MIMO IN LTE AND LTE-ADVANCED

OUTLINE

- General Introduction
 - Pre-coding and beam-forming
 - Antenna design
- Introduction to LTE
 - Downlink and uplink physical layer
 - Reference signals and antenna ports
- MIMO transmission schemes in LTE
 - Code words, layers, and streams
 - Tx diversity
 - Downlink SU-MIMO
 - Closed loop, pre-coded spatial multiplexing
 - Open loop, large delay cyclic delay diversity
 - Downlink MU-MIMO
 - MIMO related feedback and downlink control signaling
 - CSI (RI, PMI, CQI)
 - Uplink MIMO
- MIMO in LTE Rel-9 and Rel-10 (LTE-Advanced)
 - Dual layer beam-forming
 - Uplink SU-MIMO
 - Extended downlink MIMO
 - CoMP
GENERAL INTRODUCTION

MULTI-ANTENNA TRANSMISSION TECHNIQUES

- **Diversity** for improved system performance
- **Beam-forming** for improved coverage (fewer cells to cover a given area)
- **SDMA** for improved capacity (more users per cell)
- **Multi-layer transmission** ("MIMO") for higher data rates in a given bandwidth

The multi-antenna technique to use depends on what to achieve.
GENERAL INTRODUCTION:
PRECODING AND BEAMFORMING

- Array-gain from transmit beam-forming improves SNR
 - Large coverage gain
 - Small gain at cell center
- Constructive summation of signals (in the air)
 - Align phases between several transmitted copies of the signal
- Spatial isolation between users
 - Multi-user scheduling (SDMA)

\[\mathbf{x} = \mathbf{W} \mathbf{s} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} \]

GENERAL INTRODUCTION:
MIMO IN CELLULAR SYSTEMS

- Throughput versus coverage tradeoff
 - Large path loss and high interference at cell edge \(\Rightarrow \) Beam-forming
 - Low path loss and low interference at cell center \(\Rightarrow \) Spatial multiplexing
General Introduction:
Antenna Design

- Base station antennas (angular spread is typically small)
 - 4-10 λ antenna separation is considered "large" while 0.5 λ is "small"
- Mobile station antennas (angular spread is typically large)
 - 0.5 λ antenna separation is considered "large"
- UE antenna design challenges
 - RF complexity and antenna placement
 - Correlation with other MIMO antennas
 - Coupling with other MIMO antennas, battery, display, etc.
 - Position and number of antennas for 802.11, Bluetooth, GPS, FM radio, etc.
 - Multiple-band support (e.g., 0.7, 2.1, 2.6 GHz)
 - Polarization
 - Requirements: Electromagnetic compatibility (EMC), Electro static discharge (ESD), Specific absorption rate (SAR), Hearing aid compatibility (HAR), harmonics, etc.
 - Hand and head effects
 - Mass production limitations
 - Form-factor

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Difficulty</th>
<th>Antenna requirements</th>
<th>Practical effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference Mitigation</td>
<td>Low</td>
<td>Envelope correlation ≤ 0.7</td>
<td>Antenna BPD ≤ 10 dB</td>
</tr>
<tr>
<td>Spatial Multiplexing</td>
<td>Medium</td>
<td>Envelope correlation ≈ 0.3–0.5</td>
<td>Medium BPD required</td>
</tr>
<tr>
<td>Range Extension</td>
<td>High</td>
<td>Low</td>
<td>Diversity antenna as good as main antenna</td>
</tr>
</tbody>
</table>

Hand-held multi-stream MIMO is not feasible at large distance.
INTRODUCTION TO LTE: HSPA AND LTE = MOBILE BROADBAND

› HSPA – High-Speed Packet Access ("Turbo-3G")
 - Gradually improved performance at a low additional cost
› LTE – Long-Term Evolution
 - Significantly higher performance in a wide range of spectrum allocations
 - Downlink: up to 300 Mbit/s
 - Uplink: up to 75 Mbit/s
 - Reduced latency: 10 ms RTT
 - Packet-switched services only
 - First step towards IMT-Advanced ("4G")
INTRODUCTION TO LTE:
DOWNLINK TRANSMISSION SCHEME - OFDM

- Subcarrier spacing $\Delta f = 15$ kHz
 $\Rightarrow T_u = 66.7 \mu s$
 - $\Delta f = 7.5$ kHz also specified, for MBSFN transmission only

- Two cyclic prefix lengths
 - Normal
 - Extended (for MBSFN and environments with large delay spread)

- Basic time unit $T_u = 1/(2048 \cdot 15000)$
 - All time quantities expressed as multiples of T_u

<table>
<thead>
<tr>
<th>Configuration, Δf</th>
<th>CP length</th>
<th>Symbols per slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal 15.14 kHz</td>
<td>4.7 μs</td>
<td>7</td>
</tr>
<tr>
<td>Extended 15.14 kHz</td>
<td>16.7 μs</td>
<td>6</td>
</tr>
<tr>
<td>7.5 kHz</td>
<td>33.3 μs</td>
<td>3</td>
</tr>
</tbody>
</table>

INTRODUCTION TO LTE:
DL-SCH PROCESSING

- CRC insertion (24 bit for DL-SCH)
- DL-SCH: Turbo w. QPP, extra CRC per code block
- BCH: tail-biting conv. code
- Rate matching, redundancy version generation per code block, circular buffer
- Transport-channel-specific scrambling using length-31 Gold sequences
- Modulation (QPSK, 16QAM, 64QAM)
- Mapping to transmission layers (for multi-layer transmission)
- Precoding (for multi-rank transmission)
- Resource block mapping (PDSCH)
INTRODUCTION TO LTE:
UPLINK TRANSMISSION SCHEME – DFTS-OFDM

- Single-carrier scheme – DFT-spread OFDM
 - Numerology aligned with downlink OFDM
 - Normal and extended CP, 15 kHz subcarrier spacing, ...

INTRODUCTION TO LTE:
UPLINK CONTROL ON PUCCH

- Specific frequency resources at the edges of the uplink spectrum
 - Scheduling request, ACK/NACK, CSI feedback
 - One PUCCH transmitted within one resource block
 - Frequency-hopping at slot border diversity

- Code-multiplexing of multiple UEs in one RB pair
 - Orthogonal within a cell
 - Non-orthogonal between cells
MIMO TRANSMISSION SCHEMES IN LTE

Downlink Transmission Modes

- Seven different semi-statically configured modes
 1. Single-antenna port (port 0)
 2. Transmit diversity (2 Tx or 4 Tx)
 3. Open-loop spatial multiplexing
 4. Closed-loop spatial multiplexing
 5. Multi-user MIMO
 6. Closed-loop rank=1 pre-coding
 7. Single-antenna port (port 5)

One dedicated pilot for e.g. additional beam-forming support

Multi-antennas a core feature of LTE!
MIMO TRANSMISSION SCHEMES IN LTE:

DOWNLINK REFERENCE SIGNALS

- Known symbols inserted into the downlink time-frequency grid
 - Channel estimation for downlink coherent detection
 - Channel quality estimation for CSI (CQI/PMI/RI) reporting
 - Mobility measurements
- Antenna port
 - Characterized by a reference signal "antenna" visible to UE
- Three types of antenna ports
 - Cell-specific reference signals
 - Antenna ports 0 – 3
 - Always present (in cells supporting unicast transmission)
 - UE-specific reference signals
 - Antenna port 5
 - Used for UE-specific beamforming
 - MBSFN reference signals
 - Antenna port 4
 - Used for MBSFN operation

MIMO TRANSMISSION SCHEMES IN LTE:

CELL-SPECIFIC REFERENCE SIGNALS

- Time-domain position: In OFDM symbol #0 and #4 of each slot
 - Symbol #0 and #3 in case of extended CP
- Frequency-domain position: Every 6th subcarrier
 - 3 subcarriers staggering between symbols
- 504 different Reference Signal Sequences
 - Pseudo-random sequences
MIMO TRANSMISSION SCHEMES IN LTE:
CELL-SPECIFIC REFERENCE SIGNALS

- Frequency-multiplexing between antenna port 0 and 1
 - 3 subcarriers offset
- RS resource element "empty" on other antenna port
 - No inter-antenna RS interference
- Reduced density for antenna port 2 and 3

MIMO TRANSMISSION SCHEMES IN LTE:
UE SPECIFIC RS (ANTENNA PORT 5)

- UE-specific reference signals are supported for single-antenna-port transmission of PDSCH
- The UE is informed by higher layers whether the UE-specific reference signal is present
- UE-specific reference signals are transmitted only on the resource blocks upon which the corresponding PDSCH is mapped.
- PDSCH and antenna port 5 uses the same pre-coding
MIMO TRANSMISSION SCHEMES IN LTE:
MBSFN OPERATION (ANTENNA PORT 4)

- Multicast-Broadcast Single Frequency Network
 - Synchronized transmission from multiple cells
 - Seen as multipath propagation by terminal
 - Combining gain "for free" thanks to OFDM
- MBSFN operation not supported in Rel-8
 - Physical layer (almost) complete
 - Functionality missing on higher layers

MIMO TRANSMISSION SCHEMES IN LTE:
MULTI-ANTENNA TRANSMISSION

- Transmit Diversity ("open-loop")
 - Transmission of same information from multiple antenna ports ⇒ Diversity
 - One code word
 - Number of layers = Number of antenna ports
- Spatial Multiplexing ("open-loop" or "closed loop")
 - Multiple parallel data streams ⇒ Higher data rates
 - One or two code words
 - Number of layers ≤ Number of antenna ports
MIMO TRANSMISSION SCHEMES IN LTE:
TRANSMIT DIVERSITY (OPEN LOOP)

› Common channels (PDCCH, PCFICH, PHICH, PBCH)
 – Link adaptation not possible
› Feedback not possible
 – High Doppler
 – Cell edge
› Large Tx Antenna Distance is desirable
› Two antenna ports:
 – Space-Frequency Block Coding
› Four antenna ports:
 – SFBC + Frequency Shift Transmit Diversity (FSTD)

MIMO TRANSMISSION SCHEMES IN LTE:
LTE DOWNLINK TRANSMIT DIVERSITY

› Two antenna ports:
 – Space-Frequency Block Coding SFBC
 – Like WCDMA STTD (Alamouti) but in frequency domain

Subcarrier

- Antenna 0
- Antenna 1

\[
\begin{bmatrix}
S_0 \\
S_1
\end{bmatrix}
\]
MIMO TRANSMISSION SCHEMES IN LTE:
LTE DOWNLINK TRANSMIT DIVERSITY

- Four antenna ports:
 - SFBC + Frequency Shift Transmit Diversity (FSTD)
 - Like Time Switched Transmit Diversity but in frequency domain

MIMO TRANSMISSION SCHEMES IN LTE:
SPECIAL TX-DIVERSITY FOR PHICH

- Four ACK/NACK bits are transmitted over 4 sub-carriers with up to 3 repetitions

- Using both Type 1 and Type 2 simultaneously ensures uniform power distribution over the eNB antennas
MIMO TRANSMISSION SCHEMES IN LTE:
DOWNLINK SPATIAL MULTIPLEXING

- Maximum of two code words
- Mapping to up to four layers
 - Number of layers depends on channel “rank”
 - Dynamically adjusted based on UE reports

<table>
<thead>
<tr>
<th>Layer mapping</th>
<th>Up to four layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>One code word</td>
<td>Two code words</td>
</tr>
<tr>
<td>One layer</td>
<td>Two layers</td>
</tr>
<tr>
<td>(No MIMO)</td>
<td>Three layers</td>
</tr>
</tbody>
</table>

- Transport format (modulation scheme and code rate) may differ between the code words
- Same number of symbols on each layer
- Note:
 - In Tx-diversity one code-word gets mapped to 2 or 4 layers (special case)
 - A single code-word can be mapped to two layers in case of 4 Tx antennas (special case)

Example: \(N_L = 3, N_A = 4 \)

- One symbol from each of \(N_L \) layers linearly mapped to \(N_A \) antenna ports

\[
\bar{y} = W \cdot \bar{x}
\]

- UE reports recommended precoder matrix \(W \) (including channel rank)
 - Set of available precoder matrices = The precoder “code book”
 - Precoder matrices recommended per set of RBs
- Network
 - follows UE recommendation, or
 - overrides with a common precoder for all RBs, signaled on PDCCH
- One layer ⇒ “Closed-loop” TX diversity ⇒ “Beam forming”
MIMO TRANSMISSION SCHEMES IN LTE:
TWO DIFFERENT FORMS OF PRE-CODING

- Closed-loop spatial multiplexing mode:
 - Precoder W_f focuses transmission in "strong directions" towards the UE
 - W_f selected from finite codebook
 - Track the channel in time as well as in frequency
 - Targeting scenarios with accurate CSI at eNodeB
 - Typically low mobility (unless highly spatially correlated channel)

Track instantaneous channel to achieve array gain!

- Open-loop spatial multiplexing mode:
 - Transmit in "all directions" by cycling through a sequence of four different pre-coders W_f during the transmission of a single subframe
 - Transmission rank one utilizes transmit diversity
 - Targeting scenarios with inaccurate CSI at eNodeB
 - Typically high mobility

Go for diversity to achieve robustness!

Table 1: Precoding codebook for transmission on two antennas.

<table>
<thead>
<tr>
<th>Codebook index</th>
<th>Number of layers M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{1}{\sqrt{2}} [1 1]$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{\sqrt{2}} [1 -1]$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{\sqrt{2}} [1 i]$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{\sqrt{2}} [-i]$</td>
</tr>
</tbody>
</table>

Each column vector is in the form: $\frac{1}{\sqrt{2}} [\cos\theta, \sin\theta]$
MIMO Transmission Schemes in LTE: 4 TX Precoding Codebook

Table 2: Precoding codebook for transmission on four antennas.

<table>
<thead>
<tr>
<th>Codebook index</th>
<th>(\mathbf{u}_i)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>([1, -1, -1, -1]^T)</td>
<td>(\mathbf{W}_{11})</td>
<td>(\mathbf{W}_{12}^{1/2})</td>
<td>(\mathbf{W}_{13}^{1/2})</td>
<td>(\mathbf{W}_{14}^{1/2})</td>
</tr>
<tr>
<td>1</td>
<td>([1, 1, -1, -1]^T)</td>
<td>(\mathbf{W}_{21})</td>
<td>(\mathbf{W}_{22}^{1/2})</td>
<td>(\mathbf{W}_{23}^{1/2})</td>
<td>(\mathbf{W}_{24}^{1/2})</td>
</tr>
<tr>
<td>2</td>
<td>([1, 1, 1, -1]^T)</td>
<td>(\mathbf{W}_{31})</td>
<td>(\mathbf{W}_{32}^{1/2})</td>
<td>(\mathbf{W}_{33}^{1/2})</td>
<td>(\mathbf{W}_{34}^{1/2})</td>
</tr>
<tr>
<td>3</td>
<td>([1, 1, 1, 1]^T)</td>
<td>(\mathbf{W}_{41})</td>
<td>(\mathbf{W}_{42}^{1/2})</td>
<td>(\mathbf{W}_{43}^{1/2})</td>
<td>(\mathbf{W}_{44}^{1/2})</td>
</tr>
<tr>
<td>4</td>
<td>([1, -1, 1, -1]^T)</td>
<td>(\mathbf{W}_{51})</td>
<td>(\mathbf{W}_{52}^{1/2})</td>
<td>(\mathbf{W}_{53}^{1/2})</td>
<td>(\mathbf{W}_{54}^{1/2})</td>
</tr>
<tr>
<td>5</td>
<td>([1, -1, -1, 1]^T)</td>
<td>(\mathbf{W}_{61})</td>
<td>(\mathbf{W}_{62}^{1/2})</td>
<td>(\mathbf{W}_{63}^{1/2})</td>
<td>(\mathbf{W}_{64}^{1/2})</td>
</tr>
<tr>
<td>6</td>
<td>([1, -1, -1, -1]^T)</td>
<td>(\mathbf{W}_{71})</td>
<td>(\mathbf{W}_{72}^{1/2})</td>
<td>(\mathbf{W}_{73}^{1/2})</td>
<td>(\mathbf{W}_{74}^{1/2})</td>
</tr>
<tr>
<td>7</td>
<td>([1, 1, -1, -1]^T)</td>
<td>(\mathbf{W}_{81})</td>
<td>(\mathbf{W}_{82}^{1/2})</td>
<td>(\mathbf{W}_{83}^{1/2})</td>
<td>(\mathbf{W}_{84}^{1/2})</td>
</tr>
<tr>
<td>8</td>
<td>([1, 1, 1, -1]^T)</td>
<td>(\mathbf{W}_{91})</td>
<td>(\mathbf{W}_{92}^{1/2})</td>
<td>(\mathbf{W}_{93}^{1/2})</td>
<td>(\mathbf{W}_{94}^{1/2})</td>
</tr>
<tr>
<td>9</td>
<td>([1, -1, 1, -1]^T)</td>
<td>(\mathbf{W}_{101})</td>
<td>(\mathbf{W}_{102}^{1/2})</td>
<td>(\mathbf{W}_{103}^{1/2})</td>
<td>(\mathbf{W}_{104}^{1/2})</td>
</tr>
<tr>
<td>10</td>
<td>([1, 1, 1, 1]^T)</td>
<td>(\mathbf{W}_{111})</td>
<td>(\mathbf{W}_{112}^{1/2})</td>
<td>(\mathbf{W}_{113}^{1/2})</td>
<td>(\mathbf{W}_{114}^{1/2})</td>
</tr>
<tr>
<td>11</td>
<td>([1, 1, 1, 1]^T)</td>
<td>(\mathbf{W}_{121})</td>
<td>(\mathbf{W}_{122}^{1/2})</td>
<td>(\mathbf{W}_{123}^{1/2})</td>
<td>(\mathbf{W}_{124}^{1/2})</td>
</tr>
<tr>
<td>12</td>
<td>([1, 1, -1, 1]^T)</td>
<td>(\mathbf{W}_{131})</td>
<td>(\mathbf{W}_{132}^{1/2})</td>
<td>(\mathbf{W}_{133}^{1/2})</td>
<td>(\mathbf{W}_{134}^{1/2})</td>
</tr>
<tr>
<td>13</td>
<td>([1, 1, -1, 1]^T)</td>
<td>(\mathbf{W}_{141})</td>
<td>(\mathbf{W}_{142}^{1/2})</td>
<td>(\mathbf{W}_{143}^{1/2})</td>
<td>(\mathbf{W}_{144}^{1/2})</td>
</tr>
<tr>
<td>14</td>
<td>([1, -1, -1, 1]^T)</td>
<td>(\mathbf{W}_{151})</td>
<td>(\mathbf{W}_{152}^{1/2})</td>
<td>(\mathbf{W}_{153}^{1/2})</td>
<td>(\mathbf{W}_{154}^{1/2})</td>
</tr>
<tr>
<td>15</td>
<td>([1, -1, -1, 1]^T)</td>
<td>(\mathbf{W}_{161})</td>
<td>(\mathbf{W}_{162}^{1/2})</td>
<td>(\mathbf{W}_{163}^{1/2})</td>
<td>(\mathbf{W}_{164}^{1/2})</td>
</tr>
</tbody>
</table>

\(\mathbf{W}_{k(1-2)} \) Denotes the matrix defined by the columns \(c_1 \ldots c_m \) of the matrix

\[
\mathbf{W}_i = \mathbf{I}_{4\times4} - 2\mathbf{u}_i\mathbf{u}_i^H/\mathbf{u}_i^H\mathbf{u}_i
\]

MIMO Transmission Schemes in LTE: Pre-Coder Design

- **Constant modulus:**
 - All physical antennas keep the same transmit power
 - Maximizes PA utilization efficiency
- **Nested property:**
 - Each pre-coder matrix in a higher rank sub-codebook can find at least one pre-coding matrix in a lower rank sub-codebook
 - Ensures proper performance if eNB selects a lower rank than what UE reported
 - Reduced CQI calculation complexity for the UE; calculations can be shared for different ranks (up to a scaling factor)
- **Constrained alphabet:**
 - Two antennas: QPSK alphabet \(\{ \pm 1, \pm j \} \)
 - Four antennas: 8-PSK alphabet for the vector \(\mathbf{u}_i \) elements \(\{ \pm 1, \pm j, \pm (1+j)/\sqrt{2}, \pm (1-j)/\sqrt{2} \} \)
 - Reduces complexity of CQI calculations and in pre-coder
- **4Tx-precoders are based on the Housholder transformation**
 - Reduces complexity of finding out suitable pre-coding matrices
MIMO TRANSMISSION SCHEMES IN LTE:
TRANSMIT PRE-CODING MATRIX INDICATION (TPMI)

- In closed-loop spatial multiplexing eNB must send information about what pre-coding is used to the UE
- The default is that the eNB uses what the UE reported in the latest PMI report
 - Enables frequency selective pre-coding without excessive DL signaling
- TPMI is sent as part of downlink control information (DCI)
 - Two antennas: 3 bits
 - One code-word: tx-diversity + 4 pre-coders + reported PMI (left or right)
 - Two code-words: tx-diversity + 2 pre-coders + reported PMI
 - Four antennas: 6 bits
 - tx-diversity + 16 pre-coders per rank + reported PMI
- If the TPMI indicates a pre-coding matrix then it is applied to all frequency resources allocated to that UE

MIMO TRANSMISSION SCHEMES IN LTE:
OPEN-LOOP SPATIAL MULTIPLEXING

- Open loop spatial multiplexing is used if reliable PMI feedback is not available at the eNB
 - High UE speed
 - High cost of UL feedback
- Open-loop spatial multiplexing also uses UE feedback
 - Link adaptation: CQI (one value)
 - Rank adaptation: R (1, 2, 3, or 4)
- A fixed set of pre-coding matrices are applied cyclically across all the scheduled sub-carriers i

\[y(i) = W(i)D(i)Ux(i) \]
MIMO TRANSMISSION SCHEMES IN LTE:
OPEN-LOOP SPATIAL MULTIPLEXING

- Large-delay cyclic-delay-diversity (CDD)
 - D(i)U ensures that the modulation symbols of each codeword are mapped onto different layers for each i
 - Each code-word experiences all the transmitted layers

\[y(i) = W(i)D(i)Ux(i) \]

Pre-coding for open-loop spatial multiplexing

- 2 Tx antennas:

\[W(i) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

- 4 Tx antennas:

\[W(i) = C_i; \quad k = \left(\frac{i}{M} \right) \mod 4 + 1 \]

Pre-coding matrix \(C(i) \) is given by \(k = 1, 2, 3, 4 \) for the open-loop spatial multiplexing.

- If rank is set to 1 then transmit diversity is applied
MIMO TRANSMISSION SCHEMES IN LTE:
CLOSED LOOP SPATIAL MULTIPLEXING - CSI FEEDBACK

- UE feeds back channel state information (CSI) to assist link adaptation and scheduling
 - RI: Rank Indicator
 - Recommended transmission rank
 - PMI(s): Pre-coder Matrix Indicator(s)
 - Only for closed-loop spatial multiplexing
 - CQI(s): Channel Quality Indicator(s)
 - Recommended transport format giving 10% BLER
 - Wideband report (RI, PMI, CQI)
 - Frequency selective report (CQI or PMI)
 - Reporting units (sub-bands) configured by higher layer signaling

CSI sensitive to feedback delay!

MIMO TRANSMISSION SCHEMES IN LTE:
RI, PMI, AND CQI

- RI
 - One single rank value is reported (2 antennas 1 bit, 4 antennas 2 bits)
 - Encoded separately from CQI and PMI
 - The bit-width of the other fields depend on the reported RI

- PMI
 - Calculated conditioned on the reported RI
 - Bit-width
 - 2 antennas, RI = 1: 2 bits per reporting unit (sub-band or wide-band)
 - 2 antennas, RI = 2: 1 bit per reporting unit
 - 4 antennas, 4 bit per reporting unit

- CQI
 - Calculated conditioned on the reported RI and PMI
 - Frequency selective CQI
 - Differentially encoded (2 bits) with respect to the wideband CQI (4 bits)
 - Closed loop:
 - RI = 1: Only one differential CQI value (2 bits) for each sub-band
 - RI > 1: One differential CQI value per codeword (2 bits) for each sub-band
 - Open loop:
 - Only a single differential CQI value (2 bits) is reported for each sub-band
 - Wideband CQI only on PUCCH
 - RI >1: 4 bits for first codeword, 3 differential encoded bits for second code-word
MIMO TRANSMISSION SCHEMES IN LTE:
PERIODIC AND A-PERIODIC CSI

› Periodic CSI on PUCCH
 - Narrow bit pipe → small payload size → rough report
 - Wideband CSI appropriate
› A-periodic dynamically requested CSI on PUSCH
 - Request CSI when needed!
 - Wide flexible bit pipe → large payload size → detailed report
 - Frequency-selective CSI appropriate
 › Supports frequency domain scheduling
 › Array gain in frequency-selective uncorrelated channels

Periodic CSI as baseline for more detailed a-periodic reports!

MIMO TRANSMISSION SCHEMES IN LTE:
UE COMPUTATIONS FOR CSI

› Brute force search for best combination of RI and PMI
› Ideal algorithm:
 - for each RI do
 › for each PMI do
 - compute SINR per layer
 - SINRs → predicted throughput
 - Select RI and PMI that gives highest predicted throughput over relevant
 reference period and bandwidth
 - Given selected RI and PMI(s)
 › Based on SINR(s) for transport block find
 highest transport format with BLER ≤ 10% → CQI

Substantial number crunching!
MIMO TRANSMISSION SCHEMES IN LTE:
UPLINK CONTROL ON PUSCH

- Turbo coding
- Conv. Coding
- DFT
- DFTS-OFDM modulator
- IFFT
- UL-SCH
- CQI, PMI
- Rank Indicator
- Mux
- QPSK, 16/64QAM
- Rate Matching
- MIMO transmission schemes in LTE:
 - Channel state information (CSI)
 - Wide-band or frequency selective
 - Wideband CQI + Wideband PMI
 - Frequency selective CQI + Wideband PMI
 - Wideband CQI + Frequency selective PMI
 - Transmitted on PUSCH or PUCCH
 - Periodic or a-periodic
 - Nine different CSI modes (Covers 16 pages in TS 36.213 V8.7.0 +)
 - 4 on PUCCH
 - 5 on PUSCH
 - Only a subset of modes possible for a certain transmission mode

- UL-SCH
- CQI, PMI
- Rank Indicator
- Hybrid-ARQ acknowledgment
- DFTS-OFDM indicator
- Channel-Quality Indicator, Precoding Matrix Indicator
- Rank indicator
- Hybrid-ARQ acknowledgment
- 1 ms subframe
MIMO TRANSMISSION SCHEMES IN LTE:
MULTI-ANTENNAS IN THE UPLINK

› Closed loop UE antenna selection
 - eNodeB indicates which transmit antenna the UE shall use as part of the
downlink control message
› Open loop UE antenna selection
 - TS 36.213: “If open-loop UE transmit antenna selection is enabled by higher
layers, the transmit antenna to be selected by the UE is not specified.”
› Multi-user MIMO

MIMO TRANSMISSION SCHEMES IN LTE:
TYPICAL UPLINK MU-MIMO OPERATION

› High load at least in cell of interest in order to find UEs for co-scheduling
 - Grouping UEs need careful scheduler design
› High SINRs needed
 - MU-MIMO service area close to cell center
 - Less likely that cell edge UEs use MU-MIMO
› Service area grows if surrounding cells have low load
LTE-ADVANCED CONCEPT COMPONENTS:
EXTENDED MULTI-ANTENNA SUPPORT

LTE-ADVANCED:
REQUIREMENTS AND TARGETS

- Requirements of IMT Advanced set by ITU in June/July 2008 [ITU-Rs homepage]
- Targets for LTE-Advanced set by 3GPP in May/June 2008 [36.913]

<table>
<thead>
<tr>
<th>Requirement</th>
<th>ITU Requirements</th>
<th>3GPP Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak data rates</td>
<td></td>
<td>10 Gbps in DL, 500 Mbps in UL</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>40 MHz</td>
<td>100 MHz</td>
</tr>
<tr>
<td>User plane latency</td>
<td>10 ms</td>
<td>10 ms</td>
</tr>
<tr>
<td>Control plane latency</td>
<td>100 ms</td>
<td>50 ms</td>
</tr>
<tr>
<td>Peak spectrum efficiency</td>
<td>[15] bps/Hz in DL</td>
<td>30 bps/Hz in DL</td>
</tr>
<tr>
<td></td>
<td>[6.75] bps/Hz in UL</td>
<td>15 bps/Hz in UL</td>
</tr>
<tr>
<td>Average spectrum efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set for four scenarios and several antenna configurations. In ITU 3 out of 4 scenarios need to be reached.</td>
<td></td>
</tr>
<tr>
<td>Cell edge spectrum efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See next slide for examples for Case 1.</td>
<td></td>
</tr>
<tr>
<td>VoIP capacity</td>
<td>150-250 UEs per 5 MHz</td>
<td>Improved compared to Rel 8</td>
</tr>
</tbody>
</table>
LTE-ADVANCED:
UPLINK SPATIAL MULTIPLEXING

- Up to 2 transport blocks per TTI
 - Modulation and coding scheme set individually for each transport block

- Mapping to up to four layers
 - Same mapping as for Rel-8 DL-SCH
 - Number of layers dynamically adjusted by eNB
 (to match channel "rank")
 - Layer shifting supported

- Codebook-based precoding
 - Precoded demodulation reference signals
 - Antenna-specific non-precoded sounding reference signals

LTE-ADVANCED:
DOWNLINK SPATIAL MULTIPLEXING

- Up to 8 layers
 - Extension of Rel-8 scheme

- UE-specific reference signals
 - Extension of Rel-8 RS to multiple layers

- Channel status reports extended to 8 layers
 - Codebook-based feedback

- Layer mapping extended to 8 layers

- Precoding extended to support 8 layers
 - No codebook standardized; precoding is transparent to the UE due to UE-specific RS
LTE-ADVANCED:
DOWNLINK MU-MIMO

- Simultaneous transmission to multiple UEs on the same time-frequency resource using separate layers to separate the transmissions
 - 1 ms subframe
 - 1 RB
 - Terminal A
 - Terminal B
 - Terminal C

- Inform the UE which layer(s) it is supposed to receive
 - The UE may not make any assumptions on contents/presence of other layers
- Certain degree of inter-user interference suppression in the UE
 - Requirements set in RAN4

LTE-ADVANCED:
DOWNLINK REFERENCE SIGNALS

- Unified reference-signals structure used for multiple features
 - CoMP, MIMO, ...
- Cell-specific reference signals (CRS)
 - Inherited and unchanged from release 8?
- UE-specific reference signals (DRS)
 - Extended to support up to 8 layers
 - Support for two-layer transmission already in Rel-9?
 - Orthogonal code-division multiplexing of RS between different layers
- Reference signals for CSI (CSI-RS)
 - New type of reference signals targeting CSI estimation only
 - Up to eight cell-specific antenna ports
 - Sparse in time and frequency,
 - e.g., every 6th subcarrier in one OFDM symbol per frame
 - ~0.12% overhead per antenna port
 - Present in Rel-8
 - New/extended in Rel-10

Example

CSI-RS

One frame (10 ms)
LTE-ADVANCED:
COMP – BASIC PRINCIPLES

- Coordinated MultiPoint transmission and reception
- Dynamic coordination in transmission and reception between cells
- Reduce interference and/or increase desired signal

Downlink
- Coordinated scheduling
- Joint processing

Uplink
- Coordinated scheduling
- Joint (coherent) processing

LTE-ADVANCED:
COMP – ARCHITECTURE

- Coordination can be centralized or distributed, proprietary or standardized
- Delay and bandwidth of backhaul and coordination links are important parameters

Logical
- Intra-eNB coordination
- Inter-eNB coordination

Physical
- Dedicated links
- Switched network

© Ericsson AB 2009 - Ericsson Internal - X (X) - Date
LTE-ADVANCED: DL COORDINATED SCHEDULING

- Schedule UEs such that throughput versus user rate can be improved by avoiding interference
- Two mechanisms:
 - Multi-cell link adaptation and power control
 - Interference avoidance
- Example:
 - 1st TTI: Red Blue Yellow
 - 2nd TTI: Yellow Red Blue
 - 3rd TTI: Blue Yellow Red
 i. 100% gain in cell edge throughput!
 ii. Only 10% worse than a single centralized controller!

LTE-ADVANCED: JOINT COHERENT PROCESSING

- Coherent linear transmission schemes
- Network must know DL channel to UEs in coordination cluster
- Mitigate intra-cluster interference
 - Zero forcing: eliminate intra-cluster interference
 - Epsilon forcing: constrain intra-cluster interference
 - MMSE: minimize sum rx. symbol estimation error

Desired signal adds constructively
Interference cancelled
LTE-ADVANCED: UPLINK COMP

- Coordination alternatives:
 - Dynamic coordination in UL scheduling or Dynamic interference coordination
 - Reception and joint processing at multiple sites (e.g. MRC, IRC, IC, ...)

- Coordination/processing can be centralized or distributed

- No impact on radio interface
 - UE does not need to be aware at what points the uplink transmission is received and how it is processed
 - Associated downlink signaling (scheduling grants, HARQ ACK/NAK, power control) from serving cell regardless of uplink reception points

- May benefit from larger number of orthogonal uplink DRS
 - Facilitates reliable interference estimates required by IRC and IC methods

MIMO IN LTE AND LTE-ADVANCED: SUMMARY

- Closed-loop and open-loop spatial multiplexing (antenna ports 0-3)
 - Covers both low and high mobility
 - Complementary peak-rate achieving transmission modes

- Diversity transmission based on Alamouti scheme
 - SFBC + FSTD

- MBSFN transmission (antenna port 4)

- Single layer beam-forming with dedicated reference symbols (antenna port 5)

- Uplink MU-MIMO for high load scenarios

- Lots of CSI
 - Periodic and a-periodic
 - Wide-band or frequency-selective
 - PUSCH or PUCCH

- Extended multi-antenna support in LTE Rel-10
 - 8 Tx antennas in downlink
 - SU MIMO in uplink (4 Tx antennas)
 - Combined beam-forming and spatial multiplexing
 - CoMP
BACKUP SLIDES
General Introduction: Beamforming

- "Traditional" beamforming
 - Same fading on all antennas
 - Steer beam by phase shift on antennas
 - Estimate "direction" from UL
 - Slow feedback
- Antenna constellation do not match "MIMO multiplexing"
- Reference symbols provided in "beam"
 - Cannot be used by others
 - Cannot estimate CQI when not scheduled

More Beamforming

- Pre-coded based beamforming
 - Align signals by fixed BF vectors
 - A "code-book" of vectors
 - UE pick "best" vector
 - Do not require same fading on antennas
 - Blends with "MIMO multiplexing"
 - Different fading over frequencies
 - Feedback per resource block
 - Reference symbol per "antenna"
 - Possible to estimate CQI even when not scheduled
GENERAL INTRODUCTION:

LINEAR DISPERSION CODING

- General LDC (rank $r = Q/L$)
 \[C = [x_1 \ x_2 \ \ldots \ x_q] = \sum_{q=1}^{Q} B_q [\text{re}{e_q} + \text{im}{e_q}] \]

- Can be re-written as
 \[X = \begin{bmatrix} w_1 \ w_2 \ \ldots \ w_q \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_q \end{bmatrix} = Ws \quad (L=1, \overline{B}_q = B_q) \]

- The matrix W is often chosen from a fixed and countable set of pre-coder matrices
 \[W = \{ W_1 \ W_2 \ \ldots \ W_q \} \]

GENERAL INTRODUCTION:

PRECODING BASED BEAMFORMING

- Code-book of pre-coding matrices
- Maximize SNR, rate, throughput, received power, ... from downlink reference signals, e.g.:
 \[P_k = w_k^H HH^H w_k \]

- The UE feeds back an index to the preferred pre-coding vector
 \[\begin{pmatrix} 1 \\ e^{j\pi/4} \\ e^{j3\pi/4} \\ e^{j5\pi/4} \\ e^{j7\pi/4} \end{pmatrix} \]
The channel can be seen as acting per subcarrier by the complex gain H_k.

If channel estimates are at hand, this can be compensated for e.g.

- **Time domain structure:**
 - 10 ms frame consisting of 10 subframes of length 1 ms
 - Each subframe consists of 2 slots of length 0.5 ms
 - Each slot consists of 7 OFDM symbols (6 symbols in case of extended CP)

- **Resource element (RE)**
 - One subcarrier during one OFDM symbol

- **Resource block (RB)**
 - 12 subcarriers during one slot (180 kHz x 0.5 ms)
To support DL-SCH and UL-SCH transmission

- Mapped to first OFDM symbols of each subframe
 - Dynamically varying size;
 - 1, 2, 3 OFDM symbols
 - TDM of data and control
 - UE micro-sleep possible

- PCFICH – Physical Control Format Indicator Channel
 - Size of control region

- PHICH – Physical Hybrid ARQ Indicator Channel
 - ACK/NAK of uplink transmission

- PDCCH – Physical Downlink Control Channel
 - Scheduling assignments, scheduling grants, ...

*) 2, 3, 4 OFDM symbols for narrow BWs

This enables flexible bandwidth sharing, restricted by a consecutive subcarrier allocation requirement.

- Evenly distributed carrier allocation also gives single-carrier properties