CSSBB Primer Contents

I. CERTIFICATION OVERVIEW I-1
 CSSBB EXAM I-3
 CSSBB BODY OF KNOWLEDGE I-6

II. ENTERPRISE-WIDE DEPLOYMENT II-1
 ORGANIZATION-WIDE CONSIDERATIONS II-2
 SIX SIGMA/LEAN FUNDAMENTALS II-2
 IMPROVEMENT METHODOLOGIES II-34
 SYSTEMS AND PROCESSES II-42
 STRATEGIC PLANNING II-47
 LEADERSHIP II-57
 ROLES AND RESPONSIBILITIES II-57
 ORGANIZATIONAL ROADBLOCKS II-63

III. PROCESS MANAGEMENT III-1
 OVERVIEW III-2
 STAKEHOLDER IMPACT III-8
 CRITICAL REQUIREMENTS III-11
 BENCHMARKING III-11
 BUSINESS MEASURES III-15
 PERFORMANCE MEASURES III-15
 FINANCIAL MEASURES III-20
Business Level Metrics

Business level metrics are typically financial (external) and operational (internal) summaries for shareholders and management.

Business (executive) level metrics comprise summaries of detailed operations and financial results reported monthly, quarterly, or annually.
Operations Level Metrics

Six sigma provides new metrics for managing complex operations. Business effectiveness measures track how well products are meeting customer needs (external focus). Breyfogle indicates that they should have a longer-term perspective and reflect the total variation that the customer sees.

Operational efficiency measures relate to the cost and time required to produce the products. They provide key linkages between detailed process measures and summary business results, and help identify important relationships and root causes.
External Customer Segmentation (Cont’d)

The consumer customer market differs from the business market as follows:

- The consumer market has a large number of customers
- The majority of consumer purchases are small in actual dollar amounts
- The transaction is usually a simple purchase
- Most consumers are not very knowledgeable about the product
- The supplier does not share proprietary information with the consumer
External Customer Segmentation (Cont’d)

In contrast, the business customer acts in the following manner:

- There are a very small number of business customers
- The amount purchased per transaction is quite large
- The purchase is handled through specialized personnel
- The customer may know more about the requirements than the producer
- The supplier may allow the customer access to all sorts of information

It is also important to look at the market for the next two to five years and estimate how it will change and grow.
Customer Service

The customer driven company is beginning to emerge in America. The public demands and expects better quality products and service. One sample program follows:

- Listen to the customer and determine needs
- Define a service strategy
- Set standards of performance
- Select and train the right employees
- Recognize and reward accomplishment

There is the need to listen to the customer, provide a vision, provide training, improve the process, find or develop response metrics, and measure the results. About 70% of customers who leave a company do so because of service quality.
Customer Retention

Most organizations spend the bulk of their resources on attaining new customers and smaller amounts on retaining customers. High customer satisfaction numbers do not necessarily mean the company has good customer retention and good customer loyalty. It has been found that current customers are worth as much as five times more than new customers. The cost of retaining a current customer is only one-fourth the cost of acquiring a new customer.

Another study showed that companies will boost profits by about 100% by just retaining 5% more of their customers.
Customer Retention (Continued)

Furlong lists some techniques for getting to know customers better:

- Don’t use your own instincts as data
- See the world from the customer’s side
- People high in the organization are out of touch
- Get customers to talk
- 90% of unhappy customers won’t complain
- Do research to retain customers
- Determine how satisfied customers are
- Conduct research on customer expectations
- Develop a customer profile
- Share the results of customer research studies
- Don’t go overboard on the details and measurement
- Coordinate and use research efforts
- Understand that sometimes research does not help
Customer Loyalty

The value of a loyal customer is not measured on the basis of one gigantic purchase, but rather on his/her lifetime worth. Loyal customers account for a high proportion of sales and profit growth. Customer retention generates repeat sales, and it is cheaper to retain customers. Customer loyalty is something that must be demonstrated through an act of execution, trust, or delightful service. Customers become partners.
Circle Diagrams (Continued)

The PDCA Cycle

- 1. PLAN
- 2. DO
- 3. CHECK
- 4. ACT

Bias and Precision Distinction

- Precise, but Biased
- Unbiased, but not Precise
- Unbiased and Precise
Circle Diagrams

On occasion, a circle diagram can help conceptualize the relationship between work elements in order to optimize work activities. Shown below is a hypothetical analysis of the work load for a shipping employee using a Venn (or circle) diagram.

![Circle Diagram](image-url)
Hypergeometric Distribution (Continued)

From a group of 20 products, 10 are selected at random for testing. What is the probability that the 10 selected contain the 5 best units?

\[N = 20, \ n = 10, \ d = 5, \ (N-d) = 15 \ \text{and} \ r = 5 \]

\[
P(r) = \frac{C_5^5 C_{15}^{15}}{C_{10}^{20}} \quad \text{(note that} \ C_r^n = \frac{n!}{r!(n-r)!})
\]

\[
P(r) = \left(\frac{5!}{5!10!} \right) \left(\frac{15!}{5!10!} \right) \left(\frac{15!}{20!} \right) \left(\frac{10!10!}{10!10!} \right) = 0.0163 = 1.63\%
\]

The mean and the variance of the hypergeometric distribution are:

\[
\mu = \frac{nm}{N} \quad \sigma = \left(\frac{nm}{N} \right) \left(1 - \frac{m}{N} \right) \left(\frac{N-n}{N-1} \right)
\]
Choosing A Discrete Distribution

1. Start
2. Modeling a rate with no upper bound for the number of successes?
 - Yes: Poisson
 - No
3. Fixed number of trials?
 - Yes
 - No: Hypergeometric
4. Probability of success same on all trials?
 - Yes: Binomial
 - No
5. Probability of success the same on all trials and number of successes = 1?
 - Yes: Geometric
 - No: Negative Binomial
Bivariate Normal Distribution

The joint distribution of two variables is called a bivariate distribution. Bivariate distributions may be discrete or continuous.

The graphical representation of a bivariate distribution is a three dimensional plot, with the x and y-axis representing the independent variables and the z-axis representing the frequency for discrete data or the probability for continuous data.

A special case of the bivariate distribution is the bivariate normal distribution shown below:
Identifying Characteristics

The identification of characteristics to be measured in a process capability study should meet the following requirements:

- The characteristic should be indicative of a key factor in the quality of the product or process

- It should be possible to adjust the value of the characteristic

- The operating conditions that affect the measured characteristic should be defined and controlled

Selecting one, or possibly two, key dimensions provides a manageable method of evaluating the process capability. The characteristic selected may also be determined by the history of the part and the parameter that has been the most difficult to control.

Customer purchase order requirements or industry standards may also determine the characteristics that are required to be measured.
Identifying Specifications/Tolerances

The process specifications or tolerances are determined either by customer requirements, industry standards, or the organization’s engineering department.

Developing Sampling Plans

The appropriate sampling plan for conducting process capability studies depends upon the purpose and whether there are customer or standards requirements for the study.

If the process is currently running and is in control, control chart data may be used to calculate the process capability indices. If the process fits a normal distribution and is in statistical control, then the standard deviation can be estimated from:

\[\sigma_R \approx \frac{\bar{R}}{d_2} \]

For new processes a pilot run may be used to estimate the process capability. A design of experiments can be used to determine the optimum values of the process variables which yield the lowest process variation.
Verifying Stability and Normality

If only common causes of variation are present in a process, then the output of the process forms a distribution that is stable over time and is predictable. If special causes of variation are present, the process output is not stable over time.

The Figure below depicts an unstable process with both process average and variation out-of-control. The process may also be unstable if either the process average or variation is out-of-control.
Verifying Stability and Normality (Cont’d)

The validity of the normality assumption may be tested using the chi square hypothesis test. To perform this test, the data is partitioned into data ranges. The number of data points in each range is then compared with the number predicted from a normal distribution.

Continuous data may be tested using a variety of goodness-of-fit tests.
The Normal Distribution

When all special causes of variation are eliminated, many variable data processes, when sampled and plotted, produce a bell-shaped distribution. If the base of the histogram is divided into six (6) equal lengths (three on each side of the average), the amount of data in each interval exhibits the following percentages:
The Z Value

The area outside of specification for a normal curve can be determined by a Z value.

\[
Z_{\text{LOWER}} = \frac{\bar{X} - \text{LSL}}{S} \quad \quad Z_{\text{UPPER}} = \frac{\text{USL} - \bar{X}}{S}
\]

The Z transformation formula is:

\[
Z = \frac{X - \mu}{\sigma}
\]

This transformation will convert the original values to the number of standard deviations away from the mean. The result allows one to use a single standard normal table to describe areas under the curve (probability of occurrence).
Z Value (Continued)

There are several ways to display the normal (standardized) distribution:

1. As a number under the curve, up to the Z value.

\[P(Z = -\infty \text{ to } 1) = 0.8413 \]

2. As a number beyond the Z value.

\[P(Z = 1 \text{ to } +\infty) = 0.1587 \]
Z Value (Continued)

3. As a number under the curve, and at a distance from the mean.

\[
P(Z = 0 \text{ to } 1) = 0.3413
\]

The standard normal table in this Primer uses the second method of calculating the probability of occurrence.
Z Value Example

Tenth grade students weights follow a normal distribution with a mean $\mu = 150$ lb and a standard deviation of 20 lb. What is the probability of a student weighing less than 100 lb?

$$Z = \frac{X - \mu}{\sigma}$$

$\mu = 150$

$x = 100$

$\sigma = 20$

$$Z = \frac{100 - 150}{20} = -\frac{50}{20} = -2.5$$

Since the normal table has values about the mean, a Z value of -2.5 can be treated as 2.5.

$P(Z = -\infty \text{ to } -2.5) = 0.0062$. That is, 0.62% of the students will weigh less than 100 lb.
There is a direct link between the calculated C_p (and P_p values) with the standard normal (Z value) table. A C_p of 1.0 is the loss suffered at a Z value of 3.0 (doubled, since the table is one sided). Refer to the Table below.

<table>
<thead>
<tr>
<th>C_p</th>
<th>Z value</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>1.00</td>
<td>317,311</td>
</tr>
<tr>
<td>0.67</td>
<td>2.00</td>
<td>45,500</td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
<td>2,700</td>
</tr>
<tr>
<td>1.10</td>
<td>3.30</td>
<td>967</td>
</tr>
<tr>
<td>1.20</td>
<td>3.60</td>
<td>318</td>
</tr>
<tr>
<td>1.30</td>
<td>3.90</td>
<td>96</td>
</tr>
<tr>
<td>1.33</td>
<td>4.00</td>
<td>63</td>
</tr>
<tr>
<td>1.40</td>
<td>4.20</td>
<td>27</td>
</tr>
<tr>
<td>1.50</td>
<td>4.50</td>
<td>6.8</td>
</tr>
<tr>
<td>1.60</td>
<td>4.80</td>
<td>1.6</td>
</tr>
<tr>
<td>1.67</td>
<td>5.00</td>
<td>0.57</td>
</tr>
<tr>
<td>1.80</td>
<td>5.40</td>
<td>0.067</td>
</tr>
<tr>
<td>2.00</td>
<td>6.00</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Index Failure Rates (Continued)

In the prior Table, ppm equals parts per million of nonconformance (or failure) when the process:

- Is centered on \bar{X}
- Has a two-tailed specification
- Is normally distributed
- Has no significant shifts in average or dispersion

When the C_p, C_{pk}, P_p, and P_{pk} values are 1.0 or less, Z values and the standard normal table can be used to determine failure rates. With the drive for increasingly dependable products, there is a need for failure rates in the C_p range of 1.5 to 2.0.
This start up process smoothed out from data set 10 on. The chart would need new control limits from that point.
Control Chart Interpretation

Five Common Rules

(Rule 1) A point beyond the control limit

(Rule 2) 4 out of 5 points in zone B

(Rule 3) 2 out of 3 points in zone A

(Rule 4) 8 or more consecutive points on one side of center line

(Rule 5) A trend is 6 or more consecutive points increasing or decreasing

Comment: Some authorities say 7 or more consecutive points for both Rules 4 and 5.

Other Unusual Patterns

(Rule 6) Stratification 15 or more points in zone C

(Rule 7) Mixture or systematic variation
<table>
<thead>
<tr>
<th>d.f.</th>
<th>t_{100}</th>
<th>t_{050}</th>
<th>t_{025}</th>
<th>t_{010}</th>
<th>t_{005}</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.078</td>
<td>6.314</td>
<td>12.706</td>
<td>31.821</td>
<td>63.657</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.886</td>
<td>2.920</td>
<td>4.303</td>
<td>6.965</td>
<td>9.925</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1.638</td>
<td>2.353</td>
<td>3.182</td>
<td>4.541</td>
<td>5.841</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1.533</td>
<td>2.132</td>
<td>2.776</td>
<td>3.747</td>
<td>4.604</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1.476</td>
<td>2.015</td>
<td>2.571</td>
<td>3.365</td>
<td>4.032</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1.440</td>
<td>1.943</td>
<td>2.447</td>
<td>3.143</td>
<td>3.707</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1.415</td>
<td>1.895</td>
<td>2.365</td>
<td>2.998</td>
<td>3.499</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1.397</td>
<td>1.860</td>
<td>2.306</td>
<td>2.896</td>
<td>3.355</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1.383</td>
<td>1.833</td>
<td>2.262</td>
<td>2.821</td>
<td>3.250</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1.372</td>
<td>1.812</td>
<td>2.228</td>
<td>2.764</td>
<td>3.169</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>1.363</td>
<td>1.796</td>
<td>2.201</td>
<td>2.718</td>
<td>3.106</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>1.356</td>
<td>1.782</td>
<td>2.179</td>
<td>2.681</td>
<td>3.055</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>1.350</td>
<td>1.771</td>
<td>2.160</td>
<td>2.650</td>
<td>3.012</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>1.345</td>
<td>1.761</td>
<td>2.145</td>
<td>2.624</td>
<td>2.977</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>1.341</td>
<td>1.753</td>
<td>2.131</td>
<td>2.602</td>
<td>2.947</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>1.337</td>
<td>1.746</td>
<td>2.120</td>
<td>2.583</td>
<td>2.921</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>1.333</td>
<td>1.740</td>
<td>2.110</td>
<td>2.567</td>
<td>2.898</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>1.330</td>
<td>1.734</td>
<td>2.101</td>
<td>2.552</td>
<td>2.878</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>1.328</td>
<td>1.729</td>
<td>2.093</td>
<td>2.539</td>
<td>2.861</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>1.325</td>
<td>1.725</td>
<td>2.086</td>
<td>2.528</td>
<td>2.845</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>1.323</td>
<td>1.721</td>
<td>2.080</td>
<td>2.518</td>
<td>2.831</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>1.321</td>
<td>1.717</td>
<td>2.074</td>
<td>2.508</td>
<td>2.819</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>1.319</td>
<td>1.714</td>
<td>2.069</td>
<td>2.500</td>
<td>2.807</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>1.318</td>
<td>1.711</td>
<td>2.064</td>
<td>2.492</td>
<td>2.797</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>1.316</td>
<td>1.708</td>
<td>2.060</td>
<td>2.485</td>
<td>2.787</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>1.315</td>
<td>1.706</td>
<td>2.056</td>
<td>2.479</td>
<td>2.779</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>1.314</td>
<td>1.703</td>
<td>2.052</td>
<td>2.473</td>
<td>2.771</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>1.313</td>
<td>1.701</td>
<td>2.048</td>
<td>2.467</td>
<td>2.763</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>1.311</td>
<td>1.699</td>
<td>2.045</td>
<td>2.462</td>
<td>2.756</td>
<td>29</td>
</tr>
</tbody>
</table>

* one tail 5% α risk ** two tail 5% α risk
Table IX - Control Chart Factors

<table>
<thead>
<tr>
<th>Sample Observations</th>
<th>CHART FOR AVERAGES</th>
<th>CHART FOR STANDARD DEVIATIONS</th>
<th>CHART FOR RANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control limit Factors</td>
<td>Center Line Factors</td>
<td>Control Limit Factors</td>
</tr>
<tr>
<td>n</td>
<td>(A_2)</td>
<td>(A_3)</td>
<td>(c_4)</td>
</tr>
<tr>
<td>2</td>
<td>1.880</td>
<td>2.659</td>
<td>0.7979</td>
</tr>
<tr>
<td>3</td>
<td>1.023</td>
<td>1.954</td>
<td>0.8862</td>
</tr>
<tr>
<td>4</td>
<td>0.729</td>
<td>1.628</td>
<td>0.9213</td>
</tr>
<tr>
<td>5</td>
<td>0.577</td>
<td>1.427</td>
<td>0.9400</td>
</tr>
<tr>
<td>6</td>
<td>0.483</td>
<td>1.287</td>
<td>0.9515</td>
</tr>
<tr>
<td>7</td>
<td>0.419</td>
<td>1.182</td>
<td>0.9594</td>
</tr>
<tr>
<td>8</td>
<td>0.373</td>
<td>1.099</td>
<td>0.9650</td>
</tr>
<tr>
<td>9</td>
<td>0.337</td>
<td>1.032</td>
<td>0.9693</td>
</tr>
<tr>
<td>10</td>
<td>0.308</td>
<td>0.975</td>
<td>0.9727</td>
</tr>
<tr>
<td>15</td>
<td>0.223</td>
<td>0.789</td>
<td>0.9823</td>
</tr>
<tr>
<td>20</td>
<td>0.180</td>
<td>0.680</td>
<td>0.9869</td>
</tr>
<tr>
<td>25</td>
<td>0.153</td>
<td>0.606</td>
<td>0.9896</td>
</tr>
</tbody>
</table>

X – R Charts

- Control Limit
 \[\text{CL}_{\bar{x}} = \bar{x} \pm A_2 \bar{R} \]
- Upper Control Limit
 \[\text{UCL}_R = D_4 \bar{R} \]
- Lower Control Limit
 \[\text{LCL}_R = D_3 \bar{R} \]

X – S Charts

- Control Limit
 \[\text{CL}_{\bar{x}} = \bar{x} \pm A_3 \bar{S} \]
- Upper Control Limit
 \[\text{UCL}_R = B_4 \bar{S} \]
- Lower Control Limit
 \[\text{LCL}_R = B_3 \bar{S} \]

Approximate capability

- \[\hat{\sigma} = \frac{\bar{R}}{d_2} \]
- \[\hat{\sigma} = \frac{\bar{S}}{c_4} \]