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click Service Composer.
3 Click the Security Policies tab.
4 Select the security policy that you want to delete and click the Delete Security Policy (×) icon.

Edit a Security Group
You can edit a security group.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click Service Composer.
3 Click the Security Groups tab.
4 Select the security group you want to edit and click the Edit Security Group icon.
5 Make the appropriate changes and click OK.

Service Composer Scenarios
This section illustrates some hypothetical scenarios for Service Composer. It is assumed that the Security Administrator role has been created and assigned to the administrator in each use case.

Quarantining Infected Machines Scenario
Service Composer can identify infected systems on your network with 3rd party antivirus solutions and quarantine them to prevent further outbreaks.

Our sample scenario shows how you can protect your desktops end to end.

Figure 9-6. Configuring Service Composer

- Create security policy for desktops (DesktopPolicy)
- Create security policy for infected VMs (QuarantinePolicy)
- Create security policy to scan desktops (DesktopPolicy)
- Create security policy to isolate infected systems (QuarantinePolicy)
- Map DesktopPolicy to DesktopSecurityGroup
- Map QuarantinePolicy to QuarantineSecurityGroup
- Run partner solution scan
- Administrator tasks
Prerequisites

We are aware that Symantec tags infected virtual machine with the **AntiVirus.virusFound** tag.

Procedure

1. Install, register, and deploy the Symantec Antimalware solution.
2. Create a security policy for your desktops.
   a. Click the **Security Policies** tab and click the **Add Security Policy** icon.
   b. In **Name**, type **DesktopPolicy**.
   c. In **Description**, type **Antivirus scan for all desktops**.
   d. Change the weight to 51000. The policy precedence is set very high so as to ensure that it is enforced above all other policies.
   e. Click **Next**.
   f. On the Add Endpoint Service page, click ![ ] and fill in the following values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Action</strong></td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td><strong>Service Type</strong></td>
<td>Anti Virus</td>
</tr>
<tr>
<td><strong>Service Name</strong></td>
<td>Symantec Antimalware</td>
</tr>
<tr>
<td><strong>Service Configuration</strong></td>
<td>Silver</td>
</tr>
<tr>
<td><strong>State</strong></td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td><strong>Enforce</strong></td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>Desktop AV</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Mandatory policy to be applied on all desktops</td>
</tr>
</tbody>
</table>

   g. Click **OK**.
   h. Do not add any firewall or network introspection services and click **Finish**.
3. Create a security policy for infected virtual machines.
   a. Click the **Security Policies** tab and click the **Add Security Policy** icon.
   b. In **Name**, type **QuarantinePolicy**.
   c. In **Description**, type **Policy to be applied to all infected systems**.
   d. Do not change the default weight.
   e. Click **Next**.
   f. On the Add Endpoint Service page, do not do anything and click **Next**.
g In Firewall, add three rules - one rule to block all outgoing traffic, the next rule to block all traffic with groups, and the last rule to allow incoming traffic only from remediation tools.

h Do not add any network introspection services and click Finish.

4 Move QuarantinePolicy to the top of the security policy table to ensure that it is enforced before all other policies.
   a Click the Manage Priority icon.
   b Select QuarantinePolicy and click the Move Up icon.

5 Create a security group for all desktops in your environment.
   a Log in to the vSphere Web Client.
   b Click Networking & Security and then click Service Composer.
   c Click the Security Groups tab and click the Add Security Group icon.
   d In Name, type DesktopSecurityGroup.
   e In Description, type All desktops.
   f Click Next on the next couple of pages.
   g Review your selections on the Ready to Complete page and click Finish.

6 Create a Quarantine security group where the infected virtual machines are to be placed.
   a Click the Security Groups tab and click the Add Security Group icon.
   b In Name, type QuarantineSecurityGroup.
   c In Description, type Dynamic group membership based on infected VMs identified by the antivirus scan.
   d On the Define membership Criteria page click ⚫ and add the following criteria.

   Members matching Any of the criteria below
   ⚫
   Security Tag ▼ Equals to ▼ Antivirus.virus Found

   e Do not do anything on the Select objects to include or Select objects to exclude pages and click Next.
   f Review your selections on the Ready to Complete page and click Finish.

7 Map the DesktopPolicy policy to the DesktopSecurityGroup security group.
   a On the Security Policies tab, ensure that the DesktopPolicy policy is selected.
   b Click the Apply Security Policy icon and select the SG_Desktops group.
   c Click OK.

   This mapping ensures that all desktops (part of the DesktopSecurityGroup) are scanned when an antivirus scan is triggered.
8 Navigate to the canvas view to confirm that QuarantineSecurityGroup does not include any virtual machines yet.
   a Click the Information Security tab.
   b Confirm that there are 0 virtual machines in the group.

9 Map QuarantinePolicy to QuarantineSecurityGroup.
   This mapping ensures that no traffic flows to the infected systems.

10 From the Symantec Antimalware console, trigger a scan on your network.
   The scan discovers infected virtual machine and tags them with the security tag AntiVirus.virusFound.
   The tagged virtual machines are instantly added to QuarantineSecurityGroup. The QuarantinePolicy allows no traffic to and from the infected systems.

**Backing up Security Configurations**

Service Composer can be very effectively used to back up your security configurations and restore them at a later time.

**Procedure**

1 Install, register, and deploy the Rapid 7 Vulnerability Management solution.

2 Create a security group for the first tier of the Share Point application - web servers.
   a Log in to the vSphere Web Client.
   b Click Networking & Security and then click Service Composer.
   c Click the Security Groups tab and click the Add Security Group icon.
   d In Name, type SG_Web.
   e In Description, type Security group for application tier.
   f Do not do anything on the Define membership Criteria page and click Next.
   g On the Select objects to include page, select the web server virtual machines.
   h Do not do anything on the Select objects to exclude page and click Next.
   i Review your selections on the Ready to Complete page and click Finish.

3 Now create a security group for your database and share point servers and name them SG_Database, and SG_Server_SharePoint respectively. Include the appropriate objects in each group.

4 Create a top level security group for your application tiers and name it SG_App_Group. Add SG_Web, SG_Database, and SG_Server_SharePoint to this group.

5 Create a security policy for your web servers.
   a Click the Security Policies tab and click the Add Security Policy icon.
   b In Name, type SP_App.
   c In Description, type SP for application web servers.
   d Change the weight to 50000. The policy precedence is set very high so as to ensure that it is enforced above most other policies (with the exception of quarantine).
   e Click Next.
On the Endpoint Services page, click + and fill in the following values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td>Service Type</td>
<td>Vulnerability Management</td>
</tr>
<tr>
<td>Service Name</td>
<td>Rapid 7</td>
</tr>
<tr>
<td>Service Configuration</td>
<td>Silver</td>
</tr>
<tr>
<td>State</td>
<td>Do not modify the default value</td>
</tr>
<tr>
<td>Enforce</td>
<td>Do not modify the default value</td>
</tr>
</tbody>
</table>

Do not add any firewall or network introspection services and click Finish.

6 Map SP_App to SG_App_Group.

7 Navigate to the canvas view to confirm that the SP_App has been mapped to SG_App_Group.
   a Click the Information Security tab.
   b Click the number next to the icon to see that the SP_App is mapped.

8 Export the SP_App policy.
   a Click the Security Policies tab and then click the Export Blueprint (icon).
   b In Name, type Template_App_ and in Prefix, type FromAppArchitect.
   c Click Next.
   d Select the SP_App policy and click Next.
   e Review your selections and click Finish.
   f Select the directory on your computer where you want to download the exported file and click Save.

The security policy as well as all the security groups to which this policy has been applied (in our case, the Application security group as well as the three security groups nested within it) are exported.

9 In order to demonstrate how the exported policy works, delete the SP_App policy.

10 Now we will restore the Template_App_DevTest policy that we exported in step 7.
   a Click Actions and then click the Import Service Configuration icon.
   b Select the FromAppArchitect_Template_App file from your desktop (you saved it in step 7).
   c Click Next.
   d The Ready to complete page displays the security policies along with associated objects (security groups on which these have been applied, as well as Endpoint services, firewall rules, and network introspection services) to be imported.
   e Click Finish.

The configuration and associated objects are imported to the vCenter inventory and are visible in the canvas view.
NSX Data Security provides visibility into sensitive data stored within your organization's virtualized and cloud environments. Based on the violations reported by NSX Data Security, you can ensure that sensitive data is adequately protected and assess compliance with regulations around the world.

To begin using NSX Data Security, you create a policy that defines the regulations that apply to data security in your organization and specifies the areas of your environment and files to be scanned. A regulation is composed of content blades, which identify the sensitive content to be detected. NSX supports PCI, PHI, and PII related regulations only.

When you start a Data Security scan, NSX analyzes the data on the virtual machines in your vSphere inventory and reports the number of violations detected and the files that violated your policy.

This chapter includes the following topics:

- “NSX Data Security User Roles,” on page 155
- “Defining a Data Security Policy,” on page 155
- “Running a Data Security Scan,” on page 157
- “Viewing and Downloading Reports,” on page 158
- “Creating Regular Expressions,” on page 158

### NSX Data Security User Roles

A user’s role determines the actions that the user can perform.

<table>
<thead>
<tr>
<th>Role</th>
<th>Actions Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Administrator</td>
<td>Create and publish policies and view violation reports. Cannot start or stop a data security scan.</td>
</tr>
<tr>
<td>NSX Administrator</td>
<td>Start and stop data security scans.</td>
</tr>
<tr>
<td>Auditor</td>
<td>View configured policies and violation reports.</td>
</tr>
</tbody>
</table>

### Defining a Data Security Policy

To detect sensitive data in your environment, you must create a data security policy. You must be a Security Administrator to create policies.

To define a policy, you must specify the following:

1. Regulations
A regulation is a data privacy law for protecting PCI (Payment Card Industry), PHI (Protected Health Information) and PII (Personally Identifiable Information) information. You can select the regulations that your company needs to comply to. When you run a scan, Data Security identifies data that violates the regulations in your policy and is sensitive for your organization.

2 File filters

You can create filters to limit the data being scanned and exclude file types unlikely to contain sensitive data from the scan.

## Select Regulations

After you select the regulations that you want your company data to comply with, NSX can identify files that contain information in violation of these regulations.

### Prerequisites

You must have the Security Administrator role.

### Procedure

1. Log in to the vSphere Web Client.
2. Click Networking and Security and then click Data Security.
3. Click the Manage tab.
4. Click Edit and click All to display all available regulations.
5. Select the regulations for which you want to detect compliance.

**Note** For information on available regulations, see Chapter 16, “Data Security Regulations,” on page 247.

6. Click Next.

7. Certain regulations require additional information for NSX Data Security to recognize sensitive data. If you selected a regulation that monitors Group Insurance Numbers, Patient Identification Numbers, Medical Record Numbers, Health Plan Beneficiary Numbers, US Bank Account Numbers, Custom Accounts, or Student identification numbers, specify a regular expression pattern for identifying that data.

**Note** Check the accuracy of the regular expression. Specifying incorrect regular expressions can slow down the discovery process. For more information on regular expressions, see “Creating Regular Expressions,” on page 158.

8. Click Finish.
9. Click Publish Changes to apply the policy.

## Specify File Filters

You can restrict the files that you want to monitor based on size, last modified date, or file extensions.

### Prerequisites

You must have been assigned the Security Administrator role.

### Procedure

1. In the Manage tab of the Data Security panel, click Edit next to Files to scan.
You can either monitor all files on the virtual machines in your inventory, or select the restrictions you want to apply.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor all files on the guest virtual machines</td>
<td>NSX Data Security scans all files.</td>
</tr>
<tr>
<td>Monitor only the files that match the following conditions</td>
<td>Select the following options as appropriate.</td>
</tr>
<tr>
<td>Size</td>
<td>Size indicates that NSX Data Security should only scan files less than the specified size.</td>
</tr>
<tr>
<td>Last Modified Date</td>
<td>Last Modified Date indicates that NSX Data Security should scan only files modified between the specified dates.</td>
</tr>
<tr>
<td>Types: Only files with the following extensions</td>
<td>Types: Select Only files with the following extensions to enter the file types to scan. Select All files, except those with extensions to enter the file types to exclude from the scan.</td>
</tr>
</tbody>
</table>

For information on file formats that NSX Data Security can detect, see Chapter 18, “File Formats Supported by Data Security,” on page 309.

3 Click Save.

4 Click Publish Changes to apply the policy.

Running a Data Security Scan

Running a data security scan identifies data in your virtual environment that violates your policy.

Prerequisites

You must be a NSX Administrator to start, pause, or stop a data security scan.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking and Security and then click Data Security.
3 Click the Manage tab.
4 Click Start next to Scanning.

Note: If a virtual machine is powered off, it will not be scanned until it is powered on.

If a scan is in progress, the available options are Pause and Stop.

If Data Security is part of a Service Composer policy, virtual machines in the security group mapped to that Service Composer policy are scanned once during a scan. If the policy is edited and published while a scan is running, the scan restarts. This rescan ensures that all virtual machines comply with the edited policy. A rescan is triggered by publishing an edited policy, not by data updates on your virtual machines.

If a virtual machine is moved to an excluded cluster or resource pool while the data security scan is in progress, the files on that virtual machine are not scanned. In case a virtual machine is moved by vMotion to another host, the scan continues on the second host. Files that were scanned while the virtual machine was on the previous host are not rescanned.

When the Data Security engine starts scanning a virtual machine, it records the scan start time. When the scan ends, it records the end of the scan. You can view the scan start and end time for a cluster, host, or virtual machine on the Tasks and Events tab.

NSX Data Security throttles the number of virtual machines concurrently scanned on a host to minimize impact on performance. VMware recommends that you pause the scan during normal business hours to avoid any performance overhead.
Viewing and Downloading Reports

When you start a security scan, NSX displays the start and end time of each scan, the number of virtual machines scanned, and the number of violations detected.

Prerequisites

You have the Security Administrator or Auditor role.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking and Security and then click Data Security.
3. Click the Reports tab.
4. Specify the report for Violation counts or for Violating files.

Creating Regular Expressions

A regular expression is a pattern that describes a certain sequence of text characters, otherwise known as strings. You use regular expressions to search for, or match, specific strings or classes of strings in a body of text.

Using a regular expression is like performing a wildcard search, but regular expressions are far more powerful. Regular expressions can be very simple or very complex. An example of a simple regular expression is `cat`. This finds the first instance of the letter sequence cat in any body of text that you apply it to. If you want to make sure it only finds the word `cat`, and not other strings like `cats` or `hepcat`, you could use this slightly more complex regular expression: `\bcat\b`.

This expression includes special characters that ensure a match occurs only if there are word breaks on both sides of the `cat` sequence. As another example, to perform a near equivalent to the typical wildcard search string `c+t`, you could use this regular expression: `\bc\w+t\b`.

This means find a word boundary (`\b`) followed by a `c`, followed by one or more non-whitespace characters, non-punctuation characters (`\w+`), followed by a `t`, followed by a word boundary (`\b`). This expression finds `cot`, `cat`, `croat`, but not `crate`.

Expressions can be very complex. The following expression finds any valid email address.

```
\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}\b
```

For more information on creating regular expressions, see http://userguide.icu-project.org/strings/regexp.
Network Extensibility

Datacenter networks typically involve a wide range of network services, including switching, routing, firewalling, load balancing, and so on. In most cases, these services are delivered by different vendors. In the physical world, connecting these services in the network is a complicated exercise of racking and stacking physical network devices, establishing physical connectivity, and managing these services separately. NSX simplifies the experience of connecting the right services in the right traffic paths and can help you build complex networks within a single ESX Server host or across multiple ESX server hosts for production, testing, or development purposes.

There are various deployment methods for inserting third party services into NSX.

This chapter includes the following topics:

- “Distributed Service Insertion,” on page 160
- “Edge-Based Service Insertion,” on page 160
- “Integrating Third Party Services,” on page 160
- “Consuming Vendor Services through Service Composer,” on page 160
- “Redirecting Traffic to a Vendor Solution through Logical Firewall,” on page 161
Distributed Service Insertion

In distributed service insertion, a single host has all service modules, kernel modules, and virtual machine implementations on a single physical machine. All components of the system interact with components within the physical host. This allows for faster module-to-module communication and compact deployment models. The same configuration can be replicated on physical systems in the network for scalability, while control and data plane traffic to and from the service modules to the vmkernel stay on the same physical system. During vMotion of the protected virtual machines, the partner security machine moves the virtual machine state from the source to the destination host.

Vendor solutions that make use of this type of service insertion include Intrusion Prevention Service (IPS)/Intrusion Detection Service (IDS), Firewall, Anti Virus, File Identity Monitoring (FIM), and Vulnerability Management.

Edge-Based Service Insertion

NSX Edge is deployed as a virtual machine in the Edge Services Cluster along with other network services. NSX Edge has the capability to redirect specific traffic to 3rd-party network services.

Vendor solutions that make use of this type of service insertion include ADC/Load Balancer devices.

Integrating Third Party Services

This is a generic high-level workflow for inserting a third-party service into the NSX platform.

Procedure

1. Register the third-party service with NSX Manager on the vendor's console.
   You need NSX login credentials to register the service. For more information, refer to the vendor documentation.

2. Deploy the service in NSX. See Deploy a Partner Service.
   Once deployed, the third-party service is displayed in the NSX Service Definitions window and is ready to be used. The procedure for using the service in NSX depends on the type of service inserted.
   For example, you can enable a host-based firewall service by creating a security policy in Service Composer or creating a firewall rule to redirect traffic to the service. See “Consuming Vendor Services through Service Composer,” on page 160 or “Redirecting Traffic to a Vendor Solution through Logical Firewall,” on page 161. For information on using an Edge based service, see “Using a Partner Load Balancer,” on page 161.

Consuming Vendor Services through Service Composer

Third-party vendor services include traffic redirection, load balancer, and guest security services such as data loss prevention, anti virus, and so on. Service Composer enables you to apply these services to a set of vCenter objects.

A security group is a set of vCenter objects such as clusters, virtual machines, vNICs, and logical switches. A security policy is a set of Guest Introspection services, firewall rules, and network introspection services.

When you map a security policy to a security group, redirection rules are created on the appropriate third-party vendor service profile. As traffic flows from virtual machines belonging to that security group, it is redirected to registered third-party vendor services that determine how to process that traffic. For more information on Service Composer, see “Using Service Composer,” on page 136.
Redirecting Traffic to a Vendor Solution through Logical Firewall

You can add firewall rules to redirect traffic to registered vendor solutions. Redirected traffic is then processed by the vendor service.

**Prerequisites**

- The third party service must be registered with NSX Manager, and the service must be deployed in NSX.
- If the default firewall rule action is set to Block, you must add a rule to allow the traffic to be redirected.

**Procedure**

1. In the vSphere Web Client, navigate to Networking & Security > Firewall.
2. Click the Partner security services tab.
3. In the section to which you want to add a rule, click the Add rule ( icon.
   A new any any allow rule is added at the top of the section.
4. Point to the Name cell of the new rule, click , and type a name for the rule.
5. Specify the Source, Destination, and Service for the rule. For more information, see “Add a Firewall Rule,” on page 62.
6. Point to the Action cell of the new rule, and click .
   a. In Action, select Redirect.
   b. In Redirect To, select the service profile and the logical switch or security group to which you want to bind the service profile.
      The service profile is applied to virtual machines connected to or contained in the selected logical switch or security group.
   c. Indicate whether the redirected traffic is to be logged and type comments, if any.
   d. Click OK.
      The selected service profile is displayed as a link in the Action column. Clicking the service profile link displays the service profile bindings.
7. Click Publish Changes.

Using a Partner Load Balancer

You can use a third-party load balancer to balance the traffic for a specific NSX Edge.

**Prerequisites**

The third-party load balancer must be registered with NSX Manager, and it must be deployed in NSX.

**Procedure**

1. In the vSphere Web Client, navigate to Networking & Security > NSX Edges.
2. Double-click an NSX Edge.
3. Click Manage and then click the Load Balancer tab.
4. Click Edit next to Load balancer global configuration.
5. Select Enable Load Balancer and Enable Service Insertion.
6 In **Service Definition**, select the appropriate partner load balancer.

7 In **Service Configuration**, select the appropriate service configuration.

8 Complete the remaining fields and set up the load balancer by adding a service monitor, server pool, application profile, application rules, and a virtual server. When adding a virtual server, select the template provided by the vendor. For more information, see “Set Up Load Balancing,” on page 115.

Traffic for the specified Edge is load balanced by the third party vendor’s management console.
User Management

In many organizations, networking and security operations are handled by different teams or members. Such organizations may require a way to limit certain operations to specific users. This topic describes the options provided by NSX to configure such access control.

NSX also supports Single Sign On (SSO), which enables NSX to authenticate users from other identity services such as Active Directory, NIS, and LDAP.

User management in the vSphere Web Client is separate from user management in the CLI of any NSX component.

This chapter includes the following topics:

- “Configure Single Sign On,” on page 163
- “Managing User Rights,” on page 165
- “Managing the Default User Account,” on page 166
- “Assign a Role to a vCenter User,” on page 166
- “Edit a User Account,” on page 168
- “Change a User Role,” on page 169
- “Disable or Enable a User Account,” on page 169
- “Delete a User Account,” on page 169

Configure Single Sign On

You can configure lookup service on the NSX Manager and provide the SSO administrator credentials to register NSX Management Service as an SSO user. Integrating the single sign on (SSO) service with NSX improves the security of user authentication for vCenter users and enables NSX to authenticate users from other identity services such as AD, NIS, and LDAP.

With SSO, NSX supports authentication using authenticated Security Assertion Markup Language (SAML) tokens from a trusted source via REST API calls. NSX Manager can also acquire authentication SAML tokens for use with other VMware solutions.

**Note** NSX caches group information for SSO users. Changes to group memberships will take up to 60 minutes to propagate from the identity provider (e.g. Active Directory) to NSX.

**Prerequisites**

- SSO service must be installed on the vCenter Server.
- NTP server must be specified so that the SSO server time and NSX Manager time is in sync.
For example:

**Procedure**

1. Log in to the NSX Manager virtual appliance.
   
   In a Web browser, navigate to the NSX Manager appliance GUI at https://<nsx-manager-ip> or https://<nsx-manager-hostname>, and log in as admin with the password that you configured during NSX Manager installation.

2. Click the Manage tab, then click **NSX Management Service**.

3. Type the name or IP address of the host that has the lookup service.
   
   If you are using vCenter to perform the lookup service, enter the vCenter Server’s IP address or hostname, and enter the vCenter Server user name and password.

4. Type the port number.
   
   Enter port 443 if you are using vSphere 6.0. For vSphere 5.5, use port number 7444.
   
   The Lookup Service URL is displayed based on the specified host and port.

   For example:

   ![Lookup Service](image)

5. Accept the self-signed certificate.
6 Confirm that the Lookup Service status is **Connected**.

For example:

![Lookup Service Status](image)

**What to do next**

Assign a role to the SSO user.

**Managing User Rights**

A user’s role defines the actions the user is allowed to perform on a given resource. The role determines the user’s authorized activities on the given resource, ensuring that a user has access only to the functions necessary to complete applicable operations. This allows domain control over specific resources, or system-wide control if your right has no restrictions.

The following rules are enforced:

- A user can have only one role.
- You cannot add a role to a user or remove an assigned role from a user. You can, however, change the assigned role for a user.

<table>
<thead>
<tr>
<th>Table 12-1. NSX Manager User Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
</tr>
<tr>
<td>Enterprise Administrator</td>
</tr>
<tr>
<td>NSX Administrator</td>
</tr>
<tr>
<td>Security Administrator</td>
</tr>
<tr>
<td>Auditor</td>
</tr>
</tbody>
</table>

The scope of a role determines what resources a particular user can view. The following scopes are available for NSX users.

<table>
<thead>
<tr>
<th>Table 12-2. NSX Manager User Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>No restriction</td>
</tr>
<tr>
<td>Limit access scope</td>
</tr>
</tbody>
</table>

The Enterprise Administrator and NSX Administrator roles can be assigned only to vCenter users, and their access scope is global (no restrictions).
Managing the Default User Account

The NSX Manager user interface includes a user account, which has access rights to all resources. You cannot edit the rights of or delete this user. The default user name is `admin` and the default password is `default` or the password you specified during NSX Manager installation.

You can manage NSX Manager appliance `admin` user only through CLI commands.

Assign a Role to a vCenter User

When you assign a role to an SSO user, vCenter authenticates the user with the identity service configured on the SSO server. If the SSO server is not configured or is not available, the user is authenticated either locally or with Active Directory based on vCenter configuration.

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click Users.
5. Click Add.
6. Click Specify a vCenter user or Specify a vCenter group.
7. Type the vCenter User or Group name for the user. Refer to the example below for more information.
   - Domain name: corp.vmware.com
   - Alias: corp
   - Group name: group1@corp.vmware.com
   - User name: user1@corp.vmware.com
   When assigning a role to a group, type the group name with the domain name. For example, group1@corp.vmware.com. This allows the default NSX Manager user (admin) as well as the SSO default user (admin) to login to NSX Manager. This user name is for logging in to the NSX Manager user interface, and cannot be used to access NSX Manager CLIs.
   - When assigning a role to a user, type the user alias. For example, user1@corp.
8. Click Next.
9. Select the role for the user and click Next. For more information on the available roles, see “Managing User Rights,” on page 165.
10. Select the scope for the user and click Finish.
   
   The user account appears in the Users table.

Understanding Group-Based Role Assignments

Organizations create user groups for proper user management. After integration with SSO, NSX Manager can get the details of groups to which a user belongs. Instead of assigning roles to individual users who may belong to the same group, NSX Manager assigns roles to groups. The following scenarios illustrate how NSX Manager assigns roles.
Example: Role-Based Access Control Scenario

This scenario provides an IT network engineer (Sally Moore) access to NSX components in the following environment.

AD domain: corp.local, vCenter group: neteng@corp.local, user name: smoore@corp.local

Prerequisites: vCenter Server has been registered with NSX Manager, and SSO has been configured.

1 Assign a role to Sally.
   a Log in to the vSphere Web Client.
   b Click Networking & Security and then click NSX Managers.
   c Click an NSX Manager in the Name column and then click the Manage tab.
   d Click Users and then click Add.
      The Assign Role window opens.
   e Click Specify a vCenter group and type neteng@corp.local in Group.
   f Click Next.
   g In Select Roles, click NSX Administrator and then click Next.
   h In Limit Scope, select No restriction and click Finish.

2 Grant Sally permission to the datacenter.
   a Click the Home icon and then click vCenter Home > Datacenters.
   b Select a datacenter and click Actions > All vCenter Actions > Add Permission.
   c Click Add and select the domain CORP.
   d In Users and Groups, select Show Groups First.
   e Select NetEng and click OK.
   f In Assigned Role, select Read-only and un-select Propagate to children and click OK.

3 Log out of vSphere Web Client and log back in as smoore@corp.local.
   Sally can perform NSX operations only. For example, install virtual appliances, create logical switches, and so on.

Example: Inherit Permissions Through a User-Group Membership Scenario

<table>
<thead>
<tr>
<th>Group option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Auditor (Read only)</td>
</tr>
<tr>
<td>Resources</td>
<td>Global root</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>John</td>
</tr>
<tr>
<td>Belongs to group</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>None</td>
</tr>
</tbody>
</table>

John belongs to group G1, which has been assigned the auditor role. John inherits the group role and resource permissions.
Example: User Member of Multiple Groups Scenario

<table>
<thead>
<tr>
<th>Group option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Auditor (Read only)</td>
</tr>
<tr>
<td>Resources</td>
<td>Global root</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>G2</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Security Administrator (Read and Write)</td>
</tr>
<tr>
<td>Resources</td>
<td>Datacenter1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Joseph</td>
</tr>
<tr>
<td>Belongs to group</td>
<td>G1, G2</td>
</tr>
<tr>
<td>Role assigned</td>
<td>None</td>
</tr>
</tbody>
</table>

Joseph belongs to groups G1 and G2 and inherits a combination of the rights and permissions of the Auditor and Security Administrator roles. For example, John has the following permissions:

- Read, write (Security Administrator role) for Datacenter1
- Read only (Auditor) for global root

Example: User Member of Multiple Roles Scenario

<table>
<thead>
<tr>
<th>Group option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Enterprise Administrator</td>
</tr>
<tr>
<td>Resources</td>
<td>Global root</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Bob</td>
</tr>
<tr>
<td>Belongs to group</td>
<td>G1</td>
</tr>
<tr>
<td>Role assigned</td>
<td>Security Administrator (Read and Write)</td>
</tr>
<tr>
<td>Resources</td>
<td>Datacenter1</td>
</tr>
</tbody>
</table>

Bob has been assigned the Security Administrator role, so he does not inherit the group role permissions. Bob has the following permissions:

- Read, write (Security Administrator role) for Datacenter1 and its child resources
- Enterprise Administrator role on Datacenter1

Edit a User Account

You can edit a user account to change the role or scope. You cannot edit the admin account.

Procedure

1. Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click Users.
5 Select the user you want to edit.
6 Click Edit.
7 Make changes as necessary.
8 Click Finish to save your changes.

Change a User Role
You can change the role assignment for all users, except for the admin user.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click Users.
5 Select the user you want to change the role for.
6 Click Change Role.
7 Make changes as necessary.
8 Click Finish to save your changes.

Disable or Enable a User Account
You can disable a user account to prevent that user from logging in to the NSX Manager. You cannot disable the admin user or a user who is currently logged into the NSX Manager.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click Users.
5 Select a user account.
6 Click the Enable or Disable icon.

Delete a User Account
You can delete any created user account. You cannot delete the admin account. Audit records for deleted users are maintained in the database and can be referenced in an Audit Log report.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click **Users**.

5 Select a user account.

6 Click **Delete**.

7 Click **OK** to confirm deletion.

If you delete a vCenter user account, only the role assignment for NSX Manager is deleted. The user account on vCenter is not deleted.
This section describes custom network and security containers.

This chapter includes the following topics:

- “Working with IP Address Groups,” on page 171
- “Working with MAC Address Groups,” on page 172
- “Working with IP Pools,” on page 173
- “Working with Security Groups,” on page 174
- “Working with Services and Service Groups,” on page 176

Working with IP Address Groups

Create an IP Address Group

You can create an IP address group and then add this group as the source or destination in a firewall rule. Such a rule can help protect physical machines from virtual machines or vice versa.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click IP Sets.
5. Click the Add (+) icon and select IP Addresses.
   The Add IP Addresses window opens.
6. Type a name for the address group.
7. (Optional) Type a description for the address group.
8. Type the IP addresses to be included in the group.
9. Click OK.
Edit an IP Address Group

Prerequisites

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click the Grouping Objects tab and then click IP Sets.
5 Select the group that you want to edit and click the Edit (✓) icon.
6 In the Edit IP Addresses dialog box, make the appropriate changes.
7 Click OK.

Delete an IP Address Group

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click the Grouping Objects tab and then click IP Sets.
5 Select the group that you want to delete and click the Delete (✗) icon.

Working with MAC Address Groups

Create a MAC Address Group

You can create a MAC address group consisting of a range of MAC addresses and then add this group as the source or destination in a Distributed Firewall rule. Such a rule can help protect physical machines from virtual machines or vice versa.

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click the Grouping Objects tab and then click MAC Sets.
4 Type a name for the address group.
5 (Optional) Type a description for the address group.
6 Type the MAC addresses to be included in the group.
7 Click OK.

Edit a MAC Address Group

Procedure

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click the Grouping Objects tab and then click MAC Sets.
5 Select the group that you want to edit and click the Edit (✔) icon.
6 In the Edit MAC Addresses dialog box, make the appropriate changes.
7 Click OK.

Delete a MAC Address Group

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click the Grouping Objects tab and then click MAC Sets.
5 Select the group that you want to delete and click the Delete (✗) icon.

Working with IP Pools

You can edit or delete an IP pool.

For information on adding an IP pool, see “Configure Network Access SSL VPN-Plus,” on page 84 or “Configure Web Access SSL VPN-Plus,” on page 92.

Create an IP Pool

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Click the Grouping Objects tab and then click IP Pool.
5 Click the Add New IP Pool icon.
6 Type a name for the IP pool and type the default gateway.
7 Type the primary and secondary DNS and the DNS suffix and the prefix length.
8 Type the IP address ranges to be included in the pool and click OK.

Edit an IP Pool

You can edit an IP pool.

Procedure
1 In the SSL VPN-Plus tab, click IP Pool in the left panel.
2 Select the IP pool that you want to edit.
3 Click the **Edit** icon.

The Edit IP Pool dialog box opens.

4 Make the required edits.

5 Click **OK**.

### Delete IP Pool

**Procedure**

1 Log in to the vSphere Web Client.

2 Click **Networking & Security** and then click **NSX Managers**.

3 Click an NSX Manager in the **Name** column and then click the **Manage** tab.

4 Click the **Grouping Objects** tab and then click **IP Pool**.

5 Select the IP pool that you want to delete and click the **Delete** icon.

### Working with Security Groups

A security group is a collection of assets or grouping objects from your vSphere inventory.

**Create a Security Group**

You create a security group at the NSX Manager level.

**Prerequisites**

If you are creating a security group based on Active Directory group objects, ensure that one or more domains have been registered with NSX Manager. NSX Manager gets group and user information as well as the relationship between them from each domain that it is registered with. See “Register a Windows Domain with NSX Manager,” on page 186.

**Procedure**

1 Log in to the vSphere Web Client.

2 Click **Networking & Security** and then click **NSX Managers**.

3 Click the **Security Group** tab and then click the **Add Security Group** icon.

4 Type a name and optionally a description for the security group.

5 (Optional) If you need to create a universal security group, select **Mark this object for universal synchronization**.

6 Click **Next**.

7 On the Dynamic Membership page, define the criteria that an object must meet for it to be added to the security group you are creating. This gives you the ability to include virtual machines by defining a filter criteria with a number of parameters supported to match the search criteria.

   **NOTE** If you are creating a universal security group, the Define dynamic membership step is not available.

   For example, you may include a criterion to add all virtual machines tagged with the specified security tag (such as AntiVirus.virusFound) to the security group. Security tags are case sensitive.

   Or you can add all virtual machines containing the name **W2008** and virtual machines that are in the logical switch **global_wire** to the security group.
8 Click Next.

9 On the Select objects to include page, select the tab for the resource you want to add and select one or more resources to add to the security group. You can include the following objects in a security group.

Table 13-1. Objects that can be included in security groups and universal security groups.

<table>
<thead>
<tr>
<th>Security Group</th>
<th>Universal Security Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other security groups to nest within the security group you are creating.</td>
<td>Other universal security groups to nest within the universal security group you are creating.</td>
</tr>
<tr>
<td>Cluster</td>
<td>Universal IP sets</td>
</tr>
<tr>
<td>Logical Switch</td>
<td>Universal MAC sets</td>
</tr>
<tr>
<td>Network</td>
<td></td>
</tr>
<tr>
<td>Virtual App</td>
<td></td>
</tr>
<tr>
<td>Datacenter</td>
<td></td>
</tr>
<tr>
<td>IP sets</td>
<td></td>
</tr>
<tr>
<td>Directory groups</td>
<td></td>
</tr>
<tr>
<td>Note: The AD configuration for NSX security groups is different from the AD configuration for vSphere SSO. NSX AD group configuration is for end users accessing guest virtual machines, while vSphere SSO is for administrators using vSphere and NSX.</td>
<td></td>
</tr>
<tr>
<td>MAC Sets</td>
<td></td>
</tr>
<tr>
<td>Security tag</td>
<td></td>
</tr>
<tr>
<td>vNIC</td>
<td></td>
</tr>
<tr>
<td>Virtual Machine</td>
<td></td>
</tr>
<tr>
<td>Resource Pool</td>
<td></td>
</tr>
<tr>
<td>Distributed Virtual Port Group</td>
<td></td>
</tr>
</tbody>
</table>

The objects selected here are always included in the security group regardless of whether or not they match the criteria in Step 7.

When you add a resource to a security group, all associated resources are automatically added. For example, when you select a virtual machine, the associated vNIC is automatically added to the security group.

10 Click Next and select the objects that you want to exclude from the security group.

**Note** If you are creating a universal security group, the Select objects to exclude step is not available.

The objects selected here are always excluded from the security group regardless of whether or not they match the dynamic criteria.

11 Click Finish.

Membership of a security group is determined as follows:

\[ \text{Expression result (derived from Step 7) + Inclusions (specified in Step 9) - Exclusion (specified in Step 10)} \]

This means that inclusion items are first added to the expression result. Exclusion items are then subtracted from the combined result.
Edit a Security Group

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click Security Group.
5. Select the group that you want to edit and click the Edit ( modifier) icon.
6. In the Edit Security Group dialog box, make the appropriate changes.
7. Click OK.

Delete a Security Group

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click Security Group.
5. Select the group that you want to delete and click the Delete ( modifier) icon.

Working with Services and Service Groups

A service is a protocol-port combination, and a service group is a group of services or other service groups.

Create a Service

You can create a service and then define rules for that service.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click Service.
5. Click the Add icon.
6. Type a Name to identify the service.
7. Type a Description for the service.
8. Select a Protocol to which you want to add a non-standard port.
9. Type the port number(s) in Ports.
10. Click OK.

The service appears in the Services table.
Create a Service Group

You can create a service group and then define rules for that service group.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click Service Groups.
5. Click Service Groups.
6. Click the Add icon.
7. Type a Name to identify the service group.
8. Type a Description for the service.
9. In Members, select the services or service groups that you want to the group.
10. Click OK.

Edit a Service or Service Group

You can edit services and service groups.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click Service or Service Groups.
5. Select a custom service or service group and click the Edit (-pencil) icon.
6. Make the appropriate changes.
7. Click OK.

Delete a Service or Service Group

You can delete services or service group.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Grouping Objects tab and then click Service or Service Groups.
5. Select a custom service or service group and click the Delete (x) icon.
6. Click Yes.
   The service or service group is deleted.
This section describes

This chapter includes the following topics:

- “System Events and Audit Logs,” on page 179
- “Management System Settings,” on page 183
- “Working with Active Directory Domains,” on page 186
- “NSX Edge Operations,” on page 188
- “Backup and Restore,” on page 200
- “Flow Monitoring,” on page 204
- “Activity Monitoring,” on page 210
- “Guest Introspection Events and Alarms,” on page 223

System Events and Audit Logs

System events are events that are related to NSX operations. They are raised to detail every operational event. Events might relate to basic operation (Informational) or to a critical error (Critical).

With the NSX ticket logger feature, you can track the changes you make with a ticket ID. Audit logs for operations tracked by a ticket will include the ticket ID.

About NSX Logs

This section describes how you can configure the syslog server and view technical support logs for each NSX component. Management plane logs are available through NSX Manager and data plane logs are available through vCenter Server. Hence, it is recommended that you specify the same syslog server for the NSX component and vCenter Server in order to get a complete picture when viewing logs on the syslog server.

For information on configuring syslog for hosts managed by a vCenter Server, see VMware vSphere ESXi and vCenter Server 5.5 Documentation.

NSX Manager

To specify a syslog server, see “Specify Syslog Server,” on page 183.

To download technical support logs, see “Download Technical Support Logs for NSX,” on page 185.
NSX Edge

To specify a syslog server, see “Configure Remote Syslog Servers,” on page 198.

To download technical support logs, see “Download Tech Support Logs for NSX Edge,” on page 199.

Firewall

You must configure the remote syslog server for each cluster that has firewall enabled. The remote syslog server is specified in the Syslog.global.logHost attribute. See ESXi and vCenter Server 5.5 Documentation.

Here is a sample line from a host log file.

2013-10-02T05:41:12.670Z cpu11:1000046503)vsip_pkt: INET, match, PASS, Rule 0/3, Ruleset domain-c7, Rule ID 100, OUT, Len 60, SRC 10.24.106.96, DST 10.24.106.52, TCP SPORT 59692, DPORT 22 S

which consists of three parts:

Table 14-1. Components of log file entry

<table>
<thead>
<tr>
<th>Value in example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMKernel common log portion consists of date, time, CPU, and WorldID</td>
</tr>
<tr>
<td>vsip_pkt</td>
</tr>
</tbody>
</table>

Table 14-2. Firewall specific portion of log file entry

<table>
<thead>
<tr>
<th>Entity</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF Value</td>
<td>INET, INET6</td>
</tr>
<tr>
<td>Reason</td>
<td>Possible values: match, bad-offset, fragment, short, normalize, memory, bad-timestamp, congestion, ip-option, proto-cksum, state-mismatch, state-insert, state-limit, src-limit, synproxy, spoofguard</td>
</tr>
<tr>
<td>Action</td>
<td>PASS, DROP, SCRUB, NOSCRUB, NAT, NONAT, BINAT, NOBINAT, RDR, NORDR, SYNPYROXY_DROP, PUNT, REDIRECT, COPY</td>
</tr>
<tr>
<td>Rule identifier</td>
<td>Identifier</td>
</tr>
<tr>
<td>Rule value</td>
<td>Ruleset ID and Rule position (Internal details)</td>
</tr>
<tr>
<td>Rule set identifier</td>
<td>Identifier</td>
</tr>
<tr>
<td>Rule set value</td>
<td>Ruleset name</td>
</tr>
<tr>
<td>Rule ID identifier</td>
<td>Identifier</td>
</tr>
<tr>
<td>Rule ID</td>
<td>ID matched</td>
</tr>
<tr>
<td>Direction</td>
<td>ROUT, IN</td>
</tr>
<tr>
<td>Length identifier</td>
<td>Len followed by variable</td>
</tr>
<tr>
<td>Length value</td>
<td>Packet length</td>
</tr>
<tr>
<td>Source identifier</td>
<td>SRC</td>
</tr>
<tr>
<td>Source IP address</td>
<td>IP address</td>
</tr>
<tr>
<td>Destination identifier</td>
<td>IP address</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP, UDP, PROTO</td>
</tr>
<tr>
<td>Source port identifier</td>
<td>SPORT</td>
</tr>
<tr>
<td>Source port</td>
<td>Source port number for TDP and UDP</td>
</tr>
</tbody>
</table>
Table 14-2. Firewall specific portion of log file entry (Continued)

<table>
<thead>
<tr>
<th>Entity</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source port identifier</td>
<td>Destination port identifier</td>
</tr>
<tr>
<td>Destination port</td>
<td>Destination port number for TDP and UDP</td>
</tr>
<tr>
<td>Flag</td>
<td>Flag for TCP</td>
</tr>
</tbody>
</table>

**Using NSX Ticket Logger**

The NSX Ticket Logger allows you to track the infrastructure changes that you make. All operations are tagged with the specified ticket ID, and audit logs for these operations include the ticket ID. Log files for these operations are tagged with the same ticket ID.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then click the **Manage** tab.
3. Click **Edit** next to **NSX Ticket Logger Settings**.
4. Type a ticket ID and click **Turn On**.

The NSX Ticket Logging pane is displayed at the right side of the vSphere Web Client window. Audit logs for the operations that you perform in the current UI session include the ticket ID in the **Operation Tags** column.

**Figure 14-1. NSX Ticket Logger pane**

If multiple vCenter Servers are being managed by the vSphere Web Client, the ticket ID is used for logging on all applicable NSX Managers.

**What to do next**

Ticket logging is session based. If ticket logging is on and you log out or if the session is lost, ticket logging will be turned off by default when you re-login to the UI. When you complete the operations for a ticket, you turn logging off by repeating steps 2 and 3 and clicking **Turn Off**.

**View the System Event Report**

NSX Manager aggregates system events into a report.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click Network & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Monitor tab.
4. Click the System Events tab.
5. To sort events, click or next to the appropriate column header.

**NSX Manager Virtual Appliance Events**

The following events are specific to the NSX Manager virtual appliance.

<table>
<thead>
<tr>
<th>Power Off</th>
<th>Power On</th>
<th>Interface Down</th>
<th>Interface Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local CLI</td>
<td>Run show log follow command.</td>
<td>Run show log follow command.</td>
<td>Run show log follow command.</td>
</tr>
<tr>
<td>GUI</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU</th>
<th>Memory</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local CLI</td>
<td>Run show process monitor command.</td>
<td>Run show system memory command.</td>
</tr>
<tr>
<td>GUI</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

**About the Syslog Format**

The system event message logged in the syslog has the following structure.

- syslog header (timestamp + hostname + sysmgr/)
- Timestamp (from the service)
- Name/value pairs
  - Name and value separated by delimiter '::' (double colons)
  - Each name/value pair separated by delimiter ';;' (double semi-colons)

The fields and types of the system event contain the following information.

- Event ID :: 32 bit unsigned integer
- Timestamp :: 32 bit unsigned integer
- Application Name :: string
- Application Submodule :: string
- Application Profile :: string
- Event Code :: integer (possible values: 10007 10016 10043 20019)
- Severity :: string (possible values: INFORMATION LOW MEDIUM HIGH CRITICAL)
- Message ::

**View the Audit Log**

The Audit Log tab provides a view into the actions performed by all NSX Manager users. The NSX Manager retains up to 1,000,000 audit logs.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. In the Name column, click an NSX server and then click the Monitor tab.
4 Click the Audit Logs tab.

5 When details are available for an audit log, the text in the Operation column for that log is clickable. To view details of an audit log, click the text in the Operation column.

6 In the Audit Log Change Details, select Changed Rows to display only those properties whose values have changed for this audit log operation.

Management System Settings

You can edit the vCenter Server, DNS and NTP server, and Lookup server that you specified during initial login. NSX Manager requires communication with your vCenter Server and services such as DNS and NTP to provide details on your VMware Infrastructure inventory.

Log In to the NSX Manager Virtual Appliance

After you have installed and configured the NSX Manager virtual machine, log in to the NSX Manager virtual appliance to review the settings specified during installation.

Procedure

1 Open a Web browser window and type the IP address assigned to the NSX Manager. For example, https://11.111.11.11.

   The NSX Manager user interface opens in a web browser window using SSL.

2 Accept the security certificate.

   **NOTE** You can use an SSL certificate for authentication. Refer to the NSX Administration Guide.

   The NSX Manager login screen appears.

3 Log in to the NSX Manager virtual appliance by using the user name admin and the password you set during installation. If you had not set a password during installation, type default as the password.

4 Click Log In.

Edit the NSX Manager Date and Time

You can change the NTP server specified during initial login.

Procedure

1 Log in to the NSX Manager virtual appliance.

2 Under Appliance Management, click Manage Appliance Settings.

3 Click Edit next to Time Settings.

4 Make the appropriate changes.

5 Click OK.

6 Reboot the NSX Manager.

Specify Syslog Server

If you specify a syslog server, NSX Manager sends all audit logs and system events from NSX Manager to the syslog server.

Procedure

1 Log in to the NSX Manager virtual appliance.
2 Under **Appliance Management**, click **Manage Appliance Settings**.
3 From the Settings panel, click **General**.
4 Click **Edit** next to **Syslog Server**.
5 Type the IP address of the syslog server.
6 Type the port and protocol for the syslog server.
   - If you do not specify a port, the default UDP port for the IP address/host name of the syslog server is used.
7 Click **OK**.

**Edit DNS Servers**

You can change the DNS servers specified during Manager installation.

**Procedure**
1 Log in to the NSX Manager virtual appliance.
2 Under **Appliance Management**, click **Manage Appliance Settings**.
3 From the Settings panel, click **Network**.
4 Click **Edit** next to **DNS Servers**.
5 Make the appropriate changes.
6 Click **OK**.

**Edit Lookup Service Details**

You can change the Lookup Service details specified during initial login.

**Procedure**
1 Log in to the NSX Manager virtual appliance.
2 Under **Appliance Management**, click **Manage Appliance Settings**.
3 From the Settings panel, click **NSX Management Service**.
4 Click **Edit** next to **Lookup Service**.
5 Make the appropriate changes.
6 Click **OK**.

**Edit vCenter Server**

You can change the vCenter Server with which you registered NSX Manager during installation. You should do this only if you change the IP address of your current vCenter Server.

**Procedure**
1 If you are logged in to the vSphere Web Client, log out.
2 Log in to the NSX Manager virtual appliance.
3 Under **Appliance Management**, click **Manage Appliance Settings**.
4 From the Settings panel, click **NSX Management Service**.
5 Click **Edit** next to **vCenter Server**.
6. Make the appropriate changes.
7. Click OK.

**Download Technical Support Logs for NSX**

You can download NSX Manager system logs and Web Manager logs to your desktop.

**Procedure**

1. Log in to the NSX Manager virtual appliance.
2. Under Appliance Management, click **Manage Appliance Settings**.
3. Click ![Settings icon](image) and then click **Download Tech Support Log**.
4. Click **Download**.
5. After the log is ready, click the **Save** to download the log to your desktop.
   - The log is compressed and has the file extension `.gz`.

**What to do next**

You can open the log using a decompression utility by browsing for **All Files** in the directory where you saved the file.

**Add an SSL Certificate to Identify the NSX Manager Web Service**

You can generate a certificate signing request, get it signed by a CA, and import the signed SSL certificate into NSX Manager to authenticate the identity of the NSX Manager web service and encrypt information sent to the NSX Manager web server. As a security best practice, you should use the generate certificate option to generate a private key and public key, where the private key is saved to the NSX Manager.

**Procedure**

1. Log in to the NSX Manager virtual appliance.
2. Under **Appliance Management**, click **Manage Settings**.
3. From the Settings panel, click **SSL Certificate**.
4. Under **Generate Certificate Signing Request**, complete the form by filling in the following fields:

| Option                  | Action                                                                 
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Size</td>
<td>Select the key length used in the selected algorithm.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Type the IP address or fully qualified domain name (FQDN) of the NSX Manager. VMware recommends that you enter the FQDN.</td>
</tr>
<tr>
<td>Organization Unit</td>
<td>Enter the department in your company that is ordering the certificate.</td>
</tr>
<tr>
<td>Organization Name</td>
<td>Enter the full legal name of your company.</td>
</tr>
<tr>
<td>City Name</td>
<td>Enter the full name of the city in which your company resides.</td>
</tr>
<tr>
<td>State Name</td>
<td>Enter the full name of the state in which your company resides.</td>
</tr>
<tr>
<td>Country Code</td>
<td>Enter the two-digit code that represents your country. For example, the United States is <strong>US</strong>.</td>
</tr>
</tbody>
</table>
5. Click **OK**.
Import an SSL certificate

You can import a pre-existing or CA signed SSL certificate for use by the NSX Manager.

Procedure

1. Log in to the NSX Manager virtual appliance.
2. Under Appliance Management, click Manage Settings.
3. From the Settings panel, click SSL Certificates and then click Import.
4. Click Browse to locate the file.
5. Click Import.
   A yellow bar containing the message Successfully imported certificate is displayed at the top of the screen.
6. Click Apply Certificate.
   NSX Manager is restarted to apply the certificate.

The certificate is stored in NSX Manager.

Working with Active Directory Domains

You can register one or more Windows domains with an NSX Manager and associated vCenter server. NSX Manager gets group and user information as well as the relationship between them from each domain that it is registered with. NSX Manager also retrieves Active Directory (AD) credentials.

Once NSX Manager retrieves AD credentials, you can create security groups based on user identity, create identity-based firewall rules, and run Activity Monitoring reports.

Register a Windows Domain with NSX Manager

Prerequisites

The domain account must have AD read permission for all objects in the domain tree. The event log reader account must have read permissions for security event logs.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Managers.
3. Click an NSX Manager in the Name column and then click the Manage tab.
4. Click the Domain tab and then click the Add domain (.addButton) icon.
5. In the Add Domain dialog box, enter the fully qualified domain name (for example, eng.vmware.com) and netBIOS name for the domain.
   To retrieve the netBIOS name for your domain, type nbstat -n in a command window on a Windows workstation that is part of a domain or on a domain controller. In the NetBIOS Local Name Table, the entry with a <00> prefix and type Group is the netBIOS name.
6. Click Next.
7. In the LDAP Options page, specify the domain controller that the domain is to be synchronized with and select the protocol.
8 Edit the port number if required.

9 Enter the user credentials for the domain account. This user must be able to access the directory tree structure.

10 Click Next.

11 In the Security Event Log Access page, select the connection method to access security event logs on the specified LDAP server. Change the port number if required.

12 Select Use Domain Credentials to use the LDAP server user credentials. To specify an alternate domain account for log access, un-select Use Domain Credentials and specify the user name and password. The specified account must be able to read the security event logs on the Domain Controller specified in step 10.

13 Click Next.

14 In the Ready to Complete page, review the settings you entered.

15 Click Finish.

The domain is created and its settings are displayed below the domain list.

**What to do next**

Verify that login events on the event log server are enabled.

You can add, edit, delete, enable, or disable LDAP servers by selecting the LDAP Servers tab in the panel below the domain list. You can perform the same tasks for event log servers by selecting the Event Log Servers tab in the panel below the domain list. Adding more than one Windows server (Domain Controllers, Exchange servers, or File Servers) as an event log server improves the user identity association.

**Synchronize a Windows Domain with Active Directory**

By default, all registered domains are automatically synchronized with Active Directory every 3 hours. You can also synchronize on demand.

**Procedure**

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click NSX Managers.

3 Click an NSX Manager in the Name column and then click the Manage tab.

4 Select the domain to be synchronized.

5 Click one of the following.

<table>
<thead>
<tr>
<th>Click</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Δ]</td>
<td>Perform a delta synchronization, where local AD objects that changed since the last synchronization event are updated</td>
</tr>
<tr>
<td>![Δ]</td>
<td>Perform a full synchronization, where the local state of all AD objects is updated</td>
</tr>
</tbody>
</table>

**Edit a Windows Domain**

You can edit the name, netBIOS name, primary LDAP server, and account credentials of a domain.

**Procedure**

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Managers.
3 Click an NSX Manager in the Name column and then click the Manage tab.
4 Select a domain and then click the Edit domain icon.
5 Make the desired changes and click Finish.

NSX Edge Operations

If you installed a working NSX Edge (i.e. added one or more appliances and interfaces, and configured the default gateway, firewall policy, and high availability), you can begin using NSX Edge services.

If you did not do one or more of the above tasks and the NSX Edge is not deployed, you may need to follow some of the instructions in this topic before you can use NSX Edge services.

Working with Certificates

NSX Edge supports self-signed certificates, certificates signed by a Certification Authority (CA), and certificates generated and signed by a CA.

Configure a CA Signed Certificate

You can generate a CSR and get it signed by a CA. If you generate a CSR at the global level, it is available to all NSX Edges in your inventory.

Procedure

1 Do one of the following.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| To generate a global certificate | a Log in to the NSX Manager Virtual Appliance.  
b Click the Manage tab and then click SSL Certificates.  
c Click Generate CSR. |
| To generate a certificate for an NSX Edge | a Log in to the vSphere Web Client.  
b Click Networking & Security and then click Edge Services.  
c Double-click an NSX Edge.  
d Click the Manage tab and then click Settings.  
e Click the Certificates link.  
f Click Actions and select Generate CSR. |

2 Type your organization unit and name.
3 Type the locality, street, state, and country of your organization.
4 Select the encryption algorithm for communication between the hosts.
   Note that SSL VPN-Plus only supports RSA certificates.
5 Edit the default key size if required.
6 For a global certificate, type a description for the certificate.
7 Click OK.
   The CSR is generated and displayed in the Certificates list.
8 Have an online Certification Authority sign this CSR.
9 Import the signed certificate.
   a Copy the contents of the signed certificate.
   b Do one of the following.
      - To import a signed certificate at the global level, click **Import** in the NSX Manager Virtual Appliance.
      - To import a signed certificate for an NSX Edge, click **Actions** and select **Import Certificate** in the **Certificates** tab.
   c In the Import CSR dialog box, paste the contents of the signed certificate.
   d Click **OK**.
   The CA signed certificate appears in the certificates list.

**Add a CA Certificate**

By adding a CA certificate, you can become an interim CA for your company. You then have the authority for signing your own certificates.

**Procedure**

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click an NSX Edge.
4 Click the **Manage** tab and then ensure that you are in the **Settings** tab.
5 Click **Certificates**.
6 Click the **Add** icon and select **CA Certificate**.
7 Copy and paste the certificate contents in the Certificate contents text box.
8 Type a description for the CA certificate.
9 Click **OK**.
   You can now sign your own certificates.

**Configure a Self-Signed Certificate**

You can create, install, and manage self-signed server certificates.

**Prerequisites**

Verify that you have a CA certificate so that you can sign your own certificates.

**Procedure**

1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click an NSX Edge.
4 Click the **Manage** tab and then ensure that you are in the **Settings** tab.
5 Click **Certificates**.
6 Follow the steps below to generate a CSR.
   a Click Actions and select Generate CSR.
   b In Common name, type the IP address or fully qualified domain name (FQDN) of the NSX Manager.
   c Type your organization name and unit.
   d Type the locality, street, state, and country of your organization.
   e Select the encryption algorithm for communication between the hosts.
      Note that SSL VPN-Plus only supports RSA certificates. VMware recommends RSA for backward compatibility.
   f Edit the default key size if required.
   g Type a description for the certificate.
   h Click OK.
      The CSR is generated and displayed in the Certificates list.
7 Verify that the certificate you generated is selected.
8 Click Actions and select Self Sign Certificate.
9 Type the number of days the self sign certificate is valid for.
10 Click OK.

Using Client Certificates
You can create a client certificate through a CAI command or REST call. You can then distribute this certificate to your remote users, who can install the certificate on their web browser.

The main benefit of implementing client certificates is that a reference client certificate for each remote user can be stored and checked against the client certificate presented by the remote user. To prevent future connections from a certain user, you can delete the reference certificate from the security server’s list of client certificates. Deleting the certificate denies connections from that user.

Add a Certificate Revocation List
A Certificate Revocation List (CRL) is a list of subscribers and their status, which is provided and signed by Microsoft.

The list contains the following items:

- The revoked certificates and the reasons for revocation
- The dates that the certificates are issued
- The entities that issued the certificates
- A proposed date for the next release

When a potential user attempts to access a server, the server allows or denies access based on the CRL entry for that particular user.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Manage tab and then ensure that you are in the Settings tab.
5 Click Certificates.

6 Click the Add (➕) icon and select CRL.

7 In Certificate contents, paste the list.

8 (Optional) Type a description.

9 Click OK.

Managing Appliances
You can add, edit, or delete appliances. An NSX Edge instance remains offline till at least one appliance has been added to it.

Add an Appliance
You must add at least one appliance to NSX Edge before deploying it.

Procedure
1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click NSX Edges.

3 Double-click an NSX Edge.

4 Click the Manage tab and then click the Settings tab.

5 In Edge Gateway Appliances, click the Add (➕) icon.

6 Select the cluster or resource pool and datastore for the appliance.

7 (Optional) Select the host on which the appliance is to be added.

8 (Optional) Select the vCenter folder within which the appliance is to be added.

9 Click Add.

Edit an Appliance
You can edit a NSX Edge appliance.

Procedure
1 Log in to the vSphere Web Client.

2 Click Networking & Security and then click NSX Edges.

3 Double-click an NSX Edge.

4 Click the Manage tab and then click the Settings tab.

5 In Edge Gateway Appliances, select the appliance to change.

6 Click the Edit (✍️) icon.

7 In the Edit Edge Appliance dialog box, make the appropriate changes.

8 Click Save.
Delete an Appliance
You can delete an NSX Edge appliance.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the Settings tab.
5. In Edge Gateway Appliances, select the appliance to delete.
6. Click the Delete (×) icon.

Working with Interfaces
An NSX Edge services gateway can have up to ten internal, uplink, or trunk interfaces. An NSX Edge router can have eight uplink interfaces and up to a thousand internal interfaces.

An NSX Edge must have at least one internal interface before it can be deployed.

Configure an Interface
An NSX Edge services gateway can have up to ten internal, uplink, or trunk interfaces. An NSX Edge router can have eight uplink interfaces and up to a thousand internal interfaces.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the Interfaces tab.
5. Select an interface and click the Edit (📝) icon.
6. In the Edit Edge Interface dialog box, type a name for the interface.
7. Select Internal or Uplink to indicate whether this is an internal or external interface.
   Select Trunk when creating a sub interface. For more information, see “Add a Sub Interface,” on page 194.
8. Select the port group or logical switch to which this interface should be connected.
   a. Click Select next to the Connected To field.
   b. Depending on what you want to connect to the interface, click the Logical Switch, Standard Portgroup, or Distributed Portgroup tab.
   c. Select the appropriate logical switch or portgroup.
   d. Click Select.
9. Select the connectivity status for the interface.
10. In Configure Subnets, click the Add (➕) icon to add a subnet for the interface.
    An interface can have multiple non-overlapping subnets.
11 In **Add Subnet**, click the **Add** (➕) icon to add an IP address.

If you enter more than one IP address, you can select the Primary IP address. An interface can have one primary and multiple secondary IP addresses. NSX Edge considers the Primary IP address as the source address for locally generated traffic.

You must add an IP address to an interface before using it on any feature configuration.

12 Type the subnet mask for the interface and click **Save**.

13 Change the default MTU if required.

14 In **Options**, select the required options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Proxy ARP</td>
<td>Supports overlapping network forwarding between different interfaces.</td>
</tr>
<tr>
<td>Send ICMP Redirect</td>
<td>Conveys routing information to hosts.</td>
</tr>
</tbody>
</table>

15 Type the fence parameters and click **Add**.

16 Click **OK**.

**Delete an Interface**

You can delete an NSX Edge interface.

**Procedure**

1 Log in to the vSphere Web Client.

2 Click **Networking & Security** and then click **NSX Edges**.

3 Double-click an NSX Edge.

4 Click the **Manage** tab and then click the **Interfaces** tab.

5 Select the interface to delete.

6 Click the **Delete** (❌) icon

**Enable an Interface**

An interface must be enabled for NSX Edge to isolate the virtual machines within that interface (port group or logical switch).

**Procedure**

1 Log in to the vSphere Web Client.

2 Click **Networking & Security** and then click **NSX Edges**.

3 Double-click an NSX Edge.

4 Click the **Manage** tab and then click the **Interfaces** tab.

5 Select the interface to enable.

6 Click the **Enable** (✔️) icon.
**Disable an Interface**
You can disable an interface

**Procedure**
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Manage tab and then click the Interfaces tab.
5. Select the interface to disable.
6. Click the Disable icon.

**Change Traffic Shaping Policy**
You can change the traffic shaping policy on the vSphere Distributed Switch for an NSX Edge interface.

**Procedure**
1. Double-click an NSX Edge and navigate to Manage > Settings > Interfaces.
2. Select an interface.
3. Click Actions > Configure Traffic Shaping Policy.
4. Make appropriate changes.
   For more information on the options, see Traffic Shaping Policy.
5. Click OK.

**Add a Sub Interface**
You can add a sub interface on a trunk vNIC, which can then be used by NSX Edge services.

A sub interface can be used by the following Edge services:
- DHCP
- NAT (DNAT only)
- Routing (BGP only)
Load Balancer
IPSEC VPN
L2 VPN

A sub interface cannot be used for HA or Logical Firewall. You can, however, use the IP address of the sub interface in a firewall rule.

Procedure

1. In the Manage > Settings tab for an NSX Edge, click Interfaces.
2. Select an interface and click the Edit ( ) icon.
3. In the Edit Edge Interface dialog box, type a name for the interface.
4. In Type, select Trunk.
5. Select the standard portgroup or distributed portgroup to which this interface should be connected.
   a. Click Change next to the Connected To field.
   b. Depending on what you want to connect to the interface, click the Standard Portgroup or Distributed Portgroup tab.
   c. Select the appropriate portgroup and click OK.
   d. Click Select.
6. In Sub Interfaces, click the Add icon.
7. Click Enable Sub interface and type a name for the sub interface.
8. In Tunnel Id, type a number between 1 and 4094.
   The tunnel Id is used to connect the networks that are being stretched. This value must be the same on both the client and server sites.
9. In Backing Type, select one of the following to indicate the network backing for the sub interface.
   - VLAN for a VLAN network.
     Type the VLAN ID of the virtual LAN that your sub interface should use. VLAN IDs can range from 0 to 4094.
   - Network for a VLAN or VXLAN network.
     Click Select and select the distributed portgroup or logical switch. NSX Manager extracts the VLAN ID and uses it in trunk configuration.
   - None to create a sub interface without specifying a network or VLAN ID. This sub interface is internal to NSX Edge, and is used to route packets between a stretched network and an unstretched (untagged) network.
10. To add subnets to the sub interface, click the Add icon in the Configure Subnets area.
11. In Add Subnets, click the Add icon to add an IP address. Type the IP address and click OK.
   If you enter more than one IP address, you can select the Primary IP address. An interface can have one primary and multiple secondary IP addresses. NSX Edge considers the Primary IP address as the source address for locally generated traffic.
12. Type the subnet prefix length and click OK.
13 Edit the default MTU value for the sub interface if required.

The default MTU for a trunk interface is 1600 and the default MTU for a sub interface is 1500. The MTU for the sub interface should be equal to or less than the lowest MTU among all the trunk interfaces for the NSX Edge.

14 Select **Enable Send Redirect** to convey routing information to hosts.

15 Type the MAC address for the interface.

Since sub interfaces do not support HA, only one MAC address is required.

16 Edit the default MTU of the trunk interface, if required.

17 Click **OK**.

You can now use the sub-interface on Edge services.

**What to do next**

When the sub interface is added to a trunk vNic backed by distributed portgroup, VLAN or VXLAN trunk is automatically configured on the trunk port. When the sub interface is added to a trunk vNic backed by standard portgroup, only VLAN trunk is supported. VLAN trunk must be manually configured by following the steps below:

1 Log in to the vCenter Web Client.

2 Click **Networking**.

3 Select the standard portgroup and click **Edit Settings**.

4 Click the VLAN tab.

5 In VLAN Type, select VLAN Trunking and type the VLAN IDs to be trunked.

6 Click **OK**.

**Change Auto Rule Configuration**

If auto rule generation is enabled, NSX Edge adds firewall, NAT, and routing routes to enable control traffic to flow for these services. If auto rule generation is not enabled, you must manually add firewall, NAT, and routing configuration to allow control channel traffic for NSX Edge services such as Load Balancing, VPN, etc.

**Procedure**

1 Log in to the vSphere Web Client.

2 Click **Networking & Security** and then click **NSX Edges**.

3 Double-click an NSX Edge.

4 Click the **Monitor** tab and then click the **Settings** tab.

5 Click the **More Actions** ( ) icon and select **Change Auto Rule configuration**.

6 Make the appropriate changes and click **OK**.

**Change CLI Credentials**

You can edit the credentials to be used for logging in to the Command Line Interface (CLI).

**Procedure**

1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the Settings tab.
5 Click the More Actions ( ) icon and select Change CLI Credentials.
6 Make the appropriate edits.
7 Click OK.

About High Availability

High Availability (HA) ensures that an NSX Edge appliance is always available by installing an active pair of Edges on your virtualized infrastructure. You can enable HA either when installing NSX Edge or on an installed NSX Edge instance.

Stateful High Availability

The primary NSX Edge appliance is in the active state and the secondary appliance is in the standby state. NSX Edge replicates the configuration of the primary appliance for the standby appliance or you can manually add two appliances. VMware recommends that you create the primary and secondary appliances on separate resource pools and datastores. If you create the primary and secondary appliances on the same datastore, the datastore must be shared across all hosts in the cluster for the HA appliance pair to be deployed on different ESX hosts. If the datastore is a local storage, both virtual machines are deployed on the same host.

All NSX Edge services run on the active appliance. The primary appliance maintains a heartbeat with the standby appliance and sends service updates through an internal interface.

If a heartbeat is not received from the primary appliance within the specified time (default value is 15 seconds), the primary appliance is declared dead. The standby appliance moves to the active state, takes over the interface configuration of the primary appliance, and starts the NSX Edge services that were running on the primary appliance. When the switch over takes place, a system event is displayed in the System Events tab of Settings & Reports. Load Balancer and VPN services need to re-establish TCP connection with NSX Edge, so service is disrupted for a short while. Logical switch connections and firewall sessions are synched between the primary and standby appliances, so there is no service disruption during switch over.

If the NSX Edge appliance fails and a bad state is reported, HA force syncs the failed appliance in order to revive it. When revived, it takes on the configuration of the now-active appliance and stays in a standby state. If the NSX Edge appliance is dead, you must delete the appliance and add a new one.

NSX Edge ensures that the two HA NSX Edge virtual machines are not on the same ESX host even after you use DRS and vMotion (unless you manually vMotion them to the same host). Two virtual machines are deployed on vCenter in the same resource pool and datastore as the appliance you configured. Local link IPs are assigned to HA virtual machines in the NSX Edge HA so that they can communicate with each other. You can specify management IP addresses to override the local links.

If syslog servers are configured, logs on the active appliance are sent to the syslog servers.

vSphere High Availability

NSX Edge HA is compatible with vSphere HA. If the host on which a NSX Edge instance is running dies, the NSX Edge is restarted on the standby host thereby ensuring the NSX Edge HA pair is still available to take another failover.
If vSphere HA is not leveraged, the active-standby NSX Edge HA pair will survive one fail-over. However, if another fail-over happens before the second HA pair was restored, NSX Edge availability can be compromised.

For more information on vSphere HA, see *vSphere Availability*.

**Change HA Configuration**

You can change the HA configuration that you had specified while installing NSX Edge.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click an NSX Edge.
4. Click the *Manage* tab and then click the *Settings* tab.
5. In the *HA Configuration* panel, click *Change*.
6. In the Change HA Configuration dialog box, make changes as appropriate.
   
   In case L2 VPN is configured on this Edge appliance before HA is enabled, there must be at least two internal interfaces set up. If there is a single interface configured on this Edge which is already being used by L2 VPN, HA is disabled on the Edge appliance.
7. Click *OK*.

**Synchronize NSX Edge with NSX Manager**

You can send a synchronization request from NSX Manager to NSX Edge.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Select an NSX Edge instance.
4. Click the *More Actions* ( ) icon and select *Force Sync*.

**Configure Remote Syslog Servers**

You can configure one or two remote syslog servers. NSX Edge events and logs related to firewall events that flow from NSX Edge appliances are sent to the syslog servers.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click *Networking & Security* and then click *NSX Edges*.
3. Double-click a NSX Edge.
4. Click the *Monitor* tab and then click the *Settings* tab.
5. In the *Details* panel, click *Change* next to Syslog servers.
6. Type the IP address of both remote syslog servers and select the protocol.
7. Click *OK* to save the configuration.
View the Status of an NSX Edge

The status page displays graphs for the traffic flowing through the interfaces of the selected NSX Edge and connection statistics for the firewall and load balancer services.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Double-click an NSX Edge.
4. Click the Monitor tab.
5. Select the period for which you want to view the statistics.

What to do next
To view more details about NSX Edge, click Manage and then click Settings.

Redeploy NSX Edge

If NSX Edge services do not work as expected after a force sync, you can redeploy the NSX Edge instance.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Select an NSX Edge instance.
4. Click the More Actions ( ) icon and select Redeploy Edge.

The NSX Edge virtual machine is replaced with a new virtual machine and all services are restored. If redeploy does not work, power off the NSX Edge virtual machine and redeploy NSX Edge again.

NOTE Redeploy may not work in the following cases.
- Resource pool on which the NSX Edge was installed is no longer in the vCenter inventory or its Managed Object ID (MoId) has changed.
- Datastore on which the NSX Edge was installed is corrupted/unmounted or in-accessible.
- dvPortGroups on which the NSX Edge interfaces were connected are no longer in the vCenter inventory or their MoId (identifier in vCenter server) has changed.

If any of the above is true, you must update the MoId of the resource pool, datastore, or dvPortGroup using a REST API call. See NSX API Programming Guide.

Download Tech Support Logs for NSX Edge

You can download technical support logs for each NSX Edge instance. If high availability is enabled for the NSX Edge instance, support logs from both NSX Edge virtual machines are downloaded.

Procedure
1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click NSX Edges.
3. Select an NSX Edge instance.
4 Click the More Actions ( ) icon and select Download Tech Support Logs.
5 After the tech support logs are generated, click Download.
6 In the Select location for download dialog box, browse to the directory where you want to save the log file.
7 Click Save.
8 Click Close.

Upgrade NSX Edge

You can upgrade an NSX Edge instance.

Prerequisites
- A Compact NSX Edge instance requires 256 MB memory and 300 MB disk space.
- A Large NSX Edge instance requires 1024 MB memory and 448 MB disk space.
- A Quad Large NSX Edge instance requires 1024 MB memory and 448 MB disk space. This provides additional throughput over other form factors.
- An X-Large NSX Edge instance requires 8 GB memory and 448 MB disk space. An x-large NSX Edge instance is recommended for an environment where the Load Balancer service is being used on millions of concurrent sessions.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Select a compact NSX Edge instance.
4 Click the More Actions ( ) icon and select Convert to Large, Convert to X-Large, or Convert to Quad Large.
   The NSX Edge instance is upgraded.

Backup and Restore

Proper backup of all NSX components is crucial to restore the system to its working state in the event of a failure.

The following component backups are supported:
- NSX Manager
- NSX Controller cluster
- NSX Edge
- NSX firewall rules
- NSX service composer
- VMware distributed switch
- vCenter

At a minimum, we recommend taking regular backups of NSX Manager and vCenter. Your backup frequency and schedule might vary based on your business needs and operational procedures. We recommend taking NSX backups frequently during times of frequent configuration changes.
NSX Manager backups can be taken on demand or on a hourly, daily, or weekly basis.

We recommend taking backups in the following scenarios:

- Before an NSX or vCenter upgrade.
- After an NSX or vCenter upgrade.
- After Day Zero deployment and initial configuration of NSX components, such as after the creation of NSX Controllers, logical switches, logical routers, edge services gateways, security, and firewall policies.
- After infrastructure or topology changes.
- After any major Day 2 change.

To provide an entire system state at a given time to roll back to, we recommend synchronizing NSX component backups (such as NSX Manager and NSX Controller) with your backup schedule for other interacting components, such as vCenter, cloud management systems, operational tools, and so on.

**Back Up NSX Manager Data**

You can back up NSX Manager data by performing an on-demand backup or a scheduled backup.

NSX Manager backup and restore can be configured from the NSX Manager virtual appliance web interface or through the NSX Manager API. Backups can be scheduled on an hourly, daily or weekly basis.

The backup file is saved to a remote FTP or SFTP location that NS Manager can access. NSX Manager data includes configuration, events, and audit log tables. Configuration tables are included in every backup.

Restore is only supported on the same NSX Manager version as the backup version. For this reason, it is important to create a new backup file before and after performing an NSX upgrade, one backup for the old version and another backup for the new version.

**Procedure**

1. Log in to the NSX Manager Virtual Appliance.
2. Under Appliance Management, click **Backups & Restore**.
3. To specify the backup location, click **Change** next to FTP Server Settings.
   a. Type the IP address or host name of the backup system.
   b. From the **Transfer Protocol** drop-down menu, select either SFTP or FTP, based on what the destination supports.
   c. Edit the default port if required.
   d. Type the user name and password required to login to the backup system.
e  In the **Backup Directory** field, type the absolute path where backups will be stored.

To determine the absolute path, you can log in to the FTP server, navigate to the directory that you want to use, and run the present working directory command (**pwd**). For example:

```powershell
PS C:\Users\Administrator> ftp 192.168.110.60
Connected to 192.168.110.60.
220 techdoc-nfs FTP server ready.
User (192.168.110.60:(none)): admin
331 Password required for admin.
Password:
230 User admin logged in.
ftp> ls
200 PORT command successful.
150 Opening BINARY mode data connection for 'file list'.
datastore-01
226 Transfer complete.
ftp> cd datastore-01
250 CWD command successful.
ftp> pwd
257 "/datastore-01" is current directory.
```

f  Type a text string in **Filename Prefix**.

This text is prepended to each backup filename for easy recognition on the backup system. For example, if you type **ppdb**, the resulting backup is named as **ppdbHH_MM_SS_DayDDMonYYYY**.

g  Type the pass phrase to secure the backup.

You will need this pass phrase to restore the backup.

h  Click **OK**.

For example:

![Backup Location](image)

4  For an on-demand backup, click **Backup**.

A new file is added under **Backup History**.
5 For scheduled backups, click **Change** next to Scheduling.

![Backup Schedule](image)

a From the **Backup Frequency** drop-down menu, select **Hourly**, **Daily**, or **Weekly**. The Day of Week, Hour of Day, and Minute drop-down menus are disabled based on the selected frequency. For example, if you select Daily, the Day of Week drop-down menu is disabled as this field is not applicable to a daily frequency.

b For a weekly backup, select the day of the week the data should be backed up.

c For a weekly or daily backup, select the hour at which the backup should begin.

d Select the minute at which the begin and click **Schedule**.

6 To exclude logs and flow data from being backed up, click **Change** next to Exclude.

a Select the items you want to exclude from the backup.

b Click **OK**.

**What to do next**

Save your FTP server IP/hostname, credentials, directory details, and pass phrase. This information is needed to restore the backup.

Take a snapshot of the NSX Controller cluster. A controller snapshot should be taken at roughly the same time as the NSX Manager backup. Taking them the same time ensures that NSX Manager information and the controller information are synchronized. See [GUID-E9859557-C5BF-4757-9AD0-58EDBFA041BB](#GUID-E9859557-C5BF-4757-9AD0-58EDBFA041BB).

**Restore a Backup**

You can restore a backup only on a freshly deployed NSX Manager appliance.

To restore an available backup, the **Host IP Address**, **User Name**, **Password**, and **Backup Directory** fields in the **Backups** screen must have values that identify the location of the backup to be restored.

**IMPORTANT** Back up your current data before restoring a backup file.

**Procedure**

1 Log in to the NSX Manager Virtual Appliance.

2 Under Appliance Management, click **Backups & Restore**.

3 In the Backups History section, select the check box for the backup to restore.

4 Click **Restore**.

5 Click **OK** to confirm.
Flow Monitoring

Flow Monitoring is a traffic analysis tool that provides a detailed view of the traffic to and from protected virtual machines. When flow monitoring is enabled, its output defines which machines are exchanging data and over which application. This data includes the number of sessions and packets transmitted per session. Session details include sources, destinations, applications, and ports being used. Session details can be used to create firewall allow or block rules.

You can view TCP and UDP connections to and from a selected vNIC. You can also exclude flows by specifying filters.

Flow Monitoring can thus be used as a forensic tool to detect rogue services and examine outbound sessions.

Configure Flow Monitoring Data Collection

After you have viewed and filtered the flow monitoring data that you want to collect, you can configure data collection. You can filter the data being displayed by specifying exclusion criterion. For example, you may want to exclude a proxy server to avoid seeing duplicate flows. Or if you are running a Nessus scan on the virtual machines in your inventory, you may not want to exclude the scan flows from being collected.

You can configure IPFix so that information for specific flows are exported directly from a firewall to a flow collector. The flow monitoring graphs do not include the IPFix flows. These are displayed on the IPFix collector’s interface.

Procedure

1. Log in to the vSphere Web Client.
2. Select Networking & Security from the left navigation pane and then select Flow Monitoring.
3. Select the Configuration tab.
4. Ensure that Global Flow Collection Status is Enabled.

All firewall related flows are collected across your inventory except for the objects specified in Exclusion Settings.
To specify filtering criteria, click **Flow Exclusion** and follow the steps below.

a. Click the tab corresponding to the flows you want to exclude.

b. Specify the required information.

<table>
<thead>
<tr>
<th>If you selected</th>
<th>Specify the following information</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Collect Blocked Flows</strong></td>
<td>Select No to exclude blocked flows.</td>
</tr>
<tr>
<td><strong>Collect Layer2 Flows</strong></td>
<td>Select No to exclude Layer2 flows.</td>
</tr>
</tbody>
</table>

**Source**
- Flows are not collected for the specified sources.
  1. Click the **Add** icon.
  2. In View, select the appropriate container.
  3. Select the objects to exclude.

**Destination**
- Flows are not collected for the specified destinations.
  1. Click the **Add** icon.
  2. In View, select the appropriate container.
  3. Select the objects to exclude.

**Destination ports**
- Excludes flows to the specified ports.
  Type the port numbers to exclude.

**Service**
- Excludes flows for the specified services and service groups.
  1. Click the **Add** icon.
  2. Select the appropriate services and/or service groups.

C. Click **Save**.

6. To configure flow collection, click **IPFix** and follow the steps below.

a. Click **Edit** next to IPFix Configuration and click **Enable IPFix Configuration**.

b. In **Observation DomainID**, type a 32-bit identifier that identifies the firewall exporter to the flow collector.
c In **Active Flow Export Timeout**, type the time (in minutes) after which active flows are to be exported to the flow collector. The default value is 5. For example, if the flow is active for 30 minutes and the export timeout is 5 minutes, then the flow will be exported 7 times during its lifetime. Once each for creation and deletion, and 5 times during the active period.

d In **Collector IPs**, click the Add (➕) icon and type the IP address and UDP port of the flow collector.

e Click **OK**.

**View Flow Monitoring Data**

You can view traffic sessions on virtual machines within the specified time span. The last 24 hours of data are displayed by default, the minimum time span is one hour and the maximum is two weeks.

**Prerequisites**

Flow monitoring data is only available for virtual machines in clusters that have the network virtualization components installed and firewall enabled. See the *NSX Installation and Upgrade Guide*.

**Procedure**

1. Log in to the vSphere Web Client.
2. Select **Networking & Security** from the left navigation pane and then select **Flow Monitoring**.
3. Ensure that you are in the **Dashboard** tab.
Click Flow Monitoring.

The page might take several seconds to load. The top of the page displays the percentage of allowed traffic, traffic blocked by firewall rules, and traffic blocked by SpoofGuard. The multiple line graph displays data flow for each service in your environment. When you point to a service in the legend area, the plot for that service is highlighted.

Traffic statistics are displayed in three tabs:

- **Top Flows** displays the total incoming and outgoing traffic per service over the specified time period based on the total bytes value (not based on sessions/packets). The top five services are displayed. Blocked flows are not considered when calculating top flows.

- **Top Destinations** displays incoming traffic per destination over the specified time period. The top five destinations are displayed.

- **Top Sources** displays outgoing traffic per source over the specified time period. The top five sources are displayed.
5 Click the **Details by Service** tab.

Details about all traffic for the selected service is displayed. Click **Load More Records** to display additional flows. The **Allowed Flows** tab displays the allowed traffic sessions and the **Blocked Flows** tab displays the blocked traffic.

You can search on service names.

6 Click an item in the table to display the rules that allowed or blocked that traffic flow.

7 Click the **Rule Id** for a rule to display the rule details.

## Change the Date Range of the Flow Monitoring Charts

You can change the date range of the flow monitoring data for both the Dashboard and Details tabs.

**Procedure**

1 Log in to the vSphere Web Client.
2 Select **Networking & Security** from the left navigation pane and then select **Flow Monitoring**.
3 Click **next to **Time interval**.**
4 Select the time period or type a new start and end date.

The maximum time span for which you can view traffic flow data is the previous two weeks.

5 Click **OK**.
**View Live Flow**

You can view UDP and TCP connections from and to a selected vNIC. In order to view traffic between two virtual machines, you can view live traffic for one virtual machine on one computer and the other virtual machine on a second computer. You can view traffic for a maximum of two vNICs per host and for 5 vNICs per infrastructure.

Viewing live flows can affect the performance of NSX Manager and the corresponding virtual machine.

**Procedure**

1. Log in to the vSphere Web Client.
2. Select **Networking & Security** from the left navigation pane and then select **Flow Monitoring**.
3. Click the **Live Flow** tab.
4. Click **Browse** and select a vNIC.
5. Click **Start** to begin viewing live flow.

   The page refreshes every 5 seconds. You can select a different frequency from the **Refresh Rate** dropdown.

Field	Direction	Flow Type	Protocol	Source IP	Source Port	Destination IP	Destination Port	Date	Incoming Pkt	Outgoing Pkt	Outgoing Error
1206	OUT	Active	TCP	172.16.40.121	49099	172.16.40.131	3306	7/21	11	2077	10
1026	OUT	Passive	TCP	172.16.40.121	49090	172.16.40.131	3306	7/21	11	2077	10

6. Click **Stop** when your debugging or troubleshooting is done to avoid affecting the performance of NSX Manager or the selected virtual machine.

**Add or Edit a Firewall Rule from the Flow Monitoring Report**

By drilling down into the traffic data, you can evaluate the use of your resources and send session information to Distributed Firewall to create a new allow or block rule at any level.

**Procedure**

1. Log in to the vSphere Web Client.
2. Select **Networking & Security** from the left navigation pane and then select **Flow Monitoring**.
3. Click the **Details by Service** tab.
4. Click a service to view the traffic flow for it.

   Depending on the selected tab, rules that allowed or denied traffic for this service are displayed.
5. Click a rule ID to view rule details.
6. Do one of the following:
   - To edit a rule:
     1. Click **Edit Rule** in the **Actions** column.
     2. Change the name, action, or comments for the rule.
3 Click OK.

**To add a rule:**
1 Click Add Rule in the Actions column.
2 Complete the form to add a rule. For information on completing the firewall rule form, see “Add a Firewall Rule,” on page 62.
3 Click OK.

The rule is added at the top of the firewall rule section.

### Activity Monitoring

Activity monitoring provides visibility into the applications that are in use on the Windows desktop virtual machines that are managed by vCenter. This visibility helps ensure that security policies at your organization are being enforced correctly.

A security policy may mandate who is allowed access to what applications. The cloud administrator can generate Activity Monitoring reports to see if the IP based firewall rule that they set is doing the intended work. By providing user and application level detail, activity monitoring translates high level security policies to low level IP address and network based implementation.

**Figure 14-2.** Your virtual environment today

Once you enable data collection for Activity Monitoring, you can run reports to view inbound traffic (such as virtual machines being accessed by users) as well as outbound traffic (resource utilization, interaction between inventory containers, and AD groups that accessed a server).
**Figure 14-3.** Your virtual environment with Activity Monitoring

<table>
<thead>
<tr>
<th>User</th>
<th>AD group</th>
<th>App name</th>
<th>Originating VM name</th>
<th>Destination VM name</th>
<th>Source IP</th>
<th>Destination IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Doctors</td>
<td>Epic.exe</td>
<td>DoctorsWS13</td>
<td>EpicSVR3</td>
<td>172.16.254.1</td>
<td>172.16.112.2</td>
</tr>
</tbody>
</table>

**IMPORTANT** Activity monitoring is not supported on Linux VMs.

**Set Up Activity Monitoring**

For activity monitoring to work, there are several required procedures that must be performed, including installation of the guest introspection driver, installation of guest introspection VMs, and enabling NSX activity monitoring. Optionally, you can also use service composer to control which VMs are monitored.

**Prerequisites**

- NSX must be installed and operational.
- NSX Manager must be linked with the AD server where it will get groups to which to match Windows VMs users.
- The vCenter inventory must contain one or more Windows desktop VMs.
- VMware Tools must be running and current on your Windows desktop VMs.
Procedure

1. On the Windows VMs in your vCenter inventory, install the Guest Introspection driver if it is not already installed.
   a. Navigate to Control Panel\Programs\Programs and Features, right-click VMware Tools and select Change.
   b. Select Modify.
   c. Under VMCI Driver, click Guest Introspection Drivers > Will be installed on local hard drive.

The guest introspection driver detects what applications are running on each Windows VM and sends this information to the guest introspection VM.
2 Install the guest introspection VMs.

When first launching the VMware Tools install, choose the **Custom** option. In the VMCI folder, select **Guest Introspection Driver**. The driver is not selected by default.

To add the driver after VMware Tools is already installed:

- **a** In the vCenter Web Client, navigate to **Networking & Security > Installation > Service Deployments**.
- **b** Add a new service deployment.
- **c** Select **Guest Introspection**.
- **d** Select the host clusters that contain Windows VMs.
- **e** Select the appropriate datastores, networks, and IP addressing mechanism. If you are not using DHCP for your guest introspection VMs, create and assign an IP pool.

Two guest introspection VMs are installed, one on each host within each cluster.
3. Enable activity monitoring on the Windows VMs.
   a. In the **Hosts and Clusters** view, select the Windows VM, and select the **Summary** tab.
   b. In NSX Activity Monitoring, click **Edit** and click **Yes**.

Repeat this step for all Windows VMs that you want to monitor.

4. **(Optional)** Modify the list of vCenter objects that are monitored, or define a dynamic membership rule.
   a. In the vCenter Web Client, navigate to **Networking & Security > Service Composer**.
   b. Edit the **Activity Monitoring Data Collection** security group.
Activity Monitoring Scenarios

This section describes some hypothetical scenarios for Activity Monitoring.

User Access to Applications

Our hypothetical company, ACME Enterprise, only permits approved users to access specific applications on corporate assets.

Their security policy mandates are:

- Allow only authorized users to access critical business applications
- Allow only authorized applications on corporate servers
- Allow access to only required ports from specific networks

Based on the above, they need controlled access for employees based on user identity to safeguard corporate assets. As a starting point, the security operator at ACME Enterprise needs to be able to verify that only administrative access is allowed to the MS SQL servers.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then Activity Monitoring.
3. Click the Inbound Activity tab.
4 Leave Outbound from value as All Observed AD Groups to see access from any and all employees.

5 In Where destination virtual machine, select includes.

6 Click the link next to And where destination virtual machine and select the MS SQL servers.

7 Click Search.

The search results show that only administrative users are accessing the MS SQL servers. Notice that there are no groups (such as Finance or HR) accessing these servers.

8 We can now invert this query by setting the Outbound from value to HR and Finance AD groups.

9 Click Search.

No records are displayed, confirming that no users from either of these groups can access MS SQL servers.

Applications on Datacenter

As part of their security policies, ACME Enterprise needs Visibility into all data center applications. This can help Identify rogue applications that either capture confidential information or siphon sensitive data to external sources.

John, Cloud Administrator at ACME Enterprise, wants to confirm that access to the SharePoint server is only through Internet Explorer and no rogue application (such as FTP or RDP) can access this server.

Procedure

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then Activity Monitoring.

3 Click the VM Activity tab.

4 In Where source VM, select includes, and leave All observed virtual machines selected to capture traffic originating from all virtual machines in the datacenter.

5 In Where destination VM, select includes, click All observed virtual machines, and select the SharePoint server.

6 Click Search.

The Outbound App Product Name column in the search results show that all access to the SharePoint server was only through Internet Explorer. The relatively homogenous search results indicate that there is a firewall rule applied to this SharePoint server preventing all other access methods.

Also note that the search results display the source user of the observed traffic rather than the source group. Clicking the arrow in the search result displays details about the source user such as the AD group to which the user belongs.

Verify Open Ports

Once John Admin knows that the ACME Enterprise share point server is being accessed only by authorized applications, he can ensure that the company allows only required ports to be open based on expected use.

Prerequisites

In the “Applications on Datacenter,” on page 216 scenario, John Admin had observed traffic to the ACME Enterprise share point server. He now wants to ensure that all access from the share point server to the MSSQL server is through expected protocols and applications.

Procedure

1 Click the Go Home icon.
2 Click vCenter Home and then click Virtual Machines.
3 Select win_sharepoint and then click the Monitor tab.
4 Click Activity Monitoring.
5 In Where destination, select win2K-MSSQL.
6 Click Search.

Search results show traffic from the share point server to the MSSQL server. The User and Outbound App columns show that only systems processes are connecting to the MSSQL server, which is what John expected to see.

The Inbound Port and App columns show that all access is to the MSSQL server running on the destination server.

Since there are too many records in the search results for John to analyze in a web browser, he can export all the entire result set and save the file in a CSV format by clicking the icon on the bottom right side of the page.

Enable Data Collection

You must enable data collection for one or more virtual machines on a vCenter Server before running an Activity Monitoring report. Before running a report, ensure that the enabled virtual machines are active and are generating network traffic.

You should also register NSX Manager with the AD Domain Controller. See “Register a Windows Domain with NSX Manager,” on page 186.

Note that only active connections are tracked by Activity Monitoring. Virtual machine traffic blocked by firewall rules at the vNIC level is not reflected in reports.

Enable Data Collection on a Single Virtual Machine

You must enable data collection at least five minutes before running an Activity Monitoring report.

Prerequisites

Procedure
1 Log in to the vSphere Web Client.
2 Click vCenter and then click VMs and Templates.
3 Select a virtual machine from the left inventory panel.
4 Click the Manage tab and then click the Settings tab.
5 Click NSX Activity Monitoring from the left panel.
6 Click Edit.
7 In the Edit NSX Activity Monitoring Data Collection Settings dialog box, click Yes.

Enable Data Collection for Multiple Virtual Machines

The Activity Monitoring Data Collection security group is a pre-defined security group. You can add multiple virtual machines to this security group at a time, and data collection is enabled on all of these virtual machines.

You must enable data collection at least five minutes before running an Activity Monitoring report.
Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then click Service Composer.
3. Click the Security Groups tab.
4. Select the Activity Monitoring Data Collection security group and click the Edit icon.
5. Follow the wizard to add virtual machines to the security group.
   
   Data collection is enabled on all virtual machines you added to this security group, and disabled on any virtual machines you excluded from the security group.

View Virtual Machine Activity Report

You can view traffic to or from a virtual machine or a set of virtual machines in your environment.

You can either do a quick query using the default search criteria by clicking Search, or tailor the query according to your requirements.

Prerequisites

- Either Guest Introspection must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see NSX Installation and Upgrade Guide. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 186.
- Data collection must be enabled on one or more virtual machines.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then Activity Monitoring.
3. Click the VM Activity tab.
4. Click the link next to Where source. Select the virtual machines for which you want to view outbound traffic. Indicate whether you want to include or exclude the selected virtual machine(s) from the report.
5. Click the link next to Where destination. Select the virtual machines for which you want to view inbound traffic. Indicate whether you want to include or exclude the selected virtual machine(s) from the report.
6. Click the During period icon and select the time period for the search.
7. Click Search.

Search results filtered by the specified criterion are displayed. Click a row to view detailed information about the user for that row.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.
View Inbound Activity

You can view all inbound activity to a server by desktop pool, security group, or AD group.

**Figure 14-4.** View inbound activity

![Diagram](image)

You can either do a quick query using the default search criteria by clicking Search, or tailor the query according to your requirements.

**Prerequisites**

- Either Guest Introspection must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see NSX Installation and Upgrade Guide. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 186.
- Data collection must be enabled on one or more virtual machines.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then Activity Monitoring.
3. Click the Inbound Activity tab.
4. Click the link next to Originating from.
5. Select the type of user group that you want to view activity for.
6. In Filter type, select one or more group and click OK.
7. In Where destination virtual machine, select includes or excludes to indicate whether the selected virtual machines should be included in or excluded from the search.
8. Click the link next to And where destination virtual machine.
9. Select one or more virtual machine and click OK.
10. In And where destination application, select includes or excludes to indicate whether the selected applications should be included in or excluded from the search.
11. Click the link next to And where destination application.
12. Select one or more application and click OK.
13. Click the During period icon and select the time period for the search.
14. Click Search.

Search results filtered by the specified criterion are displayed. Click anywhere in the results table to view information about the users that accessed the specified virtual machines and applications.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.
View Outbound Activity

You can view what applications are being run by a security group or desktop pool and then drill down into the report to find out which client applications are making outbound connections by a particular group of users. You can also discover all user groups and users who are accessing a particular application, which can help you determine if you need to adjust identity firewall in your environment.

Figure 14-5. View Outbound activity

Prerequisites

- Either Guest Introspection must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see NSX Installation and Upgrade Guide. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 186.
- Data collection must be enabled on one or more virtual machines.

Procedure

1. Log in to the vSphere Web Client.
2. Click Networking & Security and then Activity Monitoring.
3. Ensure that the Outbound Activity tab is selected in the left pane.
4. Click the link next to Originating from.
   All groups discovered through guest introspection are displayed.
5. Select the type of user group that you want to view resource utilization for.
6. In Filter, select one or more group and click OK.
7. In Where application, select includes or excludes to indicate whether the selected application should be included in or excluded from the search.
8. Click the link next to Where application.
9. Select one or more application and click OK.
10. In And where destination, select includes or excludes to indicate whether the selected virtual machines should be included in or excluded from the search.
11. Click the link next to And where destination.
12. Select one or more virtual machine and click OK.
13. Click the During period icon and select the time period for the search.
14. Click Search.
   Scroll to the right to see all the information displayed.

Search results filtered by the specified criterion are displayed. Click a row to view information about users within that AD group that used the specified application to access the specified virtual machines.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.
View Interaction between Inventory Containers

You can view the traffic passing between defined containers such as AD groups, security groups and/or desktop pools. This can help you identify and configure access to shared services and to resolve mis-configured relationships between Inventory container definitions, desktop pools and AD groups.

**Figure 14-6. Interaction between containers**

![Diagram of interaction between containers]

You can either do a quick query using the default search criteria by clicking **Search**, or tailor the query according to your requirements.

**Prerequisites**
- Either Guest Introspection must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see [NSX Installation and Upgrade Guide](#). For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 186.
- Data collection must be enabled on one or more virtual machines.

**Procedure**

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then **Activity Monitoring**.
3. Select the **Inter Container Interaction** tab in the left pane.
4. Click the link next to **Originating from**.
   - All groups discovered through guest introspection are displayed.
5. Select the type of user group that you want to view resource utilization for.
6. In **Filter**, select one or more group and click **OK**.
7. In **Where the destination is**, select **is** or **is not** to indicate whether the selected group should be included in or excluded from the search.
8. Click the link next to **Where the destination is**.
9. Select the group type.
10. In **Filter**, select one or more group and click **OK**.
11. Click the **During period** ( ) icon and select the time period for the search.
12. Click **Search**.

Search results filtered by the specified criterion are displayed. Click in a row to view information about the users that accessed the specified containers.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.
Example: Interaction between Inventory Containers Query

- Verify allowed communication
  If you have defined containers in your vCenter inventory and then added a rule to allow communication between these containers, you can verify that the rule is working by running this query with the two containers specified in the **Originating from** and **Where the destination** is fields.

- Verify denied communication
  If you have defined containers in your vCenter inventory and then added a rule to deny communication between these containers, you can verify that the rule is working by running this query with the two containers specified in the **Originating from** and **Where the destination** is fields.

- Verify denied intra-container communication
  If you have implemented a policy that does not allow members of a container communicating with other members of the same container, you can run this query to verify that the policy works. Select the container in both **Originating from** and **Where the destination** is fields.

- Eliminate unnecessary access
  Suppose you have defined containers in your vCenter inventory and then added a rule to allow communication between these containers. There may be members in either container that do not interact with the other container at all. You may then choose to remove these members from the appropriate container to optimize security control. To retrieve such a list, select the appropriate containers in both **Originating from** and **Where the destination** is fields. Select **is not** next to the **Where the destination** field.

View Outbound AD Group Activity

You can view the traffic between members of defined Active Directory groups and can use this data to fine-tune your firewall rules.

You can either do a quick query using the default search criteria by clicking **Search**, or tailor the query according to your requirements.

Prerequisites

- Either Guest Introspection must be installed in your environment or a domain must be registered with NSX Manager. For information on Endpoint installation, see *NSX Installation and Upgrade Guide*. For information on domain registration, see “Register a Windows Domain with NSX Manager,” on page 186.

- Data collection must be enabled on one or more virtual machines.

Procedure

1. Log in to the vSphere Web Client.
2. Click **Networking & Security** and then **Activity Monitoring**.
3. Select the **AD Groups & Containers** tab in the left pane.
4. Click the link next to **Originating from**.
   All groups discovered through guest introspection are displayed.
5. Select the type of user group that you want to include in the search.
6. In **Filter**, select one or more group and click **OK**.
7. In **Where AD Group**, select **includes** or **excludes** to indicate whether the selected AD group should be included in or excluded from the search.
8 Click the link next to Where AD Group.

9 Select one or more AD groups and click OK.

10 Click the During period ( ) icon and select the time period for the search.

11 Click Search.

Search results filtered by the specified criterion are displayed. Click in a row to view information about the members of the specified AD group that are accessing network resources from within the specified security group or desktop pool.

You can export a specific record or all records on this page and save them to a directory in a .csv format by clicking the icon on the bottom right side of the page.

**Override Data Collection**

In case of an emergency such as a network overload, you can turn off data collection at a global level. This overrides all other data collection settings.

**Procedure**

1 Log in to the vSphere Web Client.

2 Click Networking & Security and then Activity Monitoring.

3 Click the Settings tab.

4 Select the vCenter Server for which you want to overwrite data collection.

5 Click Edit.

6 De-select Collect reporting data.

7 Click OK.

**Guest Introspection Events and Alarms**

Guest Introspection offloads antivirus and anti-malware agent processing to a dedicated secure virtual appliance delivered by VMware partners. Since the secure virtual appliance (unlike a guest virtual machine) doesn’t go offline, it can continuously update antivirus signatures thereby giving uninterrupted protection to the virtual machines on the host. Also, new virtual machines (or existing virtual machines that went offline) are immediately protected with the most current antivirus signatures when they come online.

Guest Introspection health status is conveyed by using alarms that show in red on the vCenter Server console. In addition, more status information can be gathered by looking at the event logs.

**IMPORTANT** Your vCenter Server must be correctly configured for Guest Introspection security:

- Not all guest operating systems are supported by Guest Introspection. Virtual machines with non-supported operating systems are not protected by the security solution.

- All hosts in a resource pool containing protected virtual machines must be prepared for Guest Introspection so that virtual machines continue to be protected as they are vMotioned from one ESX host to another within the resource pool.
**View Guest Introspection Status**

Monitoring a Guest Introspection instance involves checking for status coming from the Guest Introspection components: the security virtual machine (SVM), the ESX host-resident Guest Introspection module, and the protected virtual machine-resident thin agent.

**Procedure**

1. In the vSphere Web Client, click vCenter, and then click Datacenters.
2. In the Name column, click a datacenter.
3. Click Monitor and then click Endpoint.

   The Guest Introspection Health and Alarms page displays the health of the objects under the datacenter you selected, and the active alarms. Health status changes are reflected within a minute of the actual occurrence of the event that triggered the change.

**Guest Introspection Alarms**

Alarms signal the vCenter Server administrator about Guest Introspection events that require attention. Alarms are automatically cancelled in case the alarm state is no longer present.

vCenter Server alarms can be displayed without a custom vSphere plug-in. See the [vCenter Server Administration Guide](#) on events and alarms.

Upon registering as a vCenter Server extension, NSX Manager defines the rules that create and remove alarms, based on events coming from the three Guest Introspection components: SVM, Guest Introspection module, and thin agent. Rules can be customized. For instructions on how to create new custom rules for alarms, see the vCenter Server documentation. In some cases, there are multiple possible causes for the alarm. The tables that follow list the possible causes and the corresponding actions you might want to take for remediation.

**Host Alarms**

Host alarms are generated by events affecting the health status of the Guest Introspection module.

**Table 14-5. Errors (Marked Red)**

<table>
<thead>
<tr>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
</table>
| The Guest Introspection module has been installed on the host, but is no longer reporting status to the NSX Manager. | 1. Ensure that Guest Introspection is running by logging in to the host and typing the command `/etc/init.d/vShield-Endpoint-Mux start`.  
2. Ensure that the network is configured properly so that Guest Introspection can connect to NSX Manager.  
3. Reboot the NSX Manager. |
**SVM Alarms**

SVM alarms are generated by events affecting the health status of the SVM.

**Table 14-6. Red SVM Alarms**

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a protocol version mismatch with the Guest Introspection module</td>
<td>Ensure that the Guest Introspection module and SVM have a protocol that is compatible with each other.</td>
</tr>
<tr>
<td>Guest Introspection could not establish a connection to the SVM</td>
<td>Ensure that the SVM is powered on and that the network is configured properly.</td>
</tr>
<tr>
<td>The SVM is not reporting its status even though guests are connected.</td>
<td>Internal error. Contact your VMware support representative.</td>
</tr>
</tbody>
</table>

**Guest Introspection Events**

Events are used for logging and auditing conditions inside the Guest Introspection-based security system.

Events can be displayed without a custom vSphere plug-in. See the *vCenter Server Administration Guide* on events and alarms.

Events are the basis for alarms that are generated. Upon registering as a vCenter Server extension, the NSX Manager defines the rules that create and remove alarms.

Common arguments for all events are the event time stamp and the NSX Manager `event_id`.

The following table lists Guest Introspection events reported by the SVM and the NSX Manager.

**Table 14-7. Guest Introspection Events**

<table>
<thead>
<tr>
<th>Description</th>
<th>Severity</th>
<th>VC Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Introspection solution <em>SolutionName</em> enabled. Supporting version <code>versionNumber</code> of the VFile protocol.</td>
<td>info</td>
<td><code>timestamp</code></td>
</tr>
<tr>
<td>ESX module enabled.</td>
<td>info</td>
<td><code>timestamp</code></td>
</tr>
<tr>
<td>ESX module uninstalled.</td>
<td>info</td>
<td><code>timestamp</code></td>
</tr>
<tr>
<td>The NSX Manager has lost connection with the ESX module.</td>
<td>info</td>
<td><code>timestamp</code></td>
</tr>
<tr>
<td>Guest Introspection solution <em>SolutionName</em> was contacted by a non-compatible version of the ESX module.</td>
<td>error</td>
<td><code>timestamp, solution version, ESX module version</code></td>
</tr>
<tr>
<td>A connection between the ESX module and <em>SolutionName</em> failed.</td>
<td>error</td>
<td><code>timestamp, ESX module version, solution version</code></td>
</tr>
<tr>
<td>Guest Introspection failed to connect to the SVM.</td>
<td>error</td>
<td><code>timestamp</code></td>
</tr>
<tr>
<td>Guest Introspection lost connection with the SVM.</td>
<td>error</td>
<td><code>timestamp</code></td>
</tr>
</tbody>
</table>

**Guest Introspection Audit Messages**

Audit messages include fatal errors and other important audit messages and are logged to `vmware.log`.

The following conditions are logged as AUDIT messages:

- Thin agent initialization success (and version number.)
- Thin agent initialization failure.
- Established first time communication with SVM.
Failure to establish communication with SVM (when first such failure occurs).

Generated log messages have the following substrings near the beginning of each log message: vf-AUDIT, vf-ERROR, vf-WARN, vf-INFO, vf-DEBUG.
This scenario contains configuration examples for a basic point-to-point IPSEC VPN connection between an NSX Edge and a Cisco or WatchGuard VPN on the other end.

For this scenario, NSX Edge connects the internal network 192.0.2.0/24 to the internet. NSX Edge interfaces are configured as follows:

- Uplink interface: 198.51.100.1
- Internal interface: 192.0.2.1

The remote gateway connects the 172.16.0.0/16 internal network to the internet. The remote gateway interfaces are configured as follows:

- Uplink interface: 10.24.120.90/24
- Internal interface: 172.16.0.1/16

**Figure 15-1.** NSX Edge connecting to a remote VPN gateway

<table>
<thead>
<tr>
<th>192.168.5.0/24</th>
<th>192.168.5.1</th>
<th>10.115.199.103</th>
<th>10.24.120.90</th>
<th>172.16.0.1</th>
<th>172.15.0.0/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>vShield Edge</td>
<td>Internet</td>
<td>10.24.120.90</td>
<td>172.16.0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note** For NSX Edge to NSX Edge IPSEC tunnels, you can use the same scenario by setting up the second NSX Edge as the remote gateway.

This chapter includes the following topics:

- “Terminology,” on page 228
- “IKE Phase 1 and Phase 2,” on page 228
- “Configuring IPSec VPN Service Example,” on page 230
- “Using a Cisco 2821 Integrated Services Router,” on page 231
- “Using a Cisco ASA 5510,” on page 234
- “Configuring a WatchGuard Firebox X500,” on page 236
- “Troubleshooting NSX Edge Configuration Example,” on page 237
Terminology

IPSec is a framework of open standards. There are many technical terms in the logs of the NSX Edge and other VPN appliances that you can use to troubleshoot the IPSEC VPN.

These are some of the standards you may encounter:

- ISAKMP (Internet Security Association and Key Management Protocol) is a protocol defined by RFC 2408 for establishing Security Associations (SA) and cryptographic keys in an Internet environment. ISAKMP only provides a framework for authentication and key exchange and is designed to be key exchange independent.

- Oakley is a key-agreement protocol that allows authenticated parties to exchange keying material across an insecure connection using the Diffie-Hellman key exchange algorithm.

- IKE (Internet Key Exchange) is a combination of ISAKMP framework and Oakley. NSX Edge provides IKEv1.

- Diffie-Hellman (DH) key exchange is a cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure communications channel. VSE supports DH group 2 (1024 bits) and group 5 (1536 bits).

IKE Phase 1 and Phase 2

IKE is a standard method used to arrange secure, authenticated communications.

Phase 1 Parameters

Phase 1 sets up mutual authentication of the peers, negotiates cryptographic parameters, and creates session keys. The Phase 1 parameters used by NSX Edge are:

- Main mode
- TripleDES / AES [Configurable]
- SHA-1
- MODP group 2 (1024 bits)
- pre-shared secret [Configurable]
- SA lifetime of 28800 seconds (eight hours) with no kbytes rekeying
- ISAKMP aggressive mode disabled

Phase 2 Parameters

IKE Phase 2 negotiates an IPSec tunnel by creating keying material for the IPSec tunnel to use (either by using the IKE phase one keys as a base or by performing a new key exchange). The IKE Phase 2 parameters supported by NSX Edge are:

- TripleDES / AES [Will match the Phase 1 setting]
- SHA-1
- ESP tunnel mode
- MODP group 2 (1024 bits)
- Perfect forward secrecy for rekeying
- SA lifetime of 3600 seconds (one hour) with no kbytes rekeying
Selectors for all IP protocols, all ports, between the two networks, using IPv4 subnets

Transaction Mode Samples

NSX Edge supports Main Mode for Phase 1 and Quick Mode for Phase 2.

NSX Edge proposes a policy that requires PSK, 3DES/AES128, sha1, and DH Group 2/5. The peer must accept this policy; otherwise, the negotiation phase fails.

Phase 1: Main Mode Transactions

This example shows an exchange of Phase 1 negotiation initiated from a NSX Edge to a Cisco device.

The following transactions occur in sequence between the NSX Edge and a Cisco VPN device in Main Mode.

1. NSX Edge to Cisco
   - proposal: encrypt 3des-cbc, sha, psk, group5(group2)
   - DPD enabled

2. Cisco to NSX Edge
   - contains proposal chosen by Cisco
   - If the Cisco device does not accept any of the parameters the NSX Edge sent in step one, the Cisco device sends the message with flag NO_PROPOSAL_CHOSEN and terminates the negotiation.

3. NSX Edge to Cisco
   - DH key and nonce

4. Cisco to NSX Edge
   - DH key and nonce

5. NSX Edge to Cisco (Encrypted)
   - include ID (PSK)

6. Cisco to NSX Edge (Encrypted)
   - include ID (PSK)
   - If the Cisco device finds that the PSK doesn't match, the Cisco device sends a message with flag INVALID_ID_INFORMATION; Phase 1 fails.

Phase 2: Quick Mode Transactions

The following transactions occur in sequence between the NSX Edge and a Cisco VPN device in Quick Mode.

1. NSX Edge to Cisco
   NSX Edge proposes Phase 2 policy to the peer. For example:

   Aug 26 12:16:09 weiqing-desktop
   ipsec[5789]:
   "s1-c1" #2: initiating Quick Mode
   PSK+ENCRYPT+TUNNEL+PFS+UP+SAREFTRACK
   {using isakmp#1 msgid:d20849ac
   proposal=3DES(3)_192-SHA1(2)_160
   pfs_group=OAKLEY_GROUP_MODP1024}
2 Cisco to NSX Edge
Cisco device sends back NO_PROPOSAL_CHOSEN if it does not find any matching policy for the proposal. Otherwise, the Cisco device sends the set of parameters chosen.

3 NSX Edge to Cisco
To facilitate debugging, you can enable IPSec logging on the NSX Edge and enable crypto debug on Cisco (debug crypto isakmp <level>).

Configuring IPSec VPN Service Example
You must configure VPN parameters and then enable the IPSEC service.

Procedure
1 Configure NSX Edge VPN Parameters Example on page 230
You must configure at least one external IP address on NSX Edge to provide IPSec VPN service.
2 Enable IPSec VPN Service Example on page 231
You must enable the IPSec VPN service for traffic to flow from the local subnet to the peer subnet.

Configure NSX Edge VPN Parameters Example
You must configure at least one external IP address on NSX Edge to provide IPSec VPN service.

Procedure
1 Log in to the vSphere Web Client.
2 Click Networking & Security and then click NSX Edges.
3 Double-click an NSX Edge.
4 Click the Monitor tab and then click the VPN tab.
5 Click IPSec VPN.
6 Click the Add (➕) icon.
7 Type a name for the IPSec VPN.
8 Type the IP address of the NSX Edge instance in Local Id. This will be the peer Id on the remote site.
9 Type the IP address of the local endpoint.
   If you are adding an IP to IP tunnel using a pre-shared key, the local Id and local endpoint IP can be the same.
10 Type the subnets to share between the sites in CIDR format. Use a comma separator to type multiple subnets.
11 Type the Peer Id to uniquely identify the peer site. For peers using certificate authentication, this ID must be the common name in the peer's certificate. For PSK peers, this ID can be any string. VMware recommends that you use the public IP address of the VPN or a FQDN for the VPN service as the peer ID.
12 Type the IP address of the peer site in Peer Endpoint. If you leave this blank, NSX Edge waits for the peer device to request a connection.
13 Type the internal IP address of the peer subnet in CIDR format. Use a comma separator to type multiple subnets.
14 Select the Encryption Algorithm.
15 In Authentication Method, select one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSK (Pre Shared Key)</td>
<td>Indicates that the secret key shared between NSX Edge and the peer site is</td>
</tr>
<tr>
<td></td>
<td>to be used for authentication. The secret key can be a string with a</td>
</tr>
<tr>
<td></td>
<td>maximum length of 128 bytes.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Indicates that the certificate defined at the global level is to be used for</td>
</tr>
<tr>
<td></td>
<td>authentication.</td>
</tr>
</tbody>
</table>

16 Type the shared key in if anonymous sites are to connect to the VPN service.

17 Click **Display Shared Key** to display the key on the peer site.

18 In Diffie-Hellman (DH) Group, select the cryptography scheme that will allow the peer site and the NSX Edge to establish a shared secret over an insecure communications channel.

19 Change the MTU threshold if required.

20 Select whether to enable or disable the Perfect Forward Secrecy (PFS) threshold. In IPsec negotiations, Perfect Forward Secrecy (PFS) ensures that each new cryptographic key is unrelated to any previous key.

21 Click **OK**.

NSX Edge creates a tunnel from the local subnet to the peer subnet.

**What to do next**
Enable the IPSec VPN service.

**Enable IPSec VPN Service Example**

You must enable the IPSec VPN service for traffic to flow from the local subnet to the peer subnet.

**Procedure**
1 Log in to the vSphere Web Client.
2 Click **Networking & Security** and then click **NSX Edges**.
3 Double-click an NSX Edge.
4 Click the **Monitor** tab and then click the **VPN** tab.
5 Click **IPSec VPN**.
6 Click **Enable**.

**What to do next**
Click **Enable Logging** to log the traffic flow between the local subnet and peer subnet.

**Using a Cisco 2821 Integrated Services Router**

The following describes configurations performed using Cisco IOS.

**Procedure**
1 Configure Interfaces and Default Route

   ```
 interface GigabitEthernet0/0
 ip address 10.24.120.90 255.255.252.0
 duplex auto
 speed auto
   ```
crypto map MYVPN
!
interface GigabitEthernet0/1
ip address 172.16.0.1 255.255.0.0
duplex auto
speed auto
!
ip route 0.0.0.0 0.0.0.0 10.24.123.253

2 Configure IKE Policy

Router# config term
Router(config)# crypto isakmp policy 1
Router(config-isakmp)# encryption 3des
Router(config-isakmp)# group 2
Router(config-isakmp)# hash sha
Router(config-isakmp)# lifetime 28800
Router(config-isakmp)# authentication
pre-share
Router(config-isakmp)# exit

3 Match Each Peer with Its Pre-Shared Secret

Router# config term
Router(config)# crypto isakmp key vshield
address 10.115.199.103
Router(config-isakmp)# exit

4 Define the IPSEC Transform

Router# config term
Router(config)# crypto ipsec transform-set
myset esp-3des esp-sha-hmac
Router(config-isakmp)# exit

5 Create the IPSEC Access List

Router# config term
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)# access-list 101 permit ip
 172.16.0.0 0.0.255.255 192.168.5.0 0.0.0.255
Router(config)# exit

6 Bind the Policy with a Crypto Map and Label It

In the following example, the crypto map is labeled MYVPN

Router# config term
Router(config)# crypto map MYVPN 1
  ipsec-isakmp
% NOTE: This new crypto map will remain
disabled until a peer and a valid
access list have been configured.
Router(config-crypto-map)# set transform-set
myset
Router(config-crypto-map)# set pfs group1
Router(config-crypto-map)# set peer
10.115.199.103
Router(config-crypto-map)# match address 101
Router(config-crypto-map)# exit
Example: Example Configuration

```
router2821#show running-config output
Building configuration...

Current configuration : 1263 bytes
!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname router2821
!
boot-start-marker
boot-end-marker
!
! card type command needed for slot 0
! card type command needed for slot 1
enable password cisco
!
no aaa new-model
!
resource policy
!
ip subnet-zero
!
ip cef
!no ip dhcp use vrf connected
!
! no ip ips deny-action ips-interface
!
crypto isakmp policy 1
encr 3des
authentication pre-share
group 2
crypto isakmp key vshield address 10.115.199.103
!
crypto ipsec transform-set myset esp-3des
 esp-sha-hmac
!
crypto map MYVPN 1 ipsec-isakmp
set peer 10.115.199.103
set transform-set myset
set pfs group1
match address 101
!
interface GigabitEthernet0/0
ip address 10.24.120.90 255.255.252.0
duplex auto
speed auto
crypto map MYVPN
!
```
interface GigabitEthernet0/1
ip address 172.16.0.1 255.255.0.0
duplex auto
speed auto
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.24.123.253
!
ip http server
no ip http secure-server
!
access-list 101 permit ip 172.16.0.0
  0.0.255.255 192.168.5.0 0.0.0.255
!
control-plane
!
line con 0
line aux 0
line vty 0 4
password cisco
login
line vty 5 15
password cisco
login
!
scheduler allocate 20000 1000
!
end

Using a Cisco ASA 5510

Use the following output to configure a Cisco ASA 5510.

ciscoasa# show running-config output
: Saved
:
ASA Version 8.2(1)18
!
hostname ciscoasa
enable password 2KFQnbNIdI.2KYOU encrypted
passwd 2KFQnbNIdI.2KYOU encrypted
names
!
interface Ethernet0/0
nameif untrusted
security-level 100
ip address 10.24.120.90 255.255.252.0
!
interface Ethernet0/1
nameif trusted
security-level 90
ip address 172.16.0.1 255.255.0.0
!
interface Ethernet0/2
shutdown
no nameif
no security-level
no ip address
!
interface Ethernet0/3
shutdown
no nameif
no security-level
no ip address
!
interface Management0/0
shutdown
no nameif
no security-level
no ip address
!
boot system disk0:/asa821-18-k8.bin
ftp mode passive
access-list ACL1 extended permit ip 172.16.0.0 255.255.0.0
192.168.5.0 255.255.255.0
access-list ACL1 extended permit ip 192.168.5.0 255.255.255.0
172.16.0.0 255.255.0.0
access-list 101 extended permit icmp any any
pager lines 24
mtu untrusted 1500
mtu trusted 1500
no failover
icmp unreachable rate-limit 1 burst-size 1
icmp permit any untrusted
icmp permit any trusted
no asdm history enable
arp timeout 14400
access-group 101 in interface untrusted
access-group 101 out interface untrusted
access-group 101 in interface trusted
access-group 101 out interface trusted
route untrusted 10.115.0.0 255.255.0.0 10.24.123.253 1
route untrusted 192.168.5.0 255.255.255.0 10.115.199.103 1
timeout xlate 3:00:00
timeout conn 1:00:00 half-closed 0:10:00
    udp 0:02:00 icmp 0:00:02
timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00
    mgcp-pat 0:05:00
timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00
    sip-disconnect 0:02:00
timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute
timeout tcp-proxy-reassembly 0:01:00
dynamic-access-policy-record DfltAccessPolicy
no snmp-server location
no snmp-server contact
crypto ipsec transform-set MYSET esp-3des esp-sha-hmac
crypto ipsec security-association lifetime seconds 28800
crypto ipsec security-association lifetime kilobytes 4608000
crypto map MVVPN 1 match address ACL1
crypto map MVVPN 1 set pfs
crypto map MVVPN 1 set peer 10.115.199.103
crypto map MYVPN 1 set transform-set MYSET
crypto map MYVPN interface untrusted
crypto isakmp enable untrusted
crypto isakmp policy 1
    authentication pre-share
    encryption 3des
    hash sha
    group 2
    lifetime 86400
telnet 10.0.0.0 255.0.0.0 untrusted
telnet timeout 5
ssh timeout 5
console timeout 0
no threat-detection basic-threat
no threat-detection statistics access-list
no threat-detection statistics tcp-intercept
username admin password f3UhLvUjiQsXsuK7 encrypted
tunnel-group 10.115.199.103 type ipsec-l2l
tunnel-group 10.115.199.103 ipsec-attributes
    pre-shared-key *

prompt hostname context
Cryptochecksum:29c3cc49468831ff6c07b671098885a9
: end

Configuring a WatchGuard Firebox X500

You can configure your WatchGuard Firebox X500 as a remote gateway.

**Note**  Refer to your WatchGuard Firebox documentation for exact steps.

**Procedure**

1. In Firebox System Manager, select **Tools > Policy Manager** >.
2. In Policy Manager, select **Network > Configuration**.
3. Configure the interfaces and click **OK**.
4. (Optional) Select **Network > Routes** to configure a default route.
5. Select **Network > Branch Office VPN > Manual IPSec** to configure the remote gateway.
6. In the IPSec Configuration dialog box, click **Gateways** to configure the IPSEC Remote Gateway.
7. In the IPSec Configuration dialog box, click **Tunnels** to configure a tunnel.
8. In the IPSec Configuration dialog box, click **Add** to add a routing policy.
9. Click **Close**.
10. Confirm that the tunnel is up.
**Troubleshooting NSX Edge Configuration Example**

Use this information to help you troubleshoot negotiation problems with your setup.

### Successful Negotiation (both Phase 1 and Phase 2)

The following examples display a successful negotiating result between NSX Edge and a Cisco device.

#### NSX Edge

From the NSX Edge command line interface (ipsec auto-status, part of show service ipsec command):

000 #2: "s1-c1":500 STATE_QUICK_I2 (sent QI2, IPSec SA established);
   EVENT_SA_REPLACE in 2430s; newest IPSEC; eroute owner; isakmp#1; idle;
   import:admin initiate

000 #2: "s1-c1" esp.f5f6877d@10.20.131.62 esp.7aaf335f@10.20.129.80
   tun.0@10.20.131.62 tun.0@10.20.129.80 ref=0 refhim=4294901761

000 #1: "s1-c1":500 STATE_MAIN_I4 (ISAKMP SA established); EVENT_SA_REPLACE in
   27623s; newest ISAKMP; lastdpd=0s(seq in:0 out:0); idle;
   import:admin initiate

#### Cisco

ciscoasa# show crypto isakmp sa detail

Active SA: 1
Rekey SA: 0 (A tunnel will report 1 Active and 1 Rekey SA during rekey)
Total IKE SA: 1

IKE Peer: 10.20.129.80
Type : L2L    Role    : responder
Rekey : no     State : MM_ACTIVE
Encrypt : 3des  Hash    : SHA
Auth : preshared Lifetime: 28800
Lifetime Remaining: 28379

### Phase 1 Policy Not Matching

The following lists Phase 1 Policy Not Matching Error logs.

#### NSX Edge

NSX Edge hangs in STATE_MAIN_I1 state. Look in /var/log/messages for information showing that the peer sent back an IKE message with "NO_PROPOSAL_CHOSEN" set.

000 #1: "s1-c1":500 STATE_MAIN_I1 (sent MI1, expecting MI1); EVENT_RETRANSMIT in 7s; nodpd; idle;
   import:admin initiate

000 #1: pending Phase 2 for "s1-c1" replacing #0
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: | got payload 0x800(ISAKMP_NEXT_N) needed: 0x0 opt: 0x0
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: | ***parse ISAKMP Notification Payload:
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: | next payload type: ISAKMP_NEXT_NONE
Aug 26 12:31:25 weiqing-desktop ipsec[6569]: | length: 96
Aug 26 12:31:25 weiqing-desktop ipsec[6569]:
Cisco

If debug crypto is enabled, an error message is printed to show that no proposals were accepted.

ciscoasa# Aug 26 18:17:27 [IKEv1]:
   IP = 10.20.129.80, IKE_DECODE RECEIVED
   Message (msgid=0) with payloads : HDR + SA (1) + VENDOR (13) + VENDOR (13) + NONE (0) total length : 148
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80, processing SA payload
Aug 26 18:17:27 [IKEv1]: Phase 1 failure: Mismatched attribute types for class Group Description: Rcv'd: Group 5 Cfg'd: Group 2
Aug 26 18:17:27 [IKEv1]: Phase 1 failure: Mismatched attribute types for class Group Description: Rcv'd: Group 5 Cfg'd: Group 2
Aug 26 18:17:27 [IKEv1]: IP = 10.20.129.80, IKE_DECODE SENDING
   Message (msgid=0) with payloads : HDR + NOTIFY (11) + NONE (0) total length : 124
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80, All SA proposals found unacceptable
Aug 26 18:17:27 [IKEv1]: IP = 10.20.129.80, Error processing payload: Payload ID: 1
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80, IKE MM Responder FSM error history (struct &0xd8355a60) <state>, <event>:
   MM_DONE, EV_ERROR-->MM_START, EV_RCV_MSG-->MM_START, EV_START_MM-->MM_START, EV_START_MM-->MM_START, EV_START_MM-->MM_START, EV_START_MM
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80, IKE SA MM:9e0e4511 terminating: flags 0x01000002, refcnt 0, tuncnt 0
Aug 26 18:17:27 [IKEv1 DEBUG]: IP = 10.20.129.80, sending delete/delete with reason message

Phase 2 Not Matching

The following lists Phase 2 Policy Not Matching Error logs.

NSX Edge

NSX Edge hangs at STATE_QUICK_I1. A log message shows that the peer sent a NO_PROPOSAL_CHOSEN message.

000 #2: "s1-c1":500 STATE_QUICK_I1 (sent QI1, expecting QRI1): EVENT_RETRANSMIT in 11s; lastdpd=--ls(seq in:0 out:0); idle; import:admin initiate
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | got payload
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: | ***parse ISAKMP Notification Payload:
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: |   next payload
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: |     type: ISAKMP_NEXT_NONE
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: |     length: 32
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: |       DOI: ISAKMP_DOI_IPSEC
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: |       protocol ID: 3
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: |       SPI size: 16
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: |       Notify Message
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: |         Type: NO_PROPOSAL_CHOSEN
Aug 26 12:33:54 weiqing-desktop ipsec[6933]: "s1-c1" #3:
    ignoring informational payload, type NO_PROPOSAL_CHOSEN
    msgid=00000000

Cisco

Debug message show that Phase 1 is completed, but Phase 2 failed because of policy negotiation failure.

Aug 26 16:03:49 [IKEv1]: Group = 10.20.129.80,
    IP = 10.20.129.80, PHASE 1 COMPLETED
Aug 26 16:03:49 [IKEv1]: IP = 10.20.129.80, Keep-alive type
for this connection: DPD
Aug 26 16:03:49 [IKEv1 DEBUG]: Group = 10.20.129.80,
    IP = 10.20.129.80, Starting P1 rekey timer: 21600 seconds
Aug 26 16:03:49 [IKEv1]: IP = 10.20.129.80, IKE_DECODE RECEIVED
    Message (msgid=b2cdcb13) with payloads : HDR + HASH (8)
    + SA (1) + NONCE (10) + KE (4) + ID (5) + ID (5) + NONE (0)
    total length : 288

PFS Mismatch

The following lists PFS Mismatch Error logs.

NSX Edge

PFS is negotiated as part of Phase 2. If PFS does not match, the behavior is similar to the failure case described in “Phase 2 Not Matching,” on page 238.

000 #4: "s1-c1":500 STATE_QUICK_I1 (sent QI1, expecting
    QR1); EVENT_RETRANSMIT in 8s; lastdpd=-1s(seq in:0 out:0);
    idle; import:admin initiate
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | got payload 0x800
    (ISAKMP_NEXT_N) needed: 0x0 opt: 0x0
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | ***parse ISAKMP Notification Payload:
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: |   next payload
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: |     type: ISAKMP_NEXT_NONE
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: |     length: 32
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: |       DOI: ISAKMP_DOI_IPSEC
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | protocol ID: 3
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | SPI size: 16
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | Notify Message
    Type: NO_PROPOSAL_CHOSEN
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: "s1-c1" #1: ignoring informational payload, type NO_PROPOSAL_CHOSEN
    msgid=00000000
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | info: fa 16 b3 e5
    91 a9 b0 02 a3 30 e1 d9 6e 5a 13 d4
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | info: 93 e5 e4 d7
Aug 26 12:35:52 weiqing-desktop ipsec[7312]: | processing informational NO_PROPOSAL_CHOSEN (14)

Cisco

Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, sending delete/delete with reason message
Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, constructing blank hash payload
Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, constructing blank hash payload
Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, constructing IKE delete payload
Aug 26 19:00:26 [IKEv1 DEBUG]: Group = 10.20.129.80, IP = 10.20.129.80, constructing qm hash payload
Aug 26 19:00:26 [IKEv1]: IP = 10.20.129.80, IKE_DECODE SENDING Message (msgid=19eb1e59) with payloads : HDR + HASH (8) + DELETE (12) + NONE (0) total length : 80
Aug 26 19:00:26 [IKEv1]: Group = 10.20.129.80, IP = 10.20.129.80, Session is being torn down. Reason: Phase 2 Mismatch

PSK not Matching

The following lists PSK Not Matching Error logs

NSX Edge

PSK is negotiated in the last round of Phase 1. If PSK negotiation fails, NSX Edge state is STATE_MAIN_I4. The peer sends a message containing INVALID_ID_INFORMATION.

Aug 26 11:55:55 weiqing-desktop ipsec[3855]: "s1-c1" #1: transition from state STATE_MAIN_I3 to state STATE_MAIN_I4
Aug 26 11:55:55 weiqing-desktop ipsec[3855]: "s1-c1" #1: ISAKMP SA established {auth=OAKLEY_PRESHARED_KEY cipher=oakley_3des_cbc_192 prf=oakley_sha group=modp1024}
Aug 26 11:55:55 weiqing-desktop ipsec[3855]: "s1-c1" #1: Dead Peer Detection (RFC 3706): enabled
Aug 26 11:55:55 weiqing-desktop ipsec[3855]: "s1-c1" #2: initiating Quick Mode PSK+ENCRYPT+TUNNEL+PFS+UP+SAREFTRACK {using isakmp#1 msgid:e8add10e proposal=3DES(3)_192-SHA1(2)_160

VMware, Inc.
Packet Capture for a Successful Negotiation

The following lists a packet capture session for a successful negotiation between NSX Edge and a Cisco device.

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9203</td>
<td>768.394800</td>
<td>10.20.129.80</td>
<td>10.20.131.62</td>
<td>ISAKMP Identity Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Main Mode)</td>
</tr>
</tbody>
</table>

Frame 9203 (190 bytes on wire, 190 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
   Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
   Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
   Initiator cookie: 92585D2D797E9C52
   Responder cookie: 0000000000000000
   Next payload: Security Association (1)
   Version: 1.0
   Exchange type: Identity Protection (Main Mode) (2)
   Flags: 0x00
   Message ID: 0x00000000
   Length: 148
   Security Association payload
      Next payload: Vendor ID (13)
      Payload length: 84
      Domain of interpretation: IPSEC (1)
      Situation: IDENTITY (1)
      Proposal payload # 0
      Next payload: NONE (0)
      Payload length: 72
      Proposal number: 0
      Protocol ID: ISAKMP (1)
SPI Size: 0
Proposal transforms: 2
Transform payload # 0
  Next payload: Transform (3)
  Payload length: 32
  Transform number: 0
  Transform ID: KEY_IKE (1)
  Life-Type (11): Seconds (1)
  Life-Duration (12): Duration-Value (28800)
  Encryption-Algorithm (1): 3DES-CBC (5)
  Hash-Algorithm (2): SHA (2)
  Authentication-Method (3): PSK (1)
  Group-Description (4): 1536 bit MODP group (5)
Transform payload # 1
  Next payload: NONE (0)
  Payload length: 32
  Transform number: 1
  Transform ID: KEY_IKE (1)
  Life-Type (11): Seconds (1)
  Life-Duration (12): Duration-Value (28800)
  Encryption-Algorithm (1): 3DES-CBC (5)
  Hash-Algorithm (2): SHA (2)
  Authentication-Method (3): PSK (1)
  Group-Description (4): Alternate 1024-bit MODP group (2)
Vendor ID: 4F456C6A405D72544D42754D
  Next payload: Vendor ID (13)
  Payload length: 16
  Vendor ID: 4F456C6A405D72544D42754D
  Vendor ID: RFC 3706 Detecting Dead IKE Peers (DPD)
  Next payload: NONE (0)
  Payload length: 20
  Vendor ID: RFC 3706 Detecting Dead IKE Peers (DPD)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9204</td>
<td>768.395550</td>
<td>10.20.131.62</td>
<td>10.20.129.80</td>
<td>ISAKMP Identity Protection (Main Mode)</td>
</tr>
</tbody>
</table>

Frame 9204 (146 bytes on wire, 146 bytes captured)
Ethernet II, Src: Cisco_80:70:f5 (00:13:c4:80:70:f5),
  Dst: Vmware_9d:2c:dd (00:50:56:9d:2c:dd)
Internet Protocol, Src: 10.20.131.62 (10.20.131.62),
  Dst: 10.20.129.80 (10.20.129.80)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
  Initiator cookie: 92585D2D797E9C52
  Responder cookie: 34704CFC8C8DBD09
  Next payload: Security Association (1)
  Version: 1.0
  Exchange type: Identity Protection (Main Mode) (2)
  Flags: 0x00
  Message ID: 0x00000000
  Length: 104
  Security Association payload
    Next payload: Vendor ID (13)
    Payload length: 52
Domain of interpretation: IPSEC (1)
Situation: IDENTITY (1)
Proposal payload # 1
  Next payload: NONE (0)
  Payload length: 40
  Proposal number: 1
  Protocol ID: ISAKMP (1)
  SPI Size: 0
  Proposal transforms: 1
Transform payload # 1
  Next payload: NONE (0)
  Payload length: 32
  Transform number: 1
  Transform ID: KEY_IKE (1)
  Encryption-Algorithm (1): 3DES-CBC (5)
  Hash-Algorithm (2): SHA (2)
  Group-Description (4): Alternate 1024-bit MODP group (2)
  Authentication-Method (3): PSK (1)
  Life-Type (11): Seconds (1)
  Life-Duration (12): Duration-Value (28800)
Vendor ID: Microsoft L2TP/IPSec VPN Client
  Next payload: NONE (0)
  Payload length: 24
  Vendor ID: Microsoft L2TP/IPSec VPN Client

No. Time Source Destination Protocol Info
9205 768.399599 10.20.129.80 10.20.131.62 ISAKMP Identity Protection
    (Main Mode)

Frame 9205 (222 bytes on wire, 222 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
  Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
  Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
  Initiator cookie: 92585D2D797E9C52
  Responder cookie: 34704CFC8C8DBD09
  Next payload: Key Exchange (4)
  Version: 1.0
  Exchange type: Identity Protection (Main Mode) (2)
  Flags: 0x00
  Message ID: 0x00000000
  Length: 180
  Key Exchange payload
  Next payload: Nonce (10)
  Payload length: 132
  Key Exchange Data (128 bytes / 1024 bits)
  Nonce payload
  Next payload: NONE (0)
  Payload length: 20
  Nonce Data

No. Time Source Destination Protocol Info
Frame 9206 (298 bytes on wire, 298 bytes captured)
Ethernet II, Src: Cisco_80:70:f5 (00:13:c4:80:70:f5),
  Dst: Vmware_9d:2c:dd (00:50:56:9d:2c:dd)
Internet Protocol, Src: 10.20.131.62 (10.20.131.62),
  Dst: 10.20.129.80 (10.20.129.80)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
  Initiator cookie: 92585D2D797E9C52
  Responder cookie: 34704CFC8C8DBD09
  Next payload: Key Exchange (4)
  Version: 1.0
  Exchange type: Identity Protection (Main Mode) (2)
  Flags: 0x00
  Message ID: 0x00000000
  Length: 256
  Key Exchange payload
    Next payload: Nonce (10)
    Payload length: 132
    Key Exchange Data (128 bytes / 1024 bits)
  Nonce payload
    Next payload: Vendor ID (13)
    Payload length: 24
    Nonce Data
  Vendor ID: CISCO-UNITY-1.0
    Next payload: Vendor ID (13)
    Payload length: 20
  Vendor ID: CISCO-UNITY-1.0
  Vendor ID: draft-beaulieu-ike-xauth-02.txt
    Next payload: Vendor ID (13)
    Payload length: 12
    Vendor ID: draft-beaulieu-ike-xauth-02.txt
  Vendor ID: C1B7EBE18C8CBD099E89695E2CB16A4A
    Next payload: Vendor ID (13)
    Payload length: 20
  Vendor ID: C1B7EBE18C8CBD099E89695E2CB16A4A
  Vendor ID: CISCO-CONCENTRATOR
    Next payload: NONE (0)
    Payload length: 20
  Vendor ID: CISCO-CONCENTRATOR

  No.     Time        Source        Destination   Protocol Info
         9207    768.404990   10.20.129.80   10.20.131.62   ISAKMP Identity Protection
                  (Main Mode)

Frame 9207 (110 bytes on wire, 110 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
  Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
  Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
  Initiator cookie: 92585D2D797E9C52
  Responder cookie: 34704CFC8C8DBD09
Next payload: Identification (5)
Version: 1.0
Exchange type: Identity Protection (Main Mode) (2)
Flags: 0x01
Message ID: 0x00000000
Length: 68
Encrypted payload (40 bytes)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9208</td>
<td>768.405921</td>
<td>10.20.131.62</td>
<td>10.20.129.80</td>
<td>ISAKMP Identity Protection (Main Mode)</td>
</tr>
</tbody>
</table>

Frame 9208 (126 bytes on wire, 126 bytes captured)
Ethernet II, Src: Cisco_80:70:f5 (00:13:c4:80:70:f5),
Dst: Vmware_9d:2c:dd (00:50:56:9d:2c:dd)
Internet Protocol, Src: 10.20.131.62 (10.20.131.62),
Dst: 10.20.129.80 (10.20.129.80)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Initiator cookie: 92585D2D797E9C52
Responder cookie: 34704CFC8C8DBD09
Next payload: Identification (5)
Version: 1.0
Exchange type: Identity Protection (Main Mode) (2)
Flags: 0x01
Message ID: 0x00000000
Length: 84
Encrypted payload (56 bytes)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9209</td>
<td>768.409799</td>
<td>10.20.129.80</td>
<td>10.20.131.62</td>
<td>ISAKMP Quick Mode</td>
</tr>
</tbody>
</table>

Frame 9209 (334 bytes on wire, 334 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Initiator cookie: 92585D2D797E9C52
Responder cookie: 34704CFC8C8DBD09
Next payload: Hash (8)
Version: 1.0
Exchange type: Quick Mode (32)
Flags: 0x01
Message ID: 0x79a63fb1
Length: 292
Encrypted payload (264 bytes)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9210</td>
<td>768.411797</td>
<td>10.20.131.62</td>
<td>10.20.129.80</td>
<td>ISAKMP Quick Mode</td>
</tr>
</tbody>
</table>

Frame 9210 (334 bytes on wire, 334 bytes captured)
Ethernet II, Src: Cisco_80:70:f5 (00:13:c4:80:70:f5),
Dst: Vmware_9d:2c:dd (00:50:56:9d:2c:dd)
Internet Protocol, Src: 10.20.131.62 (10.20.131.62),

Dst: 10.20.129.80 (10.20.129.80)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Initiator cookie: 92585D2D797E9C52
Responder cookie: 34704CFC8C8DBD09
Next payload: Hash (8)
Version: 1.0
Exchange type: Quick Mode (32)
Flags: 0x01
Message ID: 0x79a63fb1
Length: 292
Encrypted payload (264 bytes)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>9211</td>
<td>768.437057</td>
<td>10.20.129.80</td>
<td>10.20.131.62</td>
<td>ISAKMP Quick Mode</td>
</tr>
</tbody>
</table>

Frame 9211 (94 bytes on wire, 94 bytes captured)
Ethernet II, Src: Vmware_9d:2c:dd (00:50:56:9d:2c:dd),
    Dst: Cisco_80:70:f5 (00:13:c4:80:70:f5)
Internet Protocol, Src: 10.20.129.80 (10.20.129.80),
    Dst: 10.20.131.62 (10.20.131.62)
User Datagram Protocol, Src Port: isakmp (500), Dst Port: isakmp (500)
Internet Security Association and Key Management Protocol
Initiator cookie: 92585D2D797E9C52
Responder cookie: 34704CFC8C8DBD09
Next payload: Hash (8)
Version: 1.0
Exchange type: Quick Mode (32)
Flags: 0x01
Message ID: 0x79a63fb1
Length: 52
Encrypted payload (24 bytes)
Data Security Regulations

Below are descriptions of each of the regulations available within NSX Data Security.

This chapter includes the following topics:

- “Arizona SB-1338,” on page 249
- “ABA Routing Numbers,” on page 249
- “Australia Bank Account Numbers,” on page 249
- “Australia Business and Company Numbers,” on page 249
- “Australia Medicare Card Numbers,” on page 250
- “Australia Tax File Numbers,” on page 250
- “California AB-1298,” on page 250
- “California SB-1386,” on page 251
- “Canada Social Insurance Numbers,” on page 251
- “Canada Drivers License Numbers,” on page 251
- “Colorado HB-1119,” on page 252
- “Connecticut SB-650,” on page 252
- “Credit Card Numbers,” on page 252
- “Custom Account Numbers,” on page 252
- “EU Debit Card Numbers,” on page 253
- “FERPA (Family Educational Rights and Privacy Act),” on page 253
- “Florida HB-481,” on page 253
- “France IBAN Numbers,” on page 253
- “France National Identification Numbers Policy,” on page 253
- “Georgia SB-230 Policy,” on page 254
- “Germany BIC Numbers Policy,” on page 254
- “Germany Driving License Numbers Policy,” on page 254
- “Germany IBAN Numbers Policy,” on page 254
- “Germany National Identification Numbers Policy,” on page 254
- "Germany VAT Numbers Policy," on page 254
- "Hawaii SB-2290 Policy," on page 255
- "HIPAA (Healthcare Insurance Portability and Accountability Act) Policy," on page 255
- "Idaho SB-1374 Policy," on page 255
- "Illinois SB-1633," on page 256
- "Indiana HB-1101 Policy," on page 256
- "Italy Driving License Numbers Policy," on page 256
- "Italy IBAN Numbers Policy," on page 256
- "Italy National Identification Numbers Policy," on page 256
- "Kansas SB-196 Policy," on page 257
- "Louisiana SB-205 Policy," on page 257
- "Maine LD-1671 Policy," on page 257
- "Massachusetts CMR-201," on page 258
- "Minnesota HF-2121," on page 258
- "Montana HB-732," on page 258
- "Netherlands Driving Licence Numbers," on page 258
- "Nevada SB-347," on page 259
- "New Hampshire HB-1660," on page 259
- "New Jersey A-4001," on page 259
- "New York AB-4254," on page 260
- "New Zealand Inland Revenue Department Numbers," on page 260
- "New Zealand Ministry of Health Numbers," on page 260
- "Ohio HB-104," on page 260
- "Oklahoma HB-2357," on page 261
- "Patient Identification Numbers," on page 261
- "Payment Card Industry Data Security Standard (PCI-DSS)," on page 261
- "Texas SB-122," on page 261
- "UK BIC Numbers," on page 262
- "UK Driving Licence Numbers," on page 262
- "UK IBAN Numbers," on page 262
- "UK National Health Service Numbers," on page 262
- "UK National Insurance Numbers (NINO)," on page 262
- "UK Passport Numbers," on page 262
- "US Drivers License Numbers," on page 263
- "US Social Security Numbers," on page 263
- "Utah SB-69," on page 263
- "Vermont SB-284," on page 263
Arizona SB-1338

Arizona SB-1338 is a state data privacy law which protects personally identifiable information. Arizona SB-1338 was signed into law April 26, 2006 and became effective December 31, 2006. The law applies to any person or entity that conducts business in Arizona and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

ABA Routing Numbers

A routing transit number (RTN) or ABA number is a nine digit bank code, used in the United States, which appears on items such as checks that identifies which financial institution it is drawn upon. This code is also used by the Automated Clearing House to process direct deposits and other automated transfers. This system is named after the American Bankers Association, which designed it in 1910.

There are approximately 24,000 active routing and transit numbers currently in use. Every financial institution has one of these; it is a 9-digit number printed in MICR font at the bottom of checks that specifically identifies which financial institution it is associated with, and it is governed by the Routing Number Administrative Board which is sponsored by the ABA.

The primary purposes of the routing number are:

- To identify the bank which is responsible to either pay or give credit or is entitled to receive payment or credit for a financial transaction.
- To provide a reference to a designated presentment point of the bank at which the transaction can be delivered or presented.

For more information, see “ABA Routing Number Content Blade,” on page 264.

Australia Bank Account Numbers

An Australian bank account number, along with a BSB (Bank-State-Branch number) identifies the bank account of an individual or organization.

Australia Business and Company Numbers

Australia Business Numbers (ABN) and Australia Company Numbers (ACN) uniquely identify businesses within the country.

The ABN is a unique 11-digit identifying number that businesses use when dealing with other businesses. A company’s ABN frequently includes the ACN as the last nine digits. The ABN indicates that a person, trust or company is registered with the Australian Business Register (ABR).

An Australian Company Number (usually shortened to ACN) is a unique 9-digit number issued by the Australian Securities and Investments Commission (ASIC) to every company registered under the Commonwealth Corporations Act 2001 as an identifier. The number is usually printed in three groups of three digits.
Companies are required to disclose their ACN on:
- the common seal (if any)
- every public document issued, signed or published by, or on behalf of, the company
- every eligible negotiable instrument issued, signed or published by, or on behalf of, the company
- all documents required to be lodged with ASIC

This regulation uses the content blades titled Australia Business Number or Australia Company Number.

**Australia Medicare Card Numbers**

All Australian citizens and permanent residents of Australia and their families are eligible for a Medicare Card, with the exception of residents on Norfolk Island. The card lists an individual as well as members of his or her family he or she chooses to add who are also permanent residents and meet the Medicare definition of a dependent (maximum of five names). It is necessary to provide a Medicare Number for a Medicare rebate or to gain access to the public hospital system to be treated at no cost as a public patient.

Medicare is administered by Medicare Australia (known as the Health Insurance Commission until late 2005) which also has the responsibility for supplying Medicare cards and numbers. Almost every eligible person has a card: in June 2002 there were 20.4 million Medicare card-holders, and the Australian population was less than 20 million at the time (card-holders includes overseas Australians who still have a card).

The Medicare card is used for health care purposes only and cannot be used to track in a database. It contains a name and number, and no visible photograph (with the exception of the Tasmanian “Smartcard” version which does have an electronic image of the cardholder on an embedded chip).

The primary purpose of the Medicare card is to prove Medicare eligibility when seeking Medicare-subsidized care from a medical practitioner or hospital. Legally, the card need not be produced and a Medicare number is sufficient. In practice, most Medicare providers will have policies requiring the card be presented to prevent fraud.

**Australia Tax File Numbers**

A Tax File Number (TFN) is a number that is issued to a person by the Commissioner of Taxation and is used to verify client identity and establish income level.

This policy uses the content blade titled Australia Tax File Number. Refer to the description of the content blades to understand what content will be detected.

**California AB-1298**

California AB-1298 is a state data privacy law which protects personally identifiable information. California AB-1298 in was signed into law October 14, 2007 and became effective January 1, 2008. The law applies to any person, business, or state agency that conducts business in California and owns or licenses unencrypted computerized data that includes personally identifiable information.

This law is an amendment to California SB-1386 to include medical information and health information in the definition of personal information.

The regulation looks for at least one match to personally identifiable information, as defined through the following content blades:
- Admittance and Discharge Dates
- Credit Card Numbers
- Credit Card Track Data
California SB-1386

California SB-1386 is a state data privacy law which protects personally identifiable information. California SB-1386 was signed into law September 25, 2002 and became effective July 1, 2003. The law applies to any person, business, or state agency that conducts business in California and owns or licenses unencrypted computerized data that includes personally identifiable information.

This law has been amended to include medical information and health information; it is now referred to as California AB-1298, which is provided as an expanded regulation in the SDK. If California AB-1298 is enabled, you do not need to also use this regulation as the same information is detected as part of AB-1298.

The regulation looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Canada Social Insurance Numbers

A Social Insurance Number (SIN) is a number issued in Canada to administer various government programs. The SIN was created in 1964 to serve as a client account number in the administration of the Canada Pension Plan and Canada's varied employment insurance programs. In 1967, Revenue Canada (now the Canada Revenue Agency) started using the SIN for tax reporting purposes.

Canada Drivers License Numbers

In Canada, driver’s licenses are issued by the government of the province in which the driver resides. Thus, specific regulations relating to driver’s licenses vary province to province, though overall they are quite similar. All provinces have provisions allowing non-residents to use licenses issued by other provinces and International Driving Permits.

The regulation looks for at least a match to at least one of the following content blades:

- Alberta Drivers Licence
- British Columbia Drivers Licence
- Manitoba Drivers Licence
- New Brunswick Drivers Licence
- Newfoundland and Labrador Drivers Licence
- Nova Scotia Drivers Licence

License pattern rules: 5 letters followed by 9 digits
Ontario Drivers Licence
Prince Edward Island Drivers Licence
Quebec Drivers Licence
Saskatchewan Drivers Licence

**Colorado HB-1119**

Colorado HB-1119 is a state data privacy law which protects personally identifiable information. Colorado HB-1119 was signed into law April 24, 2006 and became effective September 1, 2006. The law applies to any individual or a commercial entity that conducts business in Colorado and owns or licenses unencrypted computerized data that includes personally identifiable information.

The regulation looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

**Connecticut SB-650**

Connecticut SB-650 is a state data privacy law which protects personally identifiable information. Connecticut SB-650 was signed into law June 8, 2005 and became effective January 1, 2006. The law applies to any person, business or agency that conducts business in Connecticut and owns or licenses unencrypted computerized data that includes personally identifiable information.

The regulation looks for at least one match to personally identifiable information, as defined through the following content blades:
- Admittance and Discharge Dates
- Birth and Death Certificates
- Credit Card Numbers
- Credit Card Track Data
- Group Insurance Numbers
- Health Plan Beneficiary Numbers
- Healthcare Dictionaries
- Medical History
- Patient Identification Numbers
- US Drivers License Numbers
- US National Provider Identifiers
- US Social Security Numbers

**Credit Card Numbers**

**Custom Account Numbers**

If you have organizational account numbers that need to be protected, then customize the content blade assigned to the Custom Account Numbers regulation with the number pattern via a regular expression.
EU Debit Card Numbers

The policy looks for debit card numbers as issued by the major debit card carriers in the European Union such as Maestro, Visa and Laser.

FERPA (Family Educational Rights and Privacy Act)

FERPA protects the privacy of student records at educational institutions receiving U.S. Department of Education funds. It requires the educational institution to have written permission from a parent or student in order to release information from a student’s educational record.

Under certain circumstances the release of information such as name, address, telephone number, honors and awards, and dates of attendance may be released or published without permission. Information that can connect an individual with grades or disciplinary actions requires permission.

The policy must match both of the following content blades for a document to trigger as a violation:

- Student Identification Numbers
- Student Records

Florida HB-481

Florida HB-481 is a state data privacy law which protects personally identifiable information. Florida HB-481 was signed into law June 14, 2005 and became effective July 1, 2005. The law applies to any person, firm, association, joint venture, partnership, syndicate, corporation, and all other groups or combinations that conduct business in Florida and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

France IBAN Numbers

A France International Bank Account Number (IBAN) is an international standard for identifying France bank accounts across national borders and was originally adopted by the European Committee for Banking Standards. The official IBAN registrar under ISO 13616:2003 is issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade France IBAN Number.

France National Identification Numbers Policy

The policy identifies documents and transmissions that contain national identification numbers, also called INSEE numbers and Social Security numbers, issued to individuals at birth by the Institut National de la Statistique et des Etudes Economiques (INSEE) in France.

The policy looks for a match to the content blade France National Identification Number.
Georgia SB-230 Policy

Georgia SB-230 is a state data privacy law which protects personally identifiable information. Georgia SB-230 was signed into law May 5, 2005 and became effective May 5, 2005. The law applies to any person or entity who, for monetary fees or dues, engages in whole or in part in the business of collecting, assembling, evaluating, compiling, reporting, transmitting, transferring, or communicating information concerning individuals for the primary purpose of furnishing personally identifiable information to nonaffiliated third parties, or any state or local agency or subdivision thereof that maintains data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Germany BIC Numbers Policy

A Bank Identifier Code (BIC) uniquely identifies a particular bank and is used in Germany and worldwide for the exchange of money and messages between banks. The policy identifies documents and transmissions that contain BIC codes, also known as SWIFT codes, issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade Germany BIC Number.

Germany Driving License Numbers Policy

A Germany Drivers License Number is an identification number on a German Drivers License and identifies the owner of said number for the purposes of driving and driving offences.

The policy looks for a match to the content blade Germany Driving License Number.

Germany IBAN Numbers Policy

International Bank Account Number (IBAN) is an international standard for identifying bank accounts across national borders and was originally adopted by the European Committee for Banking Standards. The official IBAN registrar under ISO 13616:2003 is issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade Germany IBAN Number.

Germany National Identification Numbers Policy

The policy identifies documents and transmissions that contain personal identification numbers, or Personalausweis, issued to individuals in Germany.

The policy looks for a match to the content blade Germany National Identification Number.

Germany VAT Numbers Policy

The policy looks for a match to the content blade Germany VAT Number.
Hawaii SB-2290 Policy

Hawaii SB-2290 is a state data privacy law which protects personally identifiable information.

Hawaii SB-2290 was signed into law May 25, 2006 and became effective January 1, 2007. The law applies to any sole proprietorship, partnership, corporation, association, or other group, however organized, and whether or not organized to operate at a profit, including financial institutions organized, chartered, or holding a license or authorization certificate under the laws of Hawaii, any other state, the US, or any other country, or the parent or the subsidiary of any such financial institution, and any entity whose business is records destruction, or any government agency that collects personally identifiable information for specific government purposes.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

HIPAA (Healthcare Insurance Portability and Accountability Act) Policy

The Health Insurance Portability and Accountability Act (HIPAA) was enacted by the Congress of the United States of America. HIPAA includes a Privacy Rule regulating the use and disclosure of protected health information (PHI), a Security Rule defining security safeguards required for electronic protected health information (ePHI), and an Enforcement Rule that defines procedures for violation investigations and penalties for confirmed violations.

PHI is defined as individually identifiable health information that is transmitted or maintained in any form or medium (electronic, oral, or paper) by a covered entity or its business associates, excluding certain educational and employment records. Individually identifiable means the identity of the subject is or may readily be ascertained by the investigator or associated with the information.

This policy is designed to detect electronic PHI, which contains a personal health number in addition to health-related terminology. Some false negatives may occur since combinations of personally identifiable information, such as name and address, would not be considered as ePHI with this policy. Internal research indicates that the majority of health communication will contain a personal health number in addition to health-related terminology.

Idaho SB-1374 Policy

Idaho SB-1374 is a state data privacy law which protects personally identifiable information. Idaho SB-1374 was signed into law March 30, 2006 and became effective July 1, 2006. The law applies to any agency, individual, or commercial entity that conducts business in Idaho and owns or licenses unencrypted computerized data that includes personally identifiable information about a resident of Idaho.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
Illinois SB-1633

Illinois SB-1633 is a state data privacy law which protects personally identifiable information. Illinois SB-1633 was signed into law June 16, 2005 and became effective June 27, 2006.

The law applies to any data collector, which includes, but is not limited to, government agencies, public and private universities, privately and publicly held corporations, financial institutions, retail operators, and any other entity that, for any purpose, handles, collects, disseminates, or otherwise deals with nonpublic personally identifiable information that owns or licenses personally identifiable information concerning an Illinois resident.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Indiana HB-1101 Policy

Indiana HB-1101 is a state data privacy law which protects personally identifiable information. Indiana HB-1101 was signed into law April 26, 2005 and became effective July 1, 2006. The law applies to any individual, corporation, business trust, estate, trust partnership, association, nonprofit corporation or organization, cooperative, or any other legal entity that owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Italy Driving License Numbers Policy

A Italy Drivers License Number is an identification number on a Italian Drivers License and identifies the owner of said number for the purposes of driving and driving offences.

The policy looks for a match to the content blade Italy Driving License Number.

Italy IBAN Numbers Policy.

A International Bank Account Number (IBAN) is an international standard for identifying bank accounts across national borders and was originally adopted by the European Committee for Banking Standards. The official IBAN registrar under ISO 13616:2003 issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT)

The policy looks for a match to the content blade Italy IBAN Number.

Italy National Identification Numbers Policy

The policy identifies documents and transmissions that contain personal identification numbers, or Codice Fiscale, issued to individuals in Italy.

The policy looks for a match to the content blade Italy National Identification Number.
Kansas SB-196 Policy

Kansas SB-196 is a state data privacy law which protects personally identifiable information. Kansas SB-196 was signed into law April 19, 2006 and became effective January 1, 2007. The law applies to any individual, partnership, corporation, trust, estate, cooperative, association, government, or government subdivision or agency or other entity that conducts business in Kansas and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Louisiana SB-205 Policy

Louisiana SB-205 is a state data privacy law which protects personally identifiable information. Louisiana SB-205 was signed into law July 12, 2005 and became effective January 1, 2006. The law applies to any individual, corporation, partnership, sole proprietorship, joint stock company, joint venture, or any other legal entity that conducts business in Louisiana and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Maine LD-1671 Policy

Maine LD-1671 is a state data privacy law which protects personally identifiable information. Maine LD-1671 was signed into law June 10, 2005 and became effective January 31, 2006.

The law applies to any individual, partnership, corporation, limited liability company, trust, estate, cooperative, association, or other entity, including agencies of state government, the University of Maine System, the Maine Community College System, Maine Maritime Academy and private colleges and universities, or any information in whole or in part in the business of collecting, assembling, evaluating, compiling, reporting, transmitting, transferring or communicating information concerning individuals for the primary purpose of furnishing personally identifiable information to nonaffiliated third parties that maintains computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
Massachusetts CMR-201

Massachusetts CMR-201 is a state data privacy regulation which protects personally identifiable information. Massachusetts CMR-201 was issued on September 19, 2008 and became effective May 1, 2009. The regulation applies to all businesses and other legal entities that own, license, collect, store or maintain personal information about a resident of the Commonwealth of Massachusetts.

The policy looks for at least one match to personally identifiable information, which may include:

- ABA Routing Numbers
- Credit Card Number
- Credit Card Track Data
- US Bank Account Numbers
- US Drivers License Number
- US Social Security Number

Minnesota HF-2121

Minnesota HF-2121 is a state data privacy law which protects personally identifiable information. Minnesota HF-2121 was signed into law June 2, 2005 and became effective January 1, 2006. The law applies to any person or business that conducts business in Minnesota and owns or licenses data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Montana HB-732

Montana HB-732 is a state data privacy law which protects personally identifiable information. Montana HB-732 was signed into law April 28, 2005 and became effective March 1, 2006. The law applies to any person or business that conducts business in Montana and owns or licenses computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Netherlands Driving Licence Numbers

A Netherlands Driving License number is an identification number on a Netherlands Drivers License and identifies the owner of said number for the purposes of driving and driving offences.

The policy looks for a match to the content blade Netherlands Driving License Number.
Nevada SB-347

Nevada SB-347 is a state data privacy law which protects personally identifiable information. Nevada SB-347 was signed into law June 17, 2005 and became effective October 1, 2005. The law applies to any government agency, institution of higher education, corporation, financial institution or retail operator, or any other type of business entity or association that owns computerized data which includes personal information.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

New Hampshire HB-1660

New Hampshire HB-1660 is a state data privacy law which protects personally identifiable information. New Hampshire HB-1660 was signed into law June 2, 2006 and became effective January 1, 2007. The law applies to any individual, corporation, trust, partnership, incorporated or unincorporated association, limited liability company, or other form of entity, or any agency, authority, board, court, department, division, commission, institution, bureau, or other state governmental entity, or any political subdivision of the state doing business in New Hampshire that owns or licenses computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

New Jersey A-4001

New Jersey A-4001 is a state data privacy law which protects personally identifiable information. New Jersey A-4001 was signed into law September 22, 2005 and became effective January 1, 2006. The law applies to New Jersey, and any country, municipality, district, public authority, public agency, and any other political subdivision or public body in New Jersey, any sole proprietorship, partnership, corporation, association, or other entity, however organized and whether or not organized to operate at a profit, including a financial institution organized, chartered, or holding a license or authorization certificate under the law of New Jersey, any other state, the United States, or of any other country, or the parent or the subsidiary of a financial institution, that conducts business in New Jersey that compiles or maintains computerized records that include personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:
- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
New York AB-4254

New York AB-4254 is a state data privacy law which protects personally identifiable information. New York AB-4254 was signed into law August 10, 2005 and became effective December 8, 2005. The law applies to any person or business which conducts business in New York and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

New Zealand Inland Revenue Department Numbers

The policy identifies documents and transmissions that contain New Zealand Inland Revenue Department (IRD) numbers issued by the Inland Revenue Department to every taxpayer and organization. The number must be provided by an individual to the Inland Revenue, employers, banks or other financial institutions, KiwiSaver scheme providers, StudyLink and tax agents.

The policy looks for a match to the content blade New Zealand Inland Revenue Department Number.

New Zealand Ministry of Health Numbers

The policy identifies documents and transmissions that contain New Zealand Health Practitioner Index (HPI) or National Health Index (NHI) numbers.

The New Zealand Ministry of Health, or Manatū Hauora in Māori, is the New Zealand government’s principal agent and advisor on health and disability. The agency uses the NHI numbering system for registering patients and the HPI system for registering medical practitioners to ensure that records are accurate while protecting the privacy of individuals. This policy detects 6-digit alphanumeric New Zealand Health Practitioner Index Common Person numbers (HPI-CPN), which uniquely identify a health practitioner or worker. This policy also detects 7-digit NHI numbers used to uniquely identify a patient within the New Zealand health system.

The policy looks for a match to either of the content blades:

- New Zealand Health Practitioner Index Number
- New Zealand National Health Index Number

Ohio HB-104

Ohio HB-104 is a state data privacy law which protects personally identifiable information. Ohio HB-104 was signed into law November 17, 2005 and became effective December 29, 2006. The law applies to any individual, corporation, business trust, estate, trust, partnership, or association that conducts business in Ohio and owns or licenses computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
Oklahoma HB-2357

Oklahoma HB-2357 is a state data privacy law which protects personally identifiable information. Oklahoma HB-2357 was signed into law June 8, 2006 and became effective November 1, 2008. The law applies to any corporations, business trusts, estates, partnerships, limited partnerships, limited liability partnerships, limited liability companies, associations, organizations, joint ventures, governments, governmental subdivisions, agencies, or instrumentalities, or any other legal entity, whether for profit or not-for-profit that conducts business in Oklahoma HB-2357 and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Patient Identification Numbers

The personally identifiable information (PII) commonly held by hospitals and healthcare-related organizations and businesses in the United States of America. This policy should be customized to define the patient identification number format.

The policy looks for at least one match to personally identifiable information, which may include:

- Patient Identification Numbers
- US National Provider Identifier
- US Social Security Number

Payment Card Industry Data Security Standard (PCI-DSS)

The PCI DSS, a set of comprehensive requirements for enhancing payment account data security, was developed by the founding payment brands of the PCI Security Standards Council, including American Express, Discover Financial Services, JCB International, MasterCard Worldwide and Visa Inc. Inc. International, to help facilitate the broad adoption of consistent data security measures on a global basis.

The PCI DSS is a multifaceted security standard that includes requirements for security management, policies, procedures, network architecture, software design and other critical protective measures. This comprehensive standard is intended to help organizations proactively protect customer account data.

The policy looks for at least one match to either of the content blades:

- Credit Card Number
- Credit Card Track Data

Texas SB-122

Texas SB-122 is a state data privacy law which protects personally identifiable information. Texas SB-122 was signed into law June 17, 2005 and became effective September 1, 2005. The law applies to any person that conducts business in Texas and owns or licenses unencrypted computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
Credit Card Track Data
US Drivers License Number
US Social Security Number

UK BIC Numbers
A Bank Identifier Code (BIC) uniquely identifies a particular bank and is used in the UK and worldwide for the exchange of money and messages between banks. The policy identifies documents and transmissions that contain BIC codes, also known as SWIFT codes, issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade UK BIC Number.

UK Driving Licence Numbers
A UK driving license number is an identification number on a UK driving license and identifies the owner of said number for the purposes of driving and driving offences.

The policy looks for a match to the content blade UK Driving License Number.

UK IBAN Numbers
International Bank Account Number (IBAN) is an international standard for identifying the UK bank accounts across national borders and was originally adopted by the European Committee for Banking Standards. The official IBAN registrar under ISO 13616:2003 is issued by the Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The policy looks for a match to the content blade UK IBAN Number.

UK National Health Service Numbers
A UK National Health Service number is an identification number provided by the UK National Health Service and identifies the owner of said number for the purposes of medical records.

The policy looks for a match to the content blade UK National Health Service Number.

UK National Insurance Numbers (NINO)
UK National Insurance is a system of payments made out of earnings by employees, employers and the self-employed to the Government that entitle you to a state pension and other benefits.

UK National Insurance Numbers (NINO) are the identification numbers assigned to each person born in the UK, or to anyone resident in the UK who is a legal employee, student, recipient of social welfare benefits, pension etc.

The policy looks for a match at least one of the content blades UK NINO Formal or UK NINO Informal.

UK Passport Numbers
The policy identifies documents and transmissions that contain passport numbers issued in the UK.

The policy looks for a match to the content blade UK Passport Number.
US Drivers License Numbers

Driver’s licenses issued in the United States have a number or alphanumeric code issued by the Department of Motor Vehicles (or equivalent), usually show a photograph of the bearer, as well as a copy of his or her signature, the address of his or her primary residence, the type or class of license, restrictions and/or endorsements (if any), the physical characteristics of the bearer (such as height, weight, hair color, eye color, and sometimes even skin color), and birth date. No two driver's license numbers issued by a state are alike. Social Security numbers are becoming less common on driver’s licenses, due to identity theft concerns.

The policy looks for a match to the content blade US Drivers Licenses.

US Social Security Numbers

The U.S. Social Security number is issued to U.S. citizens, permanent residents, and temporary (working) residents under section 205(c)(2) of the Social Security Act, codified as 42 U.S.C. § 405(c)(2). The number is issued to an individual by the Social Security Administration, an independent agency of the United States government. Its primary purpose is to track individuals for taxation purposes.

Utah SB-69

Utah SB-69 is a state data privacy law which protects personally identifiable information. Utah SB-69 was signed into law March 20, 2006 and became effective January 1, 2007. The law applies to any who owns or license computerized data that includes personally identifiable information concerning a Utah resident.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Vermont SB-284

Vermont SB-284 is a state data privacy law which protects personally identifiable information. Vermont SB-284 was signed into law May 18, 2006 and became effective January 1, 2007. The law applies to any data collector that owns or licenses unencrypted computerized data that includes personally identifiable information concerning an individual residing in Vermont.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number
Washington SB-6043

Washington SB-6043 is a state data privacy law which protects personally identifiable information. Washington SB-6043 was signed into law May 10, 2005 and became effective July 24, 2005. The law applies to any state or local agency or any person or business which conducts business in Washington and owns or licenses computerized data that includes personally identifiable information.

The policy looks for at least one match to personally identifiable information, which may include:

- Credit Card Number
- Credit Card Track Data
- US Drivers License Number
- US Social Security Number

Data Security Content Blades

This sections lists the available content blades for NSX regulations.

ABA Routing Number Content Blade

The content blade looks for matches to 3 pieces of information in close proximity of each other.

The content blade looks for:

- ABA routing number
- Banking words and phrases (e.g. aba, routing number, checking, savings)
- Personally identifiable information (e.g. name, address, phone number)

Words and phrases related to banking are implemented in order to increase precision. A routing number is 9-digits and may pass for many different data types, for example, a valid US Social Security number, Canadian Social Insurance number or international telephone number.

Since routing numbers themselves are not sensitive, personally identifiable information is necessary for a violation to occur.

Admittance and Discharge Dates Content Blade

The content blade looks for matches to the U. S. Date Format entity and words and phrases such as admit date, admittance date, date of discharge, discharge date in close proximity to each other.

Alabama Drivers License Content Blade

The content blade looks for matches to the Alabama driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AL or Alabama.

Driver’s license pattern

7 Numeric or 8 Numeric

Alaska Drivers License Content Blade

The content blade looks for matches to the Alaska driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alaska.

Driver’s license pattern:

7 Numeric
Alberta Drivers Licence Content Blade

The content blade looks for matches to the Alberta driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AB or Alberta.

Driver’s license pattern

7 Numeric

Alaska Drivers License Content Blade

The content blade looks for matches to the Alaska driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alaska.

Driver’s license pattern:

7 Numeric

Alberta Drivers Licence Content Blade

The content blade looks for matches to the Alberta driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AB or Alberta.

Driver’s license pattern

7 Numeric

American Express Content Blade

The content blade looks for a combination of the following pieces of information.

- More than one American Express credit card number
- A single credit card number plus words and phrases such as ccn, credit card, expiration date
- A single credit card number plus an expiration date

Arizona Drivers License Content Blade

The content blade looks for matches to the Arizona driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AZ or Arizona.

The Driver’s license pattern can be 1 Alphabetic, 8 Numeric; or 9 Numeric (SSN); or 9 Numeric (Unformatted SSN).

Arkansas Drivers License Content Blade

The content blade looks for matches to the Arkansas driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AR or Arkansas.

Driver’s license pattern can be 9, 8 Numeric.
**Australia Bank Account Number Content Blade**

The Australian bank account number itself is not sensitive, but identifies a bank account, without identifying the bank branch. Therefore, both the account number and branch information must exist for the document to be considered sensitive.

The content blade looks for matches to both:
- An Australian bank account number
- Words and phrases related to bank state branch or BSB.

It also uses a regular expression rule to differentiate between telephone numbers of the same length.

An Australian bank account number is 6 to 10-digits without any embedded meaning. It has no check digit routine.

**Australia Business Number Content Blade**

The content blade looks for matches to both pieces of information in close proximity to each other.

- Australia Business Number
- ABN words and phrases (e.g. ABN, Australia business number)

**Australia Company Number Content Blade**

The content blade looks for matches to both pieces of information in close proximity to each other.

- Australia Company Number
- ACN words and phrases (e.g. ACN, Australia Company Number)

**Australia Medicare Card Number Content Blade**

The content blade will match if one of the following combinations of information appears in a document.

- More than one Australia Medicare Card Number
- One Medicare card number plus Medicare or patient identification terms (e.g. patient identifier, patient number)
- One Medicare card number plus two of either a name, expiration date or expiration terms

**Australia Tax File Number Content Blade**

The content blade looks for matches to both pieces of information in high proximity to each other.

- Australia Tax File Number (refer to entity description)
- Tax file number words and phrases (e.g. TFN, tax file number)

**California Drivers License Number Content Blade**

The content blade looks for matches to the California driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CA or California.

The Driver’s license pattern is 1 Alphabetic, 7 Numeric.
Canada Drivers License Number Content Blade

The content blade is only a container file for child content blades. The content blades assigned to it separately look for driver’s licenses in individual providences and territories.

Canada Social Insurance Number Content Blade

The content blade is only a container file for child content blades. The content blades assigned to it separately look for formatted and unformatted versions of the Canadian Social Insurance numbers plus personal information so different rules may be assigned to them. The formatted version of the Social Insurance number is a more specific pattern, so the rules are less strict for returning a match. However, the unformatted version is very general and matches to many common numbers.

Colorado Drivers License Number Content Blade

The content blade looks for matches to the Colorado driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CO or Colorado.

The driver’s license pattern is 9 Numeric.

Connecticut Drivers License Number Content Blade

The content blade looks for matches to the Connecticut driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CT or Connecticut.

Driver’s license pattern: 9 Numeric, 1st two positions are month of birth in odd or even year. 01-12 Jan-Dec odd years, 13-24 Jan-Dec even years, 99 unknown.

Credit Card Number Content Blade

The content blade looks for a combination of the following pieces of information.

- More than one credit card number
- A single credit card number plus words and phrases such as ccn, credit card, expiration date
- A single credit card number plus an expiration date

Credit Card Track Data Content Blade

Track data is the information encoded and stored on two tracks located within the magnetic stripe on the back of a credit card (debit card, gift card, etc). There are three tracks on the magstripe (magnetic strip on the back of a credit card).

Each track is .110-inch wide. The ISO/IEC standard 7811, which is used by banks, specifies:

- Track one is 210 bits per inch (bpi), and holds 79 six-bit plus parity bit read-only characters.
- Track two is 75 bpi, and holds 40 four-bit plus parity bit characters.
- Track three is 210 bpi, and holds 107 four-bit plus parity bit characters.

Your credit card typically uses only tracks one and two. Track three is a read/write track (that includes an encrypted PIN, country code, currency units, amount authorized), but its usage is not standardized among banks.

This content blade requires a match to the Credit Card Track Data entity.
**Custom Account Number Content Blade**

The Custom Accounts content blade is an editable blade and should contain a regular expression for an organization’s custom account patterns.

**Delaware Drivers License Number Content Blade**

The content blade looks for matches to the Delaware driver’s license pattern and words and phrases such as driver’s license and license number and terms such as DE or Delaware.

**EU Debit Card Number Content Blade**

The content blade looks for patterns of the major European Union debit card numbers.

The content blade will match with a combination of the following pieces of information in close proximity, if either:

- More than one match to a EU debit card number
- A single match to a EU debit card number plus two of either a word or phrase for credit card (e.g. card number or cc#), credit card security, expiration date or name
- A single match to a EU debit card number with an expiration date

**Florida Drivers License Number Content Blade**

The content blade looks for matches to the Florida driver’s license pattern and words and phrases such as driver’s license and license number and terms such as FL or Florida.

Driver's license pattern: 1 Alphabetic, 12 Numeric.

**France Driving License Number Content Blade**

The content blade requires the following to match for a French driving license in a close proximity.

- French driving license pattern
- Either words or phrases for a driving license (e.g. driving license, permis de conduire) or E.U. date format

**France BIC Number Content Blade**

The content blade scans for French BIC numbers by requiring matches for both the following rules.

- European BIC number format
- French format of the BIC number

**France IBAN Number Content Blade**

The content blade requires the following to match for a French IBAN number in a close proximity.

- European IBAN number format
- French IBAN number pattern
France National Identification Number Content Blade
The content blade requires the following to match for a French National Identification number in a close proximity.
- More than one match to the French National Identification pattern
- One match to the French National Identification pattern plus either words or phrases for a social security number

France VAT Number Content Blade
The content blade requires a match for a French value added tax (VAT) number pattern in a close proximity to the abbreviation FR.

Georgia Drivers License Number Content Blade
The content blade looks for matches to the Georgia driver’s license pattern and words and phrases such as driver’s license and license number and terms such as GA or Georgia.
Driver’s license pattern: 7-9 Numeric; or Formatted SSN.

Germany BIC Number Content Blade
The content blade scans for German BIC numbers by requiring matches for both the following rules.
- European BIC number format
- German format of the BIC number

Germany Driving License Number Content Blade
The content blade requires the following to match for a German driving license in a close proximity.
- German driving license pattern
- Words or phrases related to a driving license (e.g. driving license, ausstellungsdatum)

Germany IBAN Number Content Blade
The content blade requires the following to match for a German IBAN number in a close proximity.
- European IBAN number format
- German IBAN number pattern
The German IBAN rule: "DE" country code followed by 22 digits.

Germany National Identification Numbers Content Blade
The content blade requires the following to match for a German National Identification number in a close proximity.
- Either a German National Identification number or a machine-readable version of the number
- Words or phrases for a German National Identification number (e.g. personalausweis, personalausweisnummer)
Germany Passport Number Content Blade

The content blade requires the following to match for a German passport number in a close proximity.

- Either a German passport number or a machine-readable version of the number
- Words or phrases for a German passport number or issuance date (e.g. reisepass, ausstellungsdatum)

Germany VAT Number Content Blade

The content blade requires a match for a German value added tax (VAT) number pattern (refer to entity description) in a close proximity to the abbreviation DE.

Group Insurance Numbers Content Blade

This is a content blade that requires customization. To use this content blade, add a regular expression to match the number pattern for an organization's Group Insurance Number. The content blade looks for matches to words and phrases such as group insurance or a name, U.S. address or U.S. date in combination with the custom regular expression.

Hawaii Drivers License Number Content Blade

The content blade looks for matches to the Hawaii driver’s license pattern and words and phrases such as driver’s license and license number and terms such as HI or Hawaii.

Driver’s license pattern: H Alphabetic, 8 Numeric; or SSN.

Italy National Identification Numbers Content Blade

The content blade requires the following to match for an Italy National Identification number in a close proximity.

1. Italy National Identification number pattern
2. Words or phrases for an Italy National Identification number (e.g. codice fiscale, national identification)

National Identification Rule: 16 character alphanumeric code. where:

- **SSS** are the first three consonants in the family name (the first vowel and then an X are used if there are not enough consonants)
- **NNN** is the first name, of which the first, third and fourth consonants are used—exceptions are handled as in family names
- **YY** are the last digits of the birth year
- **M** is the letter for the month of birth—letters are used in alphabetical order, but only the letters A to E, H, L, M, P, R to T are used (thus, January is A and October is R)
- **DD** is the day of the month of birth—in order to differentiate between genders, 40 is added to the day of birth for women (thus a woman born on May 3 has ...E43...)
- **ZZZZ** is an area code specific to the municipality where the person was born—country-wide codes are used for foreign countries, a letter followed by three digits
X is a parity character as calculated by adding together characters in the even and odd positions, and dividing them by 26. Numerical values are used for letters in even positions according to their alphabetical order. Characters in odd positions have different values. A letter is then used which corresponds to the value of the remainder of the division in the alphabet.

Pattern:

- LLLLLDDLDDLDDDL
- LLL LLL DDLDD LDDDL

**Health Plan Beneficiary Numbers**

This is a content blade that requires customization. To use this content blade, add a regular expression to identify recipients of health plan benefits and payments. The content blade looks for matches to words and phrases such as beneficiary or a name, U.S. address or U.S. date in combination with the custom regular expression.

**Idaho Drivers License Number Content Blade**

The content blade looks for matches to the Idaho driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ID or Idaho.

Driver’s license pattern: 2 Alphabetic, 6 Numeric, 1 Alphabetic.

**Illinois Drivers License Number Content Blade**

The content blade looks for matches to the Illinois driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IL or Illinois.

Driver’s license pattern: 1 Alphabetic, 11 Numeric.

**Indiana Drivers License Number Content Blade**

The content blade looks for matches to the Indiana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IN or Indiana.

Driver’s license pattern: 10 Numeric.

**Iowa Drivers License Number Content Blade**

The content blade looks for matches to the Iowa driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IA or Iowa.

Driver’s license pattern can be 3 numeric, 2 alphabetic, 3 numeric; or Social Security Number.

**Index of Procedures Content Blade**

The content blade looks for words and phrases related to medical procedures based on the International Classification of Diseases (ICD).

The content blade will match with a combination of the following pieces of information, either:

- More than one match to the Index of Procedures dictionary
- A single match to the Index of Procedures dictionary plus two of either a name, U.S. Address or U.S. Date
- A single match to the Index of Procedures dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)
Italy Driving License Number Content Blade

The content blade requires the following to match for an Italy driving license in a close proximity.

- Italy driving license pattern
- Words or phrases for a driving license (e.g. driving license, patente di guida)

Driver’s License Rule: 10 alphanumeric characters -- 2 letters, 7 numbers and a final letter. The first letter may only be characters A-V.

Driver’s License Pattern:
- LLDDDDDDDL
- LL DDDDDDD L
- LL-DDDDDDDL
- LL - DDDDDDD - L

Italy IBAN Number Content Blade

The content blade requires the following to match for a Italy IBAN number in a close proximity.

1. IBAN words and phrases (e.g. International Bank Account Number, IBAN)
2. Italy IBAN number pattern

IBAN Rule: IT country code followed by 25 alphanumeric characters.

Pattern:
- ITDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Spaces may be substituted with dashes, forward slashes or colons.

ITIN Unformatted Content Blade

The content blade looks for unformatted patterns of the U.S. Taxpayer Identification Number (ITIN). The content blade will match if an unformatted ITIN is found within close proximity of a word or phrase for an ITIN number (e.g. tax identification, ITIN).

ITIN Rule: 9-digit number that always begins with the number 9 and has a range of 70-88 in the fourth and fifth digit.

Pattern: DDDDDDDDDD
Kansas Drivers License Number Content Blade
The content blade looks for matches to the Kansas driver’s license pattern and words and phrases such as driver’s license and license number and terms such as KS or Kansas.
Driver’s license pattern: 1 Alphabetic (K), 8 Numeric; or Social Security Number.

Kentucky Drivers License Number Content Blade
The content blade looks for matches to the Kentucky driver’s license pattern and words and phrases such as driver’s license and license number and terms such as KY or Kentucky.
Driver’s license pattern: 1 Alphabetic, 8 Numeric; or Social Security Number.

Louisiana Drivers License Number Content Blade
The content blade looks for matches to the Louisiana driver’s license pattern and words and phrases such as driver's license and license number and terms such as LA or Louisiana.
Driver’s license pattern: 2 Zeros, 7 Numeric.

Maine Drivers License Number Content Blade
The content blade looks for matches to the Maine driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ME or Maine.
Driver’s license pattern: 7 Numeric, optional alphabetic X.

Manitoba Drivers Licence Content Blade
The content blade looks for matches to the Manitoba driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as MB or Manitoba in a close proximity.
License pattern rules: 12 alphanumeric characters that may be hyphen-separated, where:
- 1st character is a letter
- 2nd - 5th characters are a letter or asterisk
- 6th character is a letter
- 7th - 10th characters are digits
- 11th character is a letter
- 12th character is a letter or digit
or
- 1st character is a letter
- 2nd - 4th characters are a letter or asterisk
- 5th - 6th characters are digits
- 7th - 12th characters are a letter or digit
Driver’s license pattern:
- LLLLLDDDDDLA
- LLLLLDDAAAAAA
Maryland Drivers License Number Content Blade

The content blade looks for matches to the Maryland driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MD or Maryland.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Massachusetts Drivers License Number Content Blade

The content blade looks for matches to the Massachusetts driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MA or Massachusetts.

Driver’s license pattern: 1 Alphabetic (S), 8 Numeric; or Social Security Number

Michigan Drivers License Number Content Blade

The content blade looks for matches to the Michigan driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MI or Michigan.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Minnesota Drivers License Number Content Blade

The content blade looks for matches to the Minnesota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MN or Minnesota.

Driver’s license pattern: 1 Alphabetic, 12 Numeric

Mississippi Drivers License Number Content Blade

The content blade looks for matches to the Mississippi driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MS or Mississippi.

Driver’s license pattern: 9 Numeric; or Formatted Social Security Number

Missouri Drivers License Number Content Blade

The content blade looks for matches to the Missouri driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MO or Missouri.

Driver’s license pattern: 1 Alphabetic, 6-9 Numeric; or 9 Numeric; or Formatted Social Security Number

Montana Drivers License Number Content Blade

The content blade looks for matches to the Montana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MT or Montana.

Driver’s license pattern: 9 Numeric (SSN); or 1 Alphabetic, 1 Numeric, 1 Alphanumeric, 2 Numeric, 3 Alphabetic and 1 Numeric; or 13 Numeric

NDC Formulas Dictionary Content Blade

The content blade looks for words and phrases related to formulas based on the National Drug Codes (NDC).

The content blade will match with a combination of the following pieces of information, either:

1. More than one match to the NDC Formulas dictionary
2. A single match to the NDC Formulas dictionary plus two of either a name, U.S. Address or U.S. Date
3 A single match to the NDC Formulas dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)

**Nebraska Drivers License Number Content Blade**

The content blade looks for matches to the Nebraska driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NE or Nebraska.

Driver’s license pattern: 1 Alphabetic, 8 Numeric

**Netherlands Driving Licence Number Content Blade**

The content blade requires the following to match for a Netherlands driving license in a close proximity.

1. Netherlands driving license pattern (refer to entity description)
2. Words or phrases for a driving license (e.g. driving license, rijbewijs)

**Netherlands IBAN Number Content Blade**

The content blade requires the following to match for a Netherlands IBAN number in a close proximity.

1. IBAN words and phrases (e.g. International Bank Account Number, IBAN)
2. Netherlands IBAN number pattern

IBAN Rule: NL country code followed by 16 alphanumeric characters.

Pattern:
- `nLDDLDDDDD`  
- `nL DDLLLDDDDD`  
- `nL DD LLLL DDDDDD`  
- `nL DD LLLL DDDDD DDD`  
- `nLDD LLL DDDDD DD DD DD`  
- `nLDD LLL DDDDDDDDD`  
- `nLDD LLL DD DD DD DDDDD`  

Spaces may be substituted with dashes

**Netherlands National Identification Numbers Content Blade**

The content blade requires the following to match for a Netherlands National Identification number in a close proximity.

1. Netherlands National Identification number (refer to entity description)
2. Words or phrases for a Netherlands National Identification number (e.g. sofinummer, burgerservicenummer)
Netherlands Passport Number Content Blade

The content blade requires the following to match for a Netherlands passport number in a close proximity.

1. Netherlands passport number (refer to entity description)
2. Words or phrases for a Netherlands passport number (e.g. paspoort, Noodpaspoort)

Nevada Drivers License Number Content Blade

The content blade looks for matches to the Nevada driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NV or Nevada.

Driver’s license pattern: 9 Numeric (SSN); or 12 Numeric (last 2 are year of birth), or 10 numeric

New Brunswick Drivers Licence Content Blade

The content blade looks for matches to the New Brunswick driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NB or New Brunswick in a close proximity.

License pattern rules: 5 - 7 digits

Driver’s license pattern:
- DDDDD
- DDDDDD
- DDDDDDD

New Hampshire Drivers License Number Content Blade

The content blade looks for matches to the New Hampshire driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NH or New Hampshire.

Driver’s license pattern: 2 Numeric, 3 Alphabetic, 5 Numeric

New Jersey Drivers License Number Content Blade

The content blade looks for matches to the New Jersey driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NJ or New Jersey.

Driver’s license pattern: 1 Alphabetic, 14 Numeric

New Mexico Drivers License Number Content Blade

The content blade looks for matches to the New Mexico driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NM or New Mexico.

Driver’s license pattern: 9 Numeric

New York Drivers License Number Content Blade

The content blade looks for matches to the New York driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NY or New York.

Driver’s license pattern: 9 Numeric
New Zealand Health Practitioner Index Number Content Blade
The content blade looks for matches to the New Zealand Health Practitioner Index entity and corroborative terms such as hpi-cpn or health practitioner index.

New Zealand Inland Revenue Department Number
The content blade looks for matches to the New Zealand Inland Revenue Department Number entity and words and phrases such as IRD Number or Inland Revenue Department Number.

New Zealand National Health Index Number Content Blade
The content blade looks for matches to the New Zealand National Health Index entity and corroborative terms such as nhi or National Health index.

Newfoundland and Labrador Drivers Licence Content Blade
The content blade looks for matches to the Newfoundland and Labrador driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NL or Labrador in a close proximity.
License pattern rules: 1 letter followed by 9 digits
Driver’s license pattern: LDDDDDDDDDD

North Carolina Drivers License Number Content Blade
The content blade looks for matches to the North Carolina driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NC or North Carolina.
Driver’s license pattern: 6 - 8 Numeric

North Dakota Drivers License Number Content Blade
The content blade looks for matches to the North Dakota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ND or North Dakota.
Driver’s license pattern: 9 Numeric; or 3 Alphabetic, 6 Numeric

Nova Scotia Drivers Licence Content Blade
The content blade looks for matches to the Nova Scotia driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NS or Nova Scotia in a close proximity.
License pattern rules: 5 letters followed by 9 digits
Driver’s license pattern: LLLLLDDDDDDDD

Ohio Drivers License Number Content Blade
The content blade looks for matches to the Ohio driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OH or Ohio.
Driver’s license pattern: 2 Alphabetic, 6 Numeric
Oklahoma License Number Content Blade
The content blade looks for matches to the Oklahoma driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OK or Oklahoma.

Driver’s license pattern: 1 Alphabetic, 8 Numeric; or 9 Numeric; or Social Security Number, Formatted

Ontario Drivers Licence Content Blade
The content blade looks for matches to the Ontario driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as ON or Ontario in a close proximity.

License pattern rules: 1 letter followed by 14 digits

Driver’s license pattern: $LDDDDDDDDDDDDDD$

Oregon License Number Content Blade
The content blade looks for matches to the Oregon driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OR or Oregon.

Driver’s license pattern: 6 -7 Numeric

Patient Identification Numbers Content Blade
This is a content blade that requires customization. To use this content blade, add a regular expression for a company-specific Patient Identification Number pattern. The content blade looks for matches to words and phrases such as patient id or a name, U.S. address or U.S. date in combination with the custom regular expression.

Pennsylvania License Number Content Blade
The content blade looks for matches to the Pennsylvania driver’s license pattern and words and phrases such as driver’s license and license number and terms such as PA or Pennsylvania.

Driver’s license pattern: 8 Numeric

Prince Edward Island Drivers Licence Content Blade
The content blade looks for matches to the Prince Edward Island driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as PE or Prince Edward Island in a close proximity.

License pattern rules: 5 - 6 digits

Driver's license pattern:
- $DDDD$
- $DDDDDD$

Protected Health Information Terms Content Blade
The content blade looks for words and phrases related to personal health records and health insurance claims.

The content blade will match with a combination of the following pieces of information, either:

1. More than one match to the Protected Health Information dictionary
2 A single match to the Protected Health Information dictionary plus two of either a name, U.S. Address or U.S. Date
3 A single match to the Protected Health Information dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)

Quebec Drivers Licence Content Blade
The content blade looks for matches to the Quebec driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as QC or Quebec in a close proximity.
License pattern rules: 1 letter followed by 12 digits
Driver’s license pattern: LDDDDDDDDDDDD

Rhode Island License Number Content Blade
The content blade looks for matches to the Rhode Island driver’s license pattern and words and phrases such as driver’s license and license number and terms such as RI or Rhode Island.
Driver’s license pattern: 7 Numeric

Saskatchewan Drivers Licence Content Blade
The content blade looks for matches to the Saskatchewan driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as SK or Saskatchewan in a close proximity.
License pattern rules: 8 digits
License pattern: DDDDDDDD

SIN Formatted Content Blade
The content blade looks for formatted patterns of the Canadian Social Insurance number (SIN).
The content blade will match with a combination of the following pieces of information in medium proximity, either:
1 More than one match to a formatted SIN
2 A single match to a formatted SIN plus a driver’s license or date of birth word or phrase
3 A single match to a formatted SIN with word or phrase for a Social Security number (e.g. Social Security, SSN)

SIN Unformatted Content Blade
The content blade looks for unformatted patterns of the Canadian Social Insurance (SIN). The content blade will match if an unformatted SIN is found within close proximity of a word or phrase for a Social Insurance number (e.g. Social Insurance, SIN) or driver’s license or date of birth.

SSN Formatted Content Blade
SSN Formatted Content Blade
The content blade will match with a combination of the following pieces of information in medium proximity, either:
- More than one match to a formatted SSN
- A single match to a formatted SSN plus two of either a name, U.S. Address or U.S. Date
- A single match to a formatted SSN with word or phrase for a Social Security number (e.g. Social Security, SSN)
SSN Unformatted Content Blade
The content blade looks for unformatted patterns of the U.S. Social Security number (SSN). The content blade will match if an unformatted SSN is found within close proximity of a word or phrase for a Social Security number (e.g. Social Security, SSN).

South Carolina License Number Content Blade
The content blade looks for matches to the South Carolina driver’s license pattern and words and phrases such as driver’s license and license number and terms such as SC or South Carolina.
Driver’s license pattern: 9 Numeric

South Dakota License Number Content Blade
The content blade looks for matches to the South Dakota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as SD or South Dakota.
Driver’s license pattern: 8 Numeric; or Social Security Number

Spain National Identification Number Content Blade
The content blade looks for matches to the Spain National Identification Number entity and words and phrases such as Documento Nacional de Identidad and Número de Identificación de Extranjeros. It also uses regular expressions to differentiate between telephone numbers and to prevent double counting of DNIs and NIEs without check letters.

Spain Passport Number Content Blade
The content blade looks for matches to the Spain Passport Number and words and phrases such as pasaporte or passport.
Passport Rule: 8 alphanumeric characters -- 2 letters followed by 6 digits.
Pattern:
   LLDDDDDD
   LL-DDDDDD
   LL DDDDDD

Spain Social Security Number Content Blade
The content blade requires the following to match for a Spain Social Security number in a close proximity.
1 Spain Social Security number
2 Words or phrases for a social security number (e.g. número de la seguridad social, social security number)

Sweden IBAN Number Content Blade
The content blade requires the following to match for a Sweden IBAN number in a close proximity.
1 IBAN words and phrases (e.g. International Bank Account Number, IBAN
2 Sweden IBAN number pattern
IBAN Rule: SE country code followed by 22 digits.
Pattern: SE DDDDDDDDDDDDDDDDDDDDDD

Sweden Passport Number Content Blade
The content blade looks for matches to the Sweden Passport Number regular expression with the following possible combinations of supporting evidence.
1  Words and phrases for passport such as Passnummer
2  Words and phrases for the country Sweden, nationality and expiry dates
Passport Rule: 8 digits
Pattern:
DDDDDDDD
DD-DDDDDD
LL-DDDDDD

Tennessee License Number Content Blade
The content blade looks for matches to the Texas driver’s license pattern and words and phrases such as driver’s license and license number and terms such as TX or Texas.
Driver’s license pattern: 8 Numeric

UK BIC Number Content Blade
The content blade scans for UK BIC numbers by requiring matches for both rules.
1  European BIC number format
2  UK format of the BIC number
BIC rule: 8 or 11 alphanumeric characters. Letters 5th and 6th will always have “GB” as the ISO 3166-1 alpha-2 country code.
Pattern:
LLLLLLLAAA
LLLLLLLLAAA
LLLLLLAA-AAA
LLLLLLAA AAA
LLLLLLL AA AAA
LLLL LL AA AAA
LLLL LL AA-AAA

UK Driving License Number Content Blade
The content blade requires the following to match for a UK driving license in a close proximity.
1  UK driving license pattern
2  Either words or phrases for a driving license (e.g. driving license) or personal identification (e.g. date of birth, address, telephone)
Driving license rule: 16 - 18 alphanumeric characters and begins with a letter.
Some digits are limited in the values accepted.

**UK IBAN Number Content Blade**

The content blade requires the following to match for a UK IBAN number in a close proximity.

1. European IBAN number format
2. UK IBAN number pattern

IBAN Rule: "GB" country code followed by 20 characters.

GB, ISO country code

2 Digits (numeric characters 0 to 9 only), Check Digits (IBAN)

4 Upper case letters (A-Z only), Bank Identifier Digits

6 Digits (numeric characters 0 to 9 only), Bank branch code

8 Digits (numeric characters 0 to 9 only), Account number

Pattern:

GBDDLLLLDDDDDDDDDDDDDDDDDDDDDD
GB DD LLLL DDDD DDDD DDDD DD
GB DD LLLL DDDDDD DDDDDDDD

**UK National Health Service Number Content Blade**

The content blade requires the following to match for a UK National Health Service number in a close proximity.

1. UK National Health Service number format
2. Words and phrases relating to the National Health Service or patient identification or date of birth

**UK NINO Formal Content Blade**

The content blade looks for the formal pattern of the UK National Insurance number (NINO).

The content blade will match with a combination of the following pieces of information in high proximity, either:

1. More than one match to a NINO formal pattern
2. A single match to a NINO formal with word or phrase for a National Insurance number (e.g. NINO, taxpayer number)

**UK Passport Number Content Blade**

The content blade looks for matches to one of the U.K. passport number entities with the following supporting evidence.

1. Words and phrases for passport such as passport or a national passport code preceding a passport number
2. Words and phrases for the country, U.K, or the date of issue (optional match)
Utah License Number Content Blade
The content blade looks for matches to the Utah driver’s license pattern and words and phrases such as driver’s license and license number and terms such as UT or Utah.
Driver’s license pattern: 6 - 10 Numeric

Virginia License Number Content Blade
The content blade looks for matches to the Virginia driver’s license pattern and words and phrases such as driver’s license and license number and terms such as VA or Virginia.
Driver’s license pattern: 1 Alphabetic, 8 Numeric

Visa Card Number Content Blade
The content blade looks for a combination of the following pieces of information, either:
1. More than one JCB credit card number
2. A single credit card number plus words and phrases such as ccn, credit card, expiration date
3. A single credit card number plus an expiration date

Washington License Number Content Blade
The content blade looks for matches to the Washington driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WA or Washington.
Driver’s license pattern: 5 Alphabetic (last name), 1 Alphabetic (first name), 1 Alphabetic (middle name), 3 Numeric, 2 Alphanumeric. If last or middle name field falls short, fill with *'s.

Wisconsin License Number Content Blade
The content blade looks for matches to the Wisconsin driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WI or Wisconsin.
Driver’s license pattern: 1 Alphabetic, 13 Numeric

Wyoming License Number Content Blade
The content blade looks for matches to the Wyoming driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WY or Wyoming.
Driver’s license pattern: 9 - 10 Numeric
This sections lists the available content blades for NSX regulations.

This chapter includes the following topics:

- “ABA Routing Number Content Blade,” on page 288
- “Admittance and Discharge Dates Content Blade,” on page 288
- “Alabama Drivers License Content Blade,” on page 288
- “Alaska Drivers License Content Blade,” on page 289
- “Alberta Drivers Licence Content Blade,” on page 289
- “Alaska Drivers License Content Blade,” on page 289
- “Alberta Drivers Licence Content Blade,” on page 289
- “American Express Content Blade,” on page 289
- “Arizona Drivers License Content Blade,” on page 289
- “Arkansas Drivers License Content Blade,” on page 290
- “Australia Bank Account Number Content Blade,” on page 290
- “Australia Business Number Content Blade,” on page 290
- “Australia Company Number Content Blade,” on page 290
- “Australia Medicare Card Number Content Blade,” on page 290
- “Australia Tax File Number Content Blade,” on page 290
- “California Drivers License Number Content Blade,” on page 291
- “Canada Drivers License Number Content Blade,” on page 291
- “Canada Social Insurance Number Content Blade,” on page 291
- “Colorado Drivers License Number Content Blade,” on page 291
- “Connecticut Drivers License Number Content Blade,” on page 291
- “Credit Card Number Content Blade,” on page 291
- “Credit Card Track Data Content Blade,” on page 291
- “Custom Account Number Content Blade,” on page 292
- “Delaware Drivers License Number Content Blade,” on page 292
- “EU Debit Card Number Content Blade,” on page 292
“Florida Drivers License Number Content Blade,” on page 292
“France Driving License Number Content Blade,” on page 292
“France BIC Number Content Blade,” on page 292
“France IBAN Number Content Blade,” on page 292
“France National Identification Number Content Blade,” on page 293
“France VAT Number Content Blade,” on page 293
“Georgia Drivers License Number Content Blade,” on page 293
“Germany BIC Number Content Blade,” on page 293
“Germany Driving License Number Content Blade,” on page 293
“Germany IBAN Number Content Blade,” on page 293
“Germany National Identification Numbers Content Blade,” on page 293
“Germany Passport Number Content Blade,” on page 294
“Germany VAT Number Content Blade,” on page 294
“Group Insurance Numbers Content Blade,” on page 294
“Hawaii Drivers License Number Content Blade,” on page 294
“Italy National Identification Numbers Content Blade,” on page 294
“Health Plan Beneficiary Numbers,” on page 295
“Idaho Drivers License Number Content Blade,” on page 295
“Illinois Drivers License Number Content Blade,” on page 295
“Indiana Drivers License Number Content Blade,” on page 295
“Iowa Drivers License Number Content Blade,” on page 295
“Index of Procedures Content Blade,” on page 295
“Italy Driving License Number Content Blade,” on page 296
“Italy IBAN Number Content Blade,” on page 296
“ITIN Unformatted Content Blade,” on page 296
“Kansas Drivers License Number Content Blade,” on page 297
“Kentucky Drivers License Number Content Blade,” on page 297
“Louisiana Drivers License Number Content Blade,” on page 297
“Maine Drivers License Number Content Blade,” on page 297
“Manitoba Drivers Licence Content Blade,” on page 297
“Maryland Drivers License Number Content Blade,” on page 298
“Massachusetts Drivers License Number Content Blade,” on page 298
“Michigan Drivers License Number Content Blade,” on page 298
“Minnesota Drivers License Number Content Blade,” on page 298
“Mississippi Drivers License Number Content Blade,” on page 298
“Missouri Drivers License Number Content Blade,” on page 298
“Montana Drivers License Number Content Blade,” on page 298
ABA Routing Number Content Blade

The content blade looks for matches to 3 pieces of information in close proximity of each other.

The content blade looks for:

- ABA routing number
- Banking words and phrases (e.g. aba, routing number, checking, savings)
- Personally identifiable information (e.g. name, address, phone number)

Words and phrases related to banking are implemented in order to increase precision. A routing number is 9-digits and may pass for many different data types, for example, a valid US Social Security number, Canadian Social Insurance number or international telephone number.

Since routing numbers themselves are not sensitive, personally identifiable information is necessary for a violation to occur.

Admittance and Discharge Dates Content Blade

The content blade looks for matches to the U. S. Date Format entity and words and phrases such as admit date, admittance date, date of discharge, discharge date in close proximity to each other.

Alabama Drivers License Content Blade

The content blade looks for matches to the Alabama driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AL or Alabama.

Driver’s license pattern

7 Numeric or 8 Numeric
Alaska Drivers License Content Blade

The content blade looks for matches to the Alaska driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alaska.

Driver’s license pattern:

7 Numeric

Alberta Drivers Licence Content Blade

The content blade looks for matches to the Alberta driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AB or Alberta.

Driver’s license pattern

7 Numeric

Alaska Drivers License Content Blade

The content blade looks for matches to the Alaska driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AK or Alaska.

Driver's license pattern:

7 Numeric

Alberta Drivers Licence Content Blade

The content blade looks for matches to the Alberta driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AB or Alberta.

Driver's license pattern

7 Numeric

American Express Content Blade

The content blade looks for a combination of the following pieces of information.

- More than one American Express credit card number
- A single credit card number plus words and phrases such as ccn, credit card, expiration date
- A single credit card number plus an expiration date

Arizona Drivers License Content Blade

The content blade looks for matches to the Arizona driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AZ or Arizona.

The Driver's license pattern can be 1 Alphabetic, 8 Numeric; or 9 Numeric (SSN); or 9 Numeric (Unformatted SSN).
Arkansas Drivers License Content Blade

The content blade looks for matches to the Arkansas driver’s license pattern and words and phrases such as driver’s license and license number and, optionally, terms such as AR or Arkansas.

Driver’s license pattern can be 9, 8 Numeric.

Australia Bank Account Number Content Blade

The Australian bank account number itself is not sensitive, but identifies a bank account, without identifying the bank branch. Therefore, both the account number and branch information must exist for the document to be considered sensitive.

The content blade looks for matches to both:

- An Australian bank account number
- Words and phrases related to bank state branch or BSB.

It also uses a regular expression rule to differentiate between telephone numbers of the same length.

An Australian bank account number is 6 to 10-digits without any embedded meaning. It has no check digit routine.

Australia Business Number Content Blade

The content blade looks for matches to both pieces of information in close proximity to each other.

- Australia Business Number
- ABN words and phrases (e.g. ABN, Australia business number)

Australia Company Number Content Blade

The content blade looks for matches to both pieces of information in close proximity to each other.

- Australia Company Number
- ACN words and phrases (e.g. ACN, Australia Company Number)

Australia Medicare Card Number Content Blade

The content blade will match if one of the following combinations of information appears in a document.

- More than one Australia Medicare Card Number
- One Medicare card number plus Medicare or patient identification terms (e.g. patient identifier, patient number)
- One Medicare card number plus two of either a name, expiration date or expiration terms

Australia Tax File Number Content Blade

The content blade looks for matches to both pieces of information in high proximity to each other.

- Australia Tax File Number (refer to entity description)
- Tax file number words and phrases (e.g. TFN, tax file number)
California Drivers License Number Content Blade

The content blade looks for matches to the California driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CA or California.

The Driver’s license pattern is 1 Alphabetic, 7 Numeric.

Canada Drivers License Number Content Blade

The content blade is only a container file for child content blades. The content blades assigned to it separately look for driver’s licenses in individual providences and territories.

Canada Social Insurance Number Content Blade

The content blade is only a container file for child content blades. The content blades assigned to it separately look for formatted and unformatted versions of the Canadian Social Insurance numbers plus personal information so different rules may be assigned to them. The formatted version of the Social Insurance number is a more specific pattern, so the rules are less strict for retuning a match. However, the unformatted version is very general and matches to many common numbers.

Colorado Drivers License Number Content Blade

The content blade looks for matches to the Colorado driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CO or Colorado.

The driver’s license pattern is 9 Numeric.

Connecticut Drivers License Number Content Blade

The content blade looks for matches to the Connecticut driver’s license pattern and words and phrases such as driver’s license and license number and terms such as CT or Connecticut.

Driver's license pattern: 9 Numeric, 1st two positions are month of birth in odd or even year. 01-12 Jan-Dec odd years, 13-24 Jan-Dec even years, 99 unknown.

Credit Card Number Content Blade

The content blade looks for a combination of the following pieces of information.

- More than one credit card number
- A single credit card number plus words and phrases such as ccn, credit card, expiration date
- A single credit card number plus an expiration date

Credit Card Track Data Content Blade

Track data is the information encoded and stored on two tracks located within the magnetic stripe on the back of a credit card (debit card, gift card, etc). There are three tracks on the magstripe (magnetic strip on the back of a credit card).

Each track is .110-inch wide. The ISO/IEC standard 7811, which is used by banks, specifies:

- Track one is 210 bits per inch (bpi), and holds 79 six-bit plus parity bit read-only characters.
- Track two is 75 bpi, and holds 40 four-bit plus parity bit characters.
- Track three is 210 bpi, and holds 107 four-bit plus parity bit characters.
Your credit card typically uses only tracks one and two. Track three is a read/write track (that includes an encrypted PIN, country code, currency units, amount authorized), but its usage is not standardized among banks.

This content blade requires a match to the Credit Card Track Data entity.

**Custom Account Number Content Blade**

The Custom Accounts content blade is an editable blade and should contain a regular expression for an organization's custom account patterns.

**Delaware Drivers License Number Content Blade**

The content blade looks for matches to the Delaware driver’s license pattern and words and phrases such as driver’s license and license number and terms such as DE or Delaware.

**EU Debit Card Number Content Blade**

The content blade looks for patterns of the major European Union debit card numbers.

The content blade will match with a combination of the following pieces of information in close proximity, if either:

- More than one match to a EU debit card number
- A single match to a EU debit card number plus two of either a word or phrase for credit card (e.g. card number or cc#), credit card security, expiration date or name
- A single match to a EU debit card number with an expiration date

**Florida Drivers License Number Content Blade**

The content blade looks for matches to the Florida driver’s license pattern and words and phrases such as driver’s license and license number and terms such as FL or Florida.

Driver’s license pattern: 1 Alphabetic, 12 Numeric.

**France Driving License Number Content Blade**

The content blade requires the following to match for a French driving license in a close proximity.

- French driving license pattern
- Either words or phrases for a driving license (e.g. driving license, permis de conduire) or E.U. date format

**France BIC Number Content Blade**

The content blade scans for French BIC numbers by requiring matches for both the following rules.

- European BIC number format
- French format of the BIC number

**France IBAN Number Content Blade**

The content blade requires the following to match for a French IBAN number in a close proximity.

- European IBAN number format
- French IBAN number pattern
France National Identification Number Content Blade

The content blade requires the following to match for a French National Identification number in a close proximity.

- More than one match to the French National Identification pattern
- One match to the French National Identification pattern plus either words or phrases for a social security number

France VAT Number Content Blade

The content blade requires a match for a French value added tax (VAT) number pattern in a close proximity to the abbreviation FR.

Georgia Drivers License Number Content Blade

The content blade looks for matches to the Georgia driver’s license pattern and words and phrases such as driver’s license and license number and terms such as GA or Georgia.

Driver’s license pattern: 7-9 Numeric; or Formatted SSN.

Germany BIC Number Content Blade

The content blade scans for German BIC numbers by requiring matches for both the following rules.

- European BIC number format
- German format of the BIC number

Germany Driving License Number Content Blade

The content blade requires the following to match for a German driving license in a close proximity.

- German driving license pattern
- Words or phrases related to a driving license (e.g. driving license, ausstellungsdatum)

Germany IBAN Number Content Blade

The content blade requires the following to match for a German IBAN number in a close proximity.

- European IBAN number format
- German IBAN number pattern

The German IBAN rule: “DE” country code followed by 22 digits.

Germany National Identification Numbers Content Blade

The content blade requires the following to match for a German National Identification number in a close proximity.

- Either a German National Identification number or a machine-readable version of the number
- Words or phrases for a German National Identification number (e.g. personalausweis, personalausweisnummer)
Germany Passport Number Content Blade

The content blade requires the following to match for a German passport number in a close proximity.

- Either a German passport number or a machine-readable version of the number
- Words or phrases for a German passport number or issuance date (e.g. reisepass, ausstellungsdatum)

Germany VAT Number Content Blade

The content blade requires a match for a German value added tax (VAT) number pattern (refer to entity description) in a close proximity to the abbreviation DE.

Group Insurance Numbers Content Blade

This is a content blade that requires customization. To use this content blade, add a regular expression to match the number pattern for an organization’s Group Insurance Number. The content blade looks for matches to words and phrases such as group insurance or a name, U.S. address or U.S. date in combination with the custom regular expression.

Hawaii Drivers License Number Content Blade

The content blade looks for matches to the Hawaii driver’s license pattern and words and phrases such as driver’s license and license number and terms such as HI or Hawaii.

Driver’s license pattern: H Alphabetic, 8 Numeric; or SSN.

Italy National Identification Numbers Content Blade

The content blade requires the following to match for an Italy National Identification number in a close proximity.

1. Italy National Identification number pattern
2. Words or phrases for an Italy National Identification number (e.g. codice fiscale, national identification)

National Identification Rule: 16 character alphanumeric code. where:

- SSS are the first three consonants in the family name (the first vowel and then an X are used if there are not enough consonants)
- NNN is the first name, of which the first, third and fourth consonants are used—exceptions are handled as in family names
- YY are the last digits of the birth year
- M is the letter for the month of birth—letters are used in alphabetical order, but only the letters A to E, H, L, M, P, R to T are used (thus, January is A and October is R)
- DD is the day of the month of birth—in order to differentiate between genders, 40 is added to the day of birth for women (thus a woman born on May 3 has ...E43...)
- ZZZZ is an area code specific to the municipality where the person was born—country-wide codes are used for foreign countries, a letter followed by three digits
■ X is a parity character as calculated by adding together characters in the even and odd positions, and dividing them by 26. Numerical values are used for letters in even positions according to their alphabetical order. Characters in odd positions have different values. A letter is then used which corresponds to the value of the remainder of the division in the alphabet.

Pattern:
■ LLLLLDDLDDLDDL
■ LLL LLL DDLDD LDDDL

Health Plan Beneficiary Numbers
This is a content blade that requires customization. To use this content blade, add a regular expression to identify recipients of health plan benefits and payments. The content blade looks for matches to words and phrases such as beneficiary or a name, U.S. address or U.S. date in combination with the custom regular expression.

Idaho Drivers License Number Content Blade
The content blade looks for matches to the Idaho driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ID or Idaho.
Driver’s license pattern: 2 Alphabetic, 6 Numeric, 1 Alphabetic.

Illinois Drivers License Number Content Blade
The content blade looks for matches to the Illinois driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IL or Illinois.
Driver’s license pattern: 1 Alphabetic, 11 Numeric.

Indiana Drivers License Number Content Blade
The content blade looks for matches to the Indiana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IN or Indiana.
Driver’s license pattern: 10 Numeric.

Iowa Drivers License Number Content Blade
The content blade looks for matches to the Iowa driver’s license pattern and words and phrases such as driver’s license and license number and terms such as IA or Iowa.
Driver’s license pattern can be 3 numeric, 2 alphabetic, 3 numeric; or Social Security Number.

Index of Procedures Content Blade
The content blade looks for words and phrases related to medical procedures based on the International Classification of Diseases (ICD).
The content blade will match with a combination of the following pieces of information, either:
■ More than one match to the Index of Procedures dictionary
■ A single match to the Index of Procedures dictionary plus two of either a name, U.S. Address or U.S. Date
■ A single match to the Index of Procedures dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)
NSX Administration Guide

Italy Driving License Number Content Blade
The content blade requires the following to match for an Italy driving license in a close proximity.
n

Italy driving license pattern

n

Words or phrases for a driving license (e.g. driving license, patente di guida)

Driver's License Rule: 10 alphanumeric characters -- 2 letters, 7 numbers and a final letter. The first letter
may only be characters A-V.
Driver's License Pattern:
n

LLDDDDDDDL

n

LL DDDDDDD L

n

LL-DDDDDDD-L

n

LL - DDDDDDD - L

Italy IBAN Number Content Blade
The content blade requires the following to match for a Italy IBAN number in a close proximity.
1

IBAN words and phrases (e.g. International Bank Account Number, IBAN)

2

Italy IBAN number pattern

IBAN Rule: IT country code followed by 25 alphanumeric characters.
Pattern:
n

ITDDLDDDDDDDDDDAAAAAAAAAAAA

n

IT DDL DDDDD DDDDD AAAAAAAAAAAA

n

IT DD LDDDDD DDDDD AAAAAAAAAAAA

n

IT DD L DDDDD DDDDD AAAAAAAAAAAA

n

IT DD LDDDDDDDDDDAAAAAAAAAAAA

n

IT DD L DDDDDDDDDDAAAAAAAAAAAA

n

ITDD LDDD DDDD DDDA AAAA AAAA AAA

n

IT DDL DDDDD DDDDD AAAAAA AAAAAA

n

IT DDL DDD DDD DDD DAAA AAA AAAAAA

n

IT DDL DDDDDDDDDD AAAAAA AAAAAA

Spaces may be substituted with dashes, forward slashes or colons.

ITIN Unformatted Content Blade
The content blade looks for unformatted patterns of the U.S. Taxpayer Identification Number (ITIN). The
content blade will match if an unformatted ITIN is found within close proximity of a word or phrase for an
ITIN number (e.g. tax identification, ITIN).
ITIN Rule: 9-digit number that always begins with the number 9 and has a range of 70-88 in the fourth and
fifth digit.
Pattern: DDDDDDDDD

296

VMware, Inc.


Kansas Drivers License Number Content Blade

The content blade looks for matches to the Kansas driver’s license pattern and words and phrases such as driver’s license and license number and terms such as KS or Kansas.

Driver’s license pattern: 1 Alphabetic (K), 8 Numeric; or Social Security Number.

Kentucky Drivers License Number Content Blade

The content blade looks for matches to the Kentucky driver’s license pattern and words and phrases such as driver’s license and license number and terms such as KY or Kentucky.

Driver’s license pattern: 1 Alphabetic, 8 Numeric; or Social Security Number.

Louisiana Drivers License Number Content Blade

The content blade looks for matches to the Louisiana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as LA or Louisiana.

Driver’s license pattern: 2 Zeros, 7 Numeric.

Maine Drivers License Number Content Blade

The content blade looks for matches to the Maine driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ME or Maine.

Driver’s license pattern: 7 Numeric, optional alphabetic X.

Manitoba Drivers Licence Content Blade

The content blade looks for matches to the Manitoba driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as MB or Manitoba in a close proximity.

License pattern rules: 12 alphanumeric characters that may be hyphen-separated, where:

- 1st character is a letter
- 2nd - 5th characters are a letter or asterisk
- 6th character is a letter
- 7th - 10th characters are digits
- 11th character is a letter
- 12th character is a letter or digit

or

- 1st character is a letter
- 2nd - 4th characters are a letter or asterisk
- 5th - 6th characters are digits
- 7th - 12th characters are a letter or digit

Driver’s license pattern:

- LLLLLLDDDLA
- LLLLLLDDAAAAAA
Maryland Drivers License Number Content Blade
The content blade looks for matches to the Maryland driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MD or Maryland.
Driver’s license pattern: 1 Alphabetic, 12 Numeric

Massachusetts Drivers License Number Content Blade
The content blade looks for matches to the Massachusetts driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MA or Massachusetts.
Driver’s license pattern: 1 Alphabetic (S), 8 Numeric; or Social Security Number

Michigan Drivers License Number Content Blade
The content blade looks for matches to the Michigan driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MI or Michigan.
Driver’s license pattern: 1 Alphabetic, 12 Numeric

Minnesota Drivers License Number Content Blade
The content blade looks for matches to the Minnesota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MN or Minnesota.
Driver’s license pattern: 1 Alphabetic, 12 Numeric

Mississippi Drivers License Number Content Blade
The content blade looks for matches to the Mississippi driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MS or Mississippi.
Driver’s license pattern: 9 Numeric; or Formatted Social Security Number

Missouri Drivers License Number Content Blade
The content blade looks for matches to the Missouri driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MO or Missouri.
Driver’s license pattern: 1 Alphabetic, 6-9 Numeric; or 9 Numeric; or Formatted Social Security Number

Montana Drivers License Number Content Blade
The content blade looks for matches to the Montana driver’s license pattern and words and phrases such as driver’s license and license number and terms such as MT or Montana.
Driver’s license pattern: 9 Numeric (SSN); or 1 Alphabetic, 1 Numeric, 1 Alphanumeric, 2 Numeric, 3 Alphabetic and 1 Numeric; or 13 Numeric

NDC Formulas Dictionary Content Blade
The content blade looks for words and phrases related to formulas based on the National Drug Codes (NDC).
The content blade will match with a combination of the following pieces of information, either:
1. More than one match to the NDC Formulas dictionary
2  A single match to the NDC Formulas dictionary plus two of either a name, U.S. Address or U.S. Date
3  A single match to the NDC Formulas dictionary with a patient or doctor identification word or phrase
   (e.g. patient ID, physician name)

Nebraska Drivers License Number Content Blade
The content blade looks for matches to the Nebraska driver’s license pattern and words and phrases such as
driver’s license and license number and terms such as NE or Nebraska.
Driver’s license pattern: 1 Alphabetic, 8 Numeric

Netherlands Driving Licence Number Content Blade
The content blade requires the following to match for a Netherlands driving license in a close proximity.
1  Netherlands driving license pattern (refer to entity description)
2  Words or phrases for a driving license (e.g. driving license, rijbewijs)

Netherlands IBAN Number Content Blade
The content blade requires the following to match for a Netherlands IBAN number in a close proximity.
1  IBAN words and phrases (e.g. International Bank Account Number, IBAN)
2  Netherlands IBAN number pattern
IBAN Rule: NL country code followed by 16 alphanumeric characters.
Pattern:
- `NLDDLLLLDDDDDDDDDD`
- `NL DD LLLL DDDDDDDDDDD`
- `NL DD LLLL DDDD DDDDDDDDD`
- `NL DD LLLL DDDD DD DDDDDD`
- `NL DD LLLL DDDD DD DD DDDD`
- `NL DD LLLL DDD DDDDDDDDDDD`
- `NL DD LLLL DD DD DD DDDD`
Spaces may be substituted with dashes

Netherlands National Identification Numbers Content Blade
The content blade requires the following to match for a Netherlands National Identification number in a
close proximity.
1  Netherlands National Identification number (refer to entity description)
2  Words or phrases for a Netherlands National Identification number (e.g. sofinummer,
   burgerservicenummer)
Netherlands Passport Number Content Blade

The content blade requires the following to match for a Netherlands passport number in a close proximity.
1. Netherlands passport number (refer to entity description)
2. Words or phrases for a Netherlands passport number (e.g. paspoort, Noodpaspoort)

Nevada Drivers License Number Content Blade

The content blade looks for matches to the Nevada driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NV or Nevada.

Driver’s license pattern: 9 Numeric (SSN); or 12 Numeric (last 2 are year of birth), or 10 numeric

New Brunswick Drivers Licence Content Blade

The content blade looks for matches to the New Brunswick driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NB or New Brunswick in a close proximity.

License pattern rules: 5 - 7 digits
Driver’s license pattern:
- $DDDD$
- $DDDDDD$
- $DDDDDDD$

New Hampshire Drivers License Number Content Blade

The content blade looks for matches to the New Hampshire driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NH or New Hampshire.

Driver’s license pattern: 2 Numeric, 3 Alphabetic, 5 Numeric

New Jersey Drivers License Number Content Blade

The content blade looks for matches to the New Jersey driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NJ or New Jersey.

Driver’s license pattern: 1 Alphabetic, 14 Numeric

New Mexico Drivers License Number Content Blade

The content blade looks for matches to the New Mexico driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NM or New Mexico.

Driver’s license pattern: 9 Numeric

New York Drivers License Number Content Blade

The content blade looks for matches to the New York driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NY or New York.

Driver’s license pattern: 9 Numeric
New Zealand Health Practitioner Index Number Content Blade
The content blade looks for matches to the New Zealand Health Practitioner Index entity and corroborative terms such as hpi-cpn or health practitioner index.

New Zealand Inland Revenue Department Number
The content blade looks for matches to the New Zealand Inland Revenue Department Number entity and words and phrases such as IRD Number or Inland Revenue Department Number.

New Zealand National Health Index Number Content Blade
The content blade looks for matches to the New Zealand National Health Index entity and corroborative terms such as nhi or National Health index.

Newfoundland and Labrador Drivers Licence Content Blade
The content blade looks for matches to the Newfoundland and Labrador driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NL or Labrador in a close proximity.
License pattern rules: 1 letter followed by 9 digits
Driver’s license pattern: LDDDDDDDDD

North Carolina Drivers License Number Content Blade
The content blade looks for matches to the North Carolina driver’s license pattern and words and phrases such as driver’s license and license number and terms such as NC or North Carolina.
Driver’s license pattern: 6 - 8 Numeric

North Dakota Drivers License Number Content Blade
The content blade looks for matches to the North Dakota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as ND or North Dakota.
Driver’s license pattern: 9 Numeric; or 3 Alphabetic, 6 Numeric

Nova Scotia Drivers Licence Content Blade
The content blade looks for matches to the Nova Scotia driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as NS or Nova Scotia in a close proximity.
License pattern rules: 5 letters followed by 9 digits
Driver’s license pattern: LLLLLDDDDDDDD

Ohio Drivers License Number Content Blade
The content blade looks for matches to the Ohio driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OH or Ohio.
Driver’s license pattern: 2 Alphabetic, 6 Numeric
Oklahoma License Number Content Blade
The content blade looks for matches to the Oklahoma driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OK or Oklahoma.

Driver’s license pattern: 1 Alphabetic, 8 Numeric; or 9 Numeric; or Social Security Number, Formatted

Ontario Drivers Licence Content Blade
The content blade looks for matches to the Ontario driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as ON or Ontario in a close proximity.

License pattern rules: 1 letter followed by 14 digits

Driver’s license pattern: LDDDDDDDDDDDDDD

Oregon License Number Content Blade
The content blade looks for matches to the Oregon driver’s license pattern and words and phrases such as driver’s license and license number and terms such as OR or Oregon.

Driver’s license pattern: 6 - 7 Numeric

Patient Identification Numbers Content Blade
This is a content blade that requires customization. To use this content blade, add a regular expression for a company-specific Patient Identification Number pattern. The content blade looks for matches to words and phrases such as patient id or a name, U.S. address or U.S. date in combination with the custom regular expression.

Pennsylvania License Number Content Blade
The content blade looks for matches to the Pennsylvania driver’s license pattern and words and phrases such as driver’s license and license number and terms such as PA or Pennsylvania.

Driver’s license pattern: 8 Numeric

Prince Edward Island Drivers Licence Content Blade
The content blade looks for matches to the Prince Edward Island driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as PE or Prince Edward Island in a close proximity.

License pattern rules: 5 - 6 digits

Driver’s license pattern:
- DDDD
- DDDDDD

Protected Health Information Terms Content Blade
The content blade looks for words and phrases related to personal health records and health insurance claims.

The content blade will match with a combination of the following pieces of information, either:

1. More than one match to the Protected Health Information dictionary
2. A single match to the Protected Health Information dictionary plus two of either a name, U.S. Address or U.S. Date
3. A single match to the Protected Health Information dictionary with a patient or doctor identification word or phrase (e.g. patient ID, physician name)

Quebec Drivers Licence Content Blade

The content blade looks for matches to the Quebec driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as QC or Quebec in a close proximity.
License pattern rules: 1 letter followed by 12 digits
Driver’s license pattern: LDDDDDDDDDDDD

Rhode Island License Number Content Blade

The content blade looks for matches to the Rhode Island driver’s license pattern and words and phrases such as driver’s license and license number and terms such as RI or Rhode Island.
Driver’s license pattern: 7 Numeric

Saskatchewan Drivers Licence Content Blade

The content blade looks for matches to the Saskatchewan driver’s license pattern and words and phrases such as driver’s licence and permis de conduire plus terms such as SK or Saskatchewan in a close proximity.
License pattern rules: 8 digits
License pattern: DDDDDDDD

SIN Formatted Content Blade

The content blade looks for formatted patterns of the Canadian Social Insurance number (SIN).
The content blade will match with a combination of the following pieces of information in medium proximity, either:
1. More than one match to a formatted SIN
2. A single match to a formatted SIN plus a driver’s license or date of birth word or phrase
3. A single match to a formatted SIN with word or p

SIN Unformatted Content Blade

The content blade looks for unformatted patterns of the Canadian Social Insurance (SIN). The content blade will match if an unformatted SIN is found within close proximity of a word or phrase for a Social Insurance number (e.g. Social Insurance, SIN) or driver’s license or date of birth.

SSN Formatted Content Blade

SSN Formatted Content Blade

The content blade will match with a combination of the following pieces of information in medium proximity, either:
- More than one match to a formatted SSN
- A single match to a formatted SSN plus two of either a name, U.S. Address or U.S. Date
- A single match to a formatted SSN with word or phrase for a Social Security number (e.g. Social Security, SSN)
SSN Unformatted Content Blade
The content blade looks for unformatted patterns of the U.S. Social Security number (SSN). The content blade will match if an unformatted SSN is found within close proximity of a word or phrase for a Social Security number (e.g. Social Security, SSN).

South Carolina License Number Content Blade
The content blade looks for matches to the South Carolina driver’s license pattern and words and phrases such as driver’s license and license number and terms such as SC or South Carolina.

Driver’s license pattern: 9 Numeric

South Dakota License Number Content Blade
The content blade looks for matches to the South Dakota driver’s license pattern and words and phrases such as driver’s license and license number and terms such as SD or South Dakota.

Driver’s license pattern: 8 Numeric; or Social Security Number

Spain National Identification Number Content Blade
The content blade looks for matches to the Spain National Identification Number entity and words and phrases such as Documento Nacional de Identidad and Número de Identificación de Extranjeros. It also uses regular expressions to differentiate between telephone numbers and to prevent double counting of DNIs and NIEs without check letters.

Spain Passport Number Content Blade
The content blade looks for matches to the Spain Passport Number and words and phrases such as pasaporte or passport.

Passport Rule: 8 alphanumeric characters -- 2 letters followed by 6 digits.

Pattern:
LLDDDDDD
LL-DDDDDD
LL DDDDDD

Spain Social Security Number Content Blade
The content blade requires the following to match for a Spain Social Security number in a close proximity.

1 Spain Social Security number
2 Words or phrases for a social security number (e.g. número de la seguridad social, social security number)

Sweden IBAN Number Content Blade
The content blade requires the following to match for a Sweden IBAN number in a close proximity.

1 IBAN words and phrases (e.g. International Bank Account Number, IBAN
2 Sweden IBAN number pattern
IBAN Rule: SE country code followed by 22 digits.
Pattern: SE DDDDDDDDDDDDDDDDDDDDDD

**Sweden Passport Number Content Blade**

The content blade looks for matches to the Sweden Passport Number regular expression with the following possible combinations of supporting evidence.

1. Words and phrases for passport such as Passnummer
2. Words and phrases for the country Sweden, nationality and expiry dates

Passport Rule: 8 digits
Pattern:

DDDDDDDDD
DD-DDDDDDD
LL-DDDDDDD

**Tennessee License Number Content Blade**

The content blade looks for matches to the Texas driver’s license pattern and words and phrases such as driver’s license and license number and terms such as TX or Texas.

Driver’s license pattern: 8 Numeric

**UK BIC Number Content Blade**

The content blade scans for UK BIC numbers by requiring matches for both rules.

1. European BIC number format
2. UK format of the BIC number

BIC rule: 8 or 11 alphanumeric characters. Letters 5th and 6th will always have “GB” as the ISO 3166-1 alpha-2 country code.

Pattern:

LLLLLLLAAA
LLLLLLLLAAA
LLLLLLLAA-AAA
LLLLLLLAA AAA
LLLLLL AA AAA
LLLL LL AA AAA
LLLL LL AA-AAA

**UK Driving License Number Content Blade**

The content blade requires the following to match for a UK driving license in a close proximity.

1. UK driving license pattern
2. Either words or phrases for a driving license (e.g. driving license) or personal identification (e.g. date of birth, address, telephone)

Driving license rule: 16 - 18 alphanumeric characters and begins with a letter.
Pattern:
LAAAADDLLDDDLLDD
Some digits are limited in the values accepted.

UK IBAN Number Content Blade

The content blade requires the following to match for a UK IBAN number in a close proximity.

1. European IBAN number format
2. UK IBAN number pattern

IBAN Rule: “GB” country code followed by 20 characters.

GB, ISO country code
2 Digits (numeric characters 0 to 9 only), Check Digits (IBAN)
4 Upper case letters (A-Z only), Bank Identifier Digits
6 Digits (numeric characters 0 to 9 only), Bank branch code
8 Digits (numeric characters 0 to 9 only), Account number

Pattern:
GBDDLLLLDDDDDDDDDDDDDD
GB DD LLLL DDDD DDDD DDDD DD
GB DD LLLL DDDDDD DDDDDDDD

UK National Health Service Number Content Blade

The content blade requires the following to match for a UK National Health Service number in a close proximity.

1. UK National Health Service number format
2. Words and phrases relating to the National Health Service or patient identification or date of birth

UK NINO Formal Content Blade

The content blade looks for the formal pattern of the UK National Insurance number (NINO).

The content blade will match with a combination of the following pieces of information in high proximity, either:

1. More than one match to a NINO formal pattern
2. A single match to a NINO formal with word or phrase for a National Insurance number (e.g. NINO, taxpayer number)

UK Passport Number Content Blade

The content blade looks for matches to one of the U.K. passport number entities with the following supporting evidence.

1. Words and phrases for passport such as passport or a national passport code preceding a passport number
2. Words and phrases for the country, U.K, or the date of issue (optional match)
Utah License Number Content Blade
The content blade looks for matches to the Utah driver’s license pattern and words and phrases such as driver’s license and license number and terms such as UT or Utah.
Driver’s license pattern: 6 - 10 Numeric

Virginia License Number Content Blade
The content blade looks for matches to the Virginia driver’s license pattern and words and phrases such as driver’s license and license number and terms such as VA or Virginia.
Driver’s license pattern: 1 Alphabetic, 8 Numeric

Visa Card Number Content Blade
The content blade looks for a combination of the following pieces of information, either:
1. More than one JCB credit card number
2. A single credit card number plus words and phrases such as ccn, credit card, expiration date
3. A single credit card number plus an expiration date

Washington License Number Content Blade
The content blade looks for matches to the Washington driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WA or Washington.
Driver’s license pattern: 5 Alphabetic (last name), 1 Alphabetic (first name), 1 Alphabetic (middle name), 3 Numeric, 2 Alphanumeric. If last or middle name field falls short, fill with *s.

Wisconsin License Number Content Blade
The content blade looks for matches to the Wisconsin driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WI or Wisconsin.
Driver’s license pattern: 1 Alphabetic, 13 Numeric

Wyoming License Number Content Blade
The content blade looks for matches to the Wyoming driver’s license pattern and words and phrases such as driver’s license and license number and terms such as WY or Wyoming.
Driver’s license pattern: 9 - 10 Numeric
NSX Data Security can detect the following file formats.

Table 18-1. Archive Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-Zip 4.57</td>
<td>Z7</td>
</tr>
<tr>
<td>BinHex</td>
<td>HQX</td>
</tr>
<tr>
<td>BZIP2</td>
<td>BZ2</td>
</tr>
<tr>
<td>Expert Witness (EnCase)Compression Format</td>
<td>E0, E101 etc</td>
</tr>
<tr>
<td>GZIP 2</td>
<td>GZ</td>
</tr>
<tr>
<td>ISO-9660 CD Disc Image Format</td>
<td>ISO</td>
</tr>
<tr>
<td>Java Archive</td>
<td>JAR</td>
</tr>
<tr>
<td>Legato EMailXtender Archive</td>
<td>EMX</td>
</tr>
<tr>
<td>MacBinary</td>
<td>BIN</td>
</tr>
<tr>
<td>Mac Disk copy Disk Image</td>
<td>DMG</td>
</tr>
<tr>
<td>Microsoft Backup File</td>
<td>BKF</td>
</tr>
<tr>
<td>Microsoft Cabinet Format 1.3</td>
<td>CAB</td>
</tr>
<tr>
<td>Microsoft Compressed Folder</td>
<td>LZH, LHA</td>
</tr>
<tr>
<td>Microsoft Entourage</td>
<td></td>
</tr>
<tr>
<td>Microsoft Outlook Express</td>
<td>DBX</td>
</tr>
<tr>
<td>Microsoft Outlook Offline Store 2007</td>
<td>OST</td>
</tr>
<tr>
<td>Microsoft Outlook Personal Store 2007</td>
<td>PST</td>
</tr>
<tr>
<td>OASIS Open Document Format</td>
<td>ODC</td>
</tr>
<tr>
<td></td>
<td>SXC</td>
</tr>
<tr>
<td></td>
<td>STC</td>
</tr>
<tr>
<td></td>
<td>ODT</td>
</tr>
<tr>
<td></td>
<td>SXW</td>
</tr>
<tr>
<td></td>
<td>STW</td>
</tr>
<tr>
<td>Open eBook Publication Structure</td>
<td>EPUB</td>
</tr>
<tr>
<td>PKZIP</td>
<td>ZIP</td>
</tr>
<tr>
<td>RAR archive</td>
<td>RAR</td>
</tr>
<tr>
<td>Self-extracting Archives</td>
<td>SEA</td>
</tr>
</tbody>
</table>
**Table 18-1. ** Archive Formats (Continued)

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Scrap Object File</td>
<td>SHS</td>
</tr>
<tr>
<td>Tape Archive</td>
<td>TAR</td>
</tr>
<tr>
<td>UNIX Compress</td>
<td>Z</td>
</tr>
<tr>
<td>UUEncoding</td>
<td>UUE</td>
</tr>
<tr>
<td>WinZip</td>
<td>ZIP</td>
</tr>
</tbody>
</table>

**Table 18-2. ** Computer-Aided Design Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATIA formats 5</td>
<td>CAT</td>
</tr>
<tr>
<td>MicroStation 7, 8</td>
<td>DGN</td>
</tr>
<tr>
<td>Omni Graffle</td>
<td>GRAFFLE</td>
</tr>
</tbody>
</table>

**Table 18-3. ** Database Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
</table>

**Table 18-4. ** Display Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe PDF 1.1 to 1.7</td>
<td>PDF</td>
</tr>
</tbody>
</table>

**Table 18-5. ** Mail Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domino XML Language</td>
<td>DXL</td>
</tr>
<tr>
<td>Legato Extender</td>
<td>ONM</td>
</tr>
<tr>
<td>Lotus Notes database 4, 5, 6.0, 6.5, 7.0, and 8.0</td>
<td>NSF</td>
</tr>
<tr>
<td>Mailbox Thunderbird 1.0 and Eudora 6.2</td>
<td>MBX</td>
</tr>
<tr>
<td>Microsoft Outlook Express Windows 6 and Macintosh 5</td>
<td>EML</td>
</tr>
<tr>
<td>Microsoft Outlook Personal Folder 97, 2000, 2002, and 2003</td>
<td>PST</td>
</tr>
<tr>
<td>Text Mail (MIME)</td>
<td>Various</td>
</tr>
</tbody>
</table>

**Table 18-6. ** Multimedia Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Streaming Format 1.2</td>
<td>DXL</td>
</tr>
</tbody>
</table>

**Table 18-7. ** Presentation Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple iWork Keynote 2, 3, ’08, and ’09</td>
<td>GZ</td>
</tr>
<tr>
<td>Applix Presents 4.0, 4.2, 4.3, 4.4</td>
<td>AG</td>
</tr>
</tbody>
</table>
### Table 18-7. Presentation Formats (Continued)

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corel Presentations 6, 7, 8, 9, 10, 11, 12, and X3</td>
<td>SHW</td>
</tr>
<tr>
<td>Lotus Freelance Graphics 2</td>
<td>PRE</td>
</tr>
<tr>
<td>Lotus Freelance Graphics 96, 97, 98, R9, and 9.8</td>
<td>PRZ</td>
</tr>
<tr>
<td>Macromedia Flash through 8.0</td>
<td>SWF</td>
</tr>
<tr>
<td>Microsoft PowerPoint PC 4</td>
<td>PPT</td>
</tr>
<tr>
<td>Microsoft PowerPoint Windows 95, 97, 2000, 2002, and 2003</td>
<td>PPT, PPS, POT</td>
</tr>
<tr>
<td>Microsoft PowerPoint Windows XML 2007</td>
<td>PPTX, PPTM, POTX, POTM, PPSX, and PPSM</td>
</tr>
<tr>
<td>OpenOffice Impress 1 and 1.1</td>
<td>SXP</td>
</tr>
<tr>
<td>StarOffice Impress 6 and 7</td>
<td>SXP</td>
</tr>
</tbody>
</table>

### Table 18-8. Spreadsheet Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple iWork Numbers '08 and 2009</td>
<td>GZ</td>
</tr>
<tr>
<td>Applix Spreadsheets 4.2, 4.3, and 4.4</td>
<td>AS</td>
</tr>
<tr>
<td>Comma Separated Values</td>
<td>CSV</td>
</tr>
<tr>
<td>Corel Quattro Pro 5, 6, 7, 8, X4</td>
<td>WB2, WB3, QPW</td>
</tr>
<tr>
<td>Data Interchange Format</td>
<td>DIF</td>
</tr>
<tr>
<td>Lotus 1-2-3 96, 97, R9, 9.8, 2, 3, 4, 5</td>
<td>123, WK4</td>
</tr>
<tr>
<td>Lotus 1-2-3 Charts 2, 3, 4, 5</td>
<td>123</td>
</tr>
<tr>
<td>Microsoft Excel Windows 2.2 through 2003</td>
<td>XLS, XLW, XLT, XLA</td>
</tr>
<tr>
<td>Microsoft Excel Windows XML 2007</td>
<td>XLSX, XLTX, XLSM, XLTM, XLAM</td>
</tr>
<tr>
<td>Microsoft Excel Charts 2, 3, 4, 5, 6, 7</td>
<td>XLS</td>
</tr>
<tr>
<td>Microsoft Office Excel Binary Format 2007</td>
<td>XLSB</td>
</tr>
<tr>
<td>Microsoft Works Spreadsheet 2, 3, 4</td>
<td>S30 S40</td>
</tr>
<tr>
<td>Oasis Open Document Format 1, 2</td>
<td>ODS, SXC, STC</td>
</tr>
<tr>
<td>OpenOffice Calc 1, 1.1</td>
<td>SXC, ODS, OTS</td>
</tr>
<tr>
<td>StarOffice Calc 6, 7</td>
<td></td>
</tr>
</tbody>
</table>

### Table 18-9. Text and Markup Formats

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>TXT</td>
</tr>
<tr>
<td>ASCII</td>
<td>TXT</td>
</tr>
<tr>
<td>Extensible Forms Description Language</td>
<td>XFDL, XFD</td>
</tr>
<tr>
<td>HTML 3, 4</td>
<td>HTM, HTML</td>
</tr>
<tr>
<td>Microsoft Excel Windows XML 2003</td>
<td>XML</td>
</tr>
<tr>
<td>Microsoft Word Windows XML 2003</td>
<td>XML</td>
</tr>
<tr>
<td>Microsoft Visio XML 2003</td>
<td>vdx</td>
</tr>
<tr>
<td>Application Format</td>
<td>Extensions</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>MIME HTML</td>
<td>MHT</td>
</tr>
<tr>
<td>Rich Text Format 1 through 1.7</td>
<td>RTF</td>
</tr>
<tr>
<td>Unicode Text 3, 4</td>
<td>TXT</td>
</tr>
<tr>
<td>XHTML 1.0</td>
<td>HTM, HTML</td>
</tr>
<tr>
<td>XML (generic)</td>
<td>XML</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe FrameMaker InterchangeFormat 5, 5.5, 6, 7</td>
<td>MIF</td>
</tr>
<tr>
<td>Apple iChat Log AV, AV 2, AV 2.1, AV 3</td>
<td>LOG</td>
</tr>
<tr>
<td>Apple iWork Pages ’08, 2009</td>
<td>GZ</td>
</tr>
<tr>
<td>Applix Words 3.11, 4, 4.1, 4.2, 4.3, 4.4</td>
<td>AW</td>
</tr>
<tr>
<td>Corel WordPerfect Linux 6.0, 8.1</td>
<td>WPS</td>
</tr>
<tr>
<td>Corel WordPerfect Macintosh 1.02, 2, 2.1, 2.2, 3, 3.1</td>
<td>WPS</td>
</tr>
<tr>
<td>Corel WordPerfect Windows 5, 5.1, 6, 7, 8, 9, 10, 11, 12, X3</td>
<td>WO, WPD</td>
</tr>
<tr>
<td>DisplayWrite 4</td>
<td>IP</td>
</tr>
<tr>
<td>Folio Flat File 3.1</td>
<td>FFF</td>
</tr>
<tr>
<td>Founder Chinese E-paper Basic 3.2.1</td>
<td>CEB</td>
</tr>
<tr>
<td>Fujitsu Oasys 7</td>
<td>OA2</td>
</tr>
<tr>
<td>IBM DCA/RFT (Revisable Form Text) SC23-0758 -1</td>
<td>DC</td>
</tr>
<tr>
<td>JustSystems Ichitaro 8 through 2009</td>
<td>JTD</td>
</tr>
<tr>
<td>Lotus AMI Pro 2, 3</td>
<td>SAM</td>
</tr>
<tr>
<td>Lotus AMI Professional Write Plus 2.1</td>
<td>AMI</td>
</tr>
<tr>
<td>Lotus Word Pro</td>
<td>96, 97, R9</td>
</tr>
<tr>
<td>Lotus SmartMaster 96, 97</td>
<td>MWP</td>
</tr>
<tr>
<td>Microsoft Word PC 4, 5, 5.5, 6</td>
<td>DOC</td>
</tr>
<tr>
<td>Microsoft Word Windows 1.0 and 2.0, 6, 7, 8, 95, 97, 2000, 2002, 2003</td>
<td>DOC</td>
</tr>
<tr>
<td>Microsoft Word Windows XML 2007</td>
<td>DOCX, DOTX, DOTM</td>
</tr>
<tr>
<td>Microsoft Works 2, 3, 4, 6, 2000</td>
<td>WPS</td>
</tr>
<tr>
<td>Microsoft Windows Write 1, 2, 3</td>
<td>WRI</td>
</tr>
<tr>
<td>Oasis Open Document Format 1, 2</td>
<td>ODT, SXW, STW</td>
</tr>
<tr>
<td>OpenOffice Writer 1, 1.1</td>
<td>SXW, ODT</td>
</tr>
<tr>
<td>Omni Outliner 3</td>
<td>OPML, OO3, OPML, OOUTLINE</td>
</tr>
<tr>
<td>Skype Log File</td>
<td>DBB</td>
</tr>
<tr>
<td>StarOffice Writer 6, 7</td>
<td>SXW, ODT</td>
</tr>
<tr>
<td>WordPad through 2003</td>
<td>RTF</td>
</tr>
</tbody>
</table>
### Table 18-10. Word Processing Formats (Continued)

<table>
<thead>
<tr>
<th>Application Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML Paper Specification</td>
<td>XPS</td>
</tr>
<tr>
<td>XyWrite 4.12</td>
<td>XY4</td>
</tr>
</tbody>
</table>
Index

A
activity monitoring  
about 210, 211
AD groups that accessed a server 222
disable 223
enable data collection for multiple VMs 217
enable data collection for single VM 217
inbound activity 219
interaction between inventory containers 221
outbound activity 220
virtual machine activity 218
add, service 176
alarms for Guest Introspection 224
appliance
add 191
delete 192
edit 191
Audit Logs 174, 182
audit messages for Guest Introspection 225
B
backups 200, 201
C
content blades
ABA Routing Number 264, 288
Admittance and Discharge Dates Content Blade 264, 288
Alabama Drivers License Content Blade 264, 288
Alaska Drivers License Content Blade 264, 265, 289
Alberta Drivers License Content Blade 265, 289
American Express Content Blade 265, 289
Arizona Drivers License Content Blade 265, 289
Arkansas Drivers License Content Blade 264, 265, 285, 290
Australia Bank Account Number Content Blade 266, 290
Australia Business Number Content Blade 266, 290
Australia Company Number Content Blade 266, 290
Australia Medicare Card Number Content Blade 266, 290
Australia Tax File Number Content Blade 266, 290
California Drivers License Number Content Blade 266, 291
Canada Drivers License Content Blade 266, 291
Canada Social Insurance Number Content Blade 267, 291
Colorado Drivers License Number Content Blade 267, 291
Connecticut Drivers License Number Content Blade 267, 291
Credit Card Track Data Content Blade 267, 291
Custom Account Number Content Blade 268, 292
Delaware Drivers License Number Content Blade 268, 292
EU Debit Card Number Content Blade 268, 292
Florida Drivers License Number Content Blade 268, 292
France BIC Number Content Blade 268, 292
France Driving License Number Content Blade 268, 292
France National Identification Number Content Blade 269, 293
France VAT Number Content Blade 269, 293
Georgia Drivers License Number Content Blade 269, 293
Germany Driving License Number Content Blade 269, 293
Germany BIC Number Content Blade 269, 293
Germany National Identification Numbers Content Blade 269, 293
Germany Passport Number Content Blade 270, 294
Germany VAT Number Content Blade 270, 294
Group Insurance Numbers Content Blade 270, 294
Hawaii Drivers License Number Content Blade 270, 294
Idaho Drivers License Number Content Blade 271, 295
Illinois Drivers License Number Content Blade 271, 295
Index of Procedures Content Blade 271, 295
Indiana Drivers License Number Content Blade 271, 295
Iowa Drivers License Number Content Blade 271, 295
Italy Driving License Number Content Blade 272, 296
Italy IBAN Number Content Blade 272, 296
Italy National Identification Numbers Content Blade 270, 294
ITIN Unformatted Content Blade 272, 296
Kansas Drivers License Number Content Blade 273, 297
Kentucky Drivers License Number Content Blade 273, 297
Louisiana Drivers License Number Content Blade 273, 297
Maine Drivers License Number Content Blade 273, 297
Manitoba Drivers License Content Blade 273, 297
Maryland Drivers License Number Content Blade 274, 298
Michigan Drivers License Number Content Blade 274, 298
Minnesota Drivers License Number Content Blade 274, 298
Mississippi Drivers License Number Content Blade 274, 298
Missouri Drivers License Number Content Blade 274, 298
Montana Drivers License Number Content Blade 274, 298
NDC Formulas Dictionary Content Blade 274, 298
Nebraska Drivers License Number Content Blade 275, 299
Netherlands Driving Licence Number Content Blade 275, 299
Netherlands IBAN Number Content Blade 275, 299
Netherlands National Identification Numbers Content Blade 275, 299
Netherlands Passport Number Content Blade 276, 300
New Brunswick Drivers Licence Content Blade 276, 300
New Hampshire Drivers License Number Content Blade 276, 300
New Jersey Drivers License Number Content Blade 276, 300
New Mexico Drivers License Number Content Blade 276, 300
New York Drivers License Number Content Blade 276, 300
New Zealand Health Practitioner Index Number Content Blade 277, 301
New Zealand Inland Revenue Department Number Blade 277, 301
New Zealand National Health Index Number Content Blade 277, 301
Newfoundland and Labrador Drivers Licence Content Blade 277, 301
North Carolina Drivers License Number Content Blade 277, 301
North Dakota Drivers License Number Content Blade 277, 301
Nova Scotia Drivers Licence Content Blade 277, 301
Ohio Drivers License Number Content Blade 277, 301
Oklahoma License Number Content Blade 278, 302
Ontario Drivers Licence Content Blade 278, 302
Oregon License Number Content Blade 278, 302
Patient Identification Numbers Content Blade 278, 302
Pennsylvania License Number Content Blade 278, 302
Prince Edward Island Drivers Licence Content Blade 278, 302
Protected Health Information Terms Content Blade 278, 302
Quebec Drivers Licence Content Blade 279, 303
Rhode Island License Number Content Blade 279, 303
Saskatchewan Drivers Licence Content Blade 279, 303
SIN Formatted Content Blade 279, 303
SIN Unformatted Content Blade 279, 303
South Carolina License Number Content Blade 280, 304
South Dakota License Number Content Blade 280, 304
Spain National Identification Number Content Blade 280, 304
Spain Passport Number Content Blade 280, 304
Spain Social Security Number Content Blade 280, 304
SSN Formatted Content Blade 279, 303
SSN Unformatted Content Blade 280, 304
Sweden IBAN Number Content Blade 280, 304
Sweden Passport Number Content Blade 281, 305
Tennessee License Number Content Blade 281, 305
UK Driving License Number Content Blade 281, 305
UK IBAN Number Content Blade 282, 306
UK NINO Formal Content Blade 282, 306
UK Passport Number Content Blade 282, 306
Utah License Number Content Blade 283, 307
Virginia License Number Content Blade 283, 307
Visa Card Number Content Blade 283, 307
Washington License Number Content Blade 283, 307
Wisconsin License Number Content Blade 283, 307
Wyoming License Number Content Blade 283, 307
Flow Monitoring
enable 204
exclude flows 204
firewall rules 209
flow monitoring data 206
G
Guest Introspection
alarms 224
audit messages 225
events 225
host alarms 224
status 224
SVM alarms 225
GUI, logging in 183
H
high availability 197
host alarms for Guest Introspection 224
I
introduction, NSX 14
IPSec service
delete 108
disable 108
IPSec VPN
add 106
configuration examples 227
edit 107
enable 105
global configuration 105
logging 106
overview 104
IPSec VPNS 105
L
L2 VPN
client 112
enable 112
overview 108
server 111
statistics 114
L2 bridge 43, 44
live traffic flows 209
load balancer, add pool 119
logging in to the GUI 183
logical network 21, 33
logical switch
about 19
add 25
connect to NSX Edge 31
connect VMs to 32
deploy services on 32
ping test 32
prevent spoofing on 33
scenario 38
logs, audit 174, 182

M
Massachusetts Drivers License Number Content
Blade 274, 298

N
NAT 80
NSX
backs 200
consumption platform 16
control plane 15
data plane 15
management plane 16
overview 13
services 16
NSX Data Security
about 155
policy 155
scan 157
supported file formats 309
user roles 155
NSX Edge
add appliance 191
add NAT rules 80
certificate revocation list 190
certificates 188
client certificates 190
configure CA signed certificate 188
configure self signed certificate 189
delete appliance 192
DHCP 129
DHCP binding 131
DHCP pool add 129
DNS servers 134
edit appliance 191
firewall rules
add 76
change priority 80
delete 80
edit 79
force sync 198
interface
delete 193
disable 194
interface, enable 193
SSL VPN overview 83
status 199
syslog 198

NSX Edge firewall rules, change default settings 76
NSX Edge interface 192
NSX Edge, DHCP binding edit 132
NSX Edge, DHCP pool edit 130
NSX Manager
backups 201
DNS servers 184
events 182
import certificate 186
logging in to GUI 183
lookup service 184
NTP server 183
restore a backup 203
SSL certificate 185
syslog server 183
vCenter Server 184
NSX ticket logger 181

R
redeploy NSX Edge 199
regulations
ABA Routing Numbers 249
Arizona SB-1338 249
Australia Bank Account Numbers 249
Australia Medicare Card Numbers 250
Australia Tax File Numbers 250
California AB-1298 250
California SB-1386 251
Canada Drivers License Numbers 251
Canada Social Insurance Numbers 251
Colorado HB-1119 252
Connecticut SB-650 252
Credit Card Numbers 252
Custom Account Numbers 252
EU Debit Card Numbers 253
FERPA (Family Educational Rights and Privacy Act) 253
Florida HB-481 253
France IBAN Numbers Policy 253
France National Identification Numbers Policy 253
Georgia SB-230 Policy 254
Germany BIC Numbers Policy 254
Germany Driving License Numbers Policy 254
Germany IBAN Numbers Policy 254
Germany National Identification Numbers Policy 254
Germany VAT Numbers Policy 254
Hawaii SB-2290 Policy 255
HIPPA (Healthcare Insurance Portability and Accountability Act) Policy 255
security group
create in Service Composer 137
edit in Service Composer 150
server pool
delete 127
edit 127
service, add 176
Service Composer
about 136
canvas view 142
export configuration 145
import configuration 145
scenarios 150
security group
create 137
edit 150
security policy
delete 150
edit 149
manage priority 149
map to security group 142
view effective services 148
view effective services on VM 148
view service failures 148
security tag
add 146
assign 147
delete 147
edit 147
view 146
security policy create 139
single sign on 163
spoofGuard
about 72
approve IP address 73
create policy 72
edit IP address 74
system policy 72
spoofGuard. clear IP address 74
SSL VPN-plus, authentication, add 86, 93
SSL VPN
client configuration 98
edit general settings 98
edit portal design 99
login/logoff script
add 91, 97
delete 103
disable 104
edit 103
enable 103
login/logoff scripts, change the order of 104
logs 98
web resource 92
SSL VPN-Plus, IP pool, change order of 100
SSL VPN-Plus
  add installation package 89
  add IP pool 85
  add private network 85
  add user 90, 93
  enable 90, 97
    installation package
      add 89
      delete 102
  IP pool
    add 85
    delete 99
    disable 100
    edit 99, 100, 173
  private network
    change order of 101
    delete 100
  users
    add 90, 93
    change password 103
    delete 102
    edit 102
SSL VPN, overview 83
static route, add 46
status
  Guest Introspection 224
  NSX Edge 199
supported file formats 309
SVM alarms for Guest Introspection 225
syslog, NSX Edge 198
syslog server 183
syslog format 182
system events 181

T
technical support logs
  NSX Edge 199
  NSX Manager 185
test 120
transport zone 21, 33, 37

U
upgrade, NSX Edge 200
user account
  about user roles 165
  assign role to 166
  change role 169
  delete 169
  disable 169
  edit 168
  enable 169
  manage default account 166
  single sign on 163