INDEX by Peter Rhodes, BSc, G3XJP

PART 1
General introduction
Typical Tx/Rx block diagram

PART 2
Software block diagram
How the software works; is packaged; and can be obtained

PART 3
PCB Manufacturing process
Component list for Timer, Status, IF, DSP boards; and assembly thereof

PART 4
Super VOX
Timer board circuit diagram and PCB

PART 5
Circuit diagrams for DSP mother; Processor and CODEC daughter boards

PART 6
Component location for DSP mother board. DSP board test process

PART 7
Overview of G3XJP Tx/Rx
DSP board construction technique
DSP board PCB art

PART 8
IF board description and circuit diagram

PART 9
IF board component layout and PCB art
DSP Assembly construction

PART 10
DSP Assembly assembly and test

PART 11
STAR UI background
Possible Tx/Rx layout and front panel

PART 12
PicAdapter and Status board circuit diagrams.
RS232 wiring.

PART 13
Possible stereo amplifier
PicAdapter and Status PCB component location and artwork

PART 14
Some Pic 'N' Mix suggestions

PART 15
DSP operational features and use

PART 16
Magic Roundabout circuit diagram, options

PART 17
Magic Roundabout PCB component layout and art
Overall STAR Rx performance numbers

PART 18
Band Pass Filters - discussion and circuit diagram

PART 19
Band Pass Filters - PCB component layout and artwork

PART 20
Conclusion
Part 1 by Peter Rhodes, BSc, G3XJP

PIC-A-STAR
SOFTWARE TRANSMITTER AND RECEIVER

T HIS IS A detailed construction project aimed at those of modest experience who would like to enhance both their craft and technology skills. At the outset - like me - it may well be that you don't have the skills or knowledge to build this project. By the end, you will have. That is, as I see it, the whole idea.

By design, this is a project without end. From my perspective, it is the basis for years of happy building to come - and is my first investment in a new core transceiver platform in some 25 years. A glance at the photo tells you why I needed a new one.

From your perspective it is a source of ideas for improving an existing transceiver - not least, replacing the back-end with a powerful Digital Signal Processing (DSP) capability. There are also some craft techniques for handling small-size high-function components. So, there is something in this for everyone with an eye on the self-education requirement of their Licence.

SUMMARY
THE HEART of PIC-A-STAR is the DSP module. This provides both the back-end receiver functionality - as well as SSB/CW generation on transmit. The bottom line is absolutely superb audio quality on both transmit and receive. If you want to test the former, come on the home-brew net frequency (see photo) any day around lunch-time where you will find at least one STAR in operation most days. If you want to test the latter then you will just have to make one.

Being implemented by software, it provides the opportunity to address both absolute performance as well as the delights of operational convenience - at zero incremental cost. This is precisely the basis for future developments, but the fundamental functionality together with some bells and even the odd whistle has been in daily use here for about nine months. This is the project on offer - but by the time you get there it will have moved on.

PIC-A-STAR is explicitly designed to be upgradable over the web, so there will be no incremental DSP enhancement costs.

POSITIONING DSP
YOU MIGHT reasonably expect the author of a DSP project to have some serious knowledge in the field. So would I! Actually in many ways it is important to get this published before I acquire more than enough to be merely dangerous.

If, like me, you are at least in your late 50’s it is unlikely that DSP theory featured even in a formal engineering education. And if equally like me you have never worked in the engineering profession then you could reasonably start from the position that DSP is some kind of black magic which you could never understand in a life-time of trying. You might well be correct in this assumption because some of the theory is indeed very heavy.

But my personal discovery was that you don't need to understand DSP at other than a superficial level to be able to build it at home and to use it.

From a position of not being able to spell DSP, it took me two weeks to get my first DSP receiver working. The attraction is that everything since then has been incremental and I have not been off-air for a single day. Design mistakes - and there have been many - have cost me my time but never any money - which is about perfect for a hobby. So this lends itself to a learn-as-you-go approach. In other words, unlike conversational French, you don't have to learn a lot before you can even get started.

SKILLS AND FACILITIES
A REQUIREMENT of all my projects is that they can be built on the kitchen table with no access to professional facilities. Otherwise, it would not be amateur radio.

This one is no exception - though I have had to acquire new skills and hone them to the point of repeatability in order to build some of the hardware. This is all part of the adventure, part of the fun. And of course those skills have general application so they open up new avenues for the future.

A simple (and inexpensive) technique for making precision PCBs will be covered - which includes mounting a 48-pin chip with a mere 0.5mm interval between pins. And you get to practice on a really easy one of 128 pins by 0.8mm first. If the prospect of this puts you off, I really can't help. If it sparks a can-do spirit of adventure then we are in business.

INSPIRATION
THREE THINGS made this project possible. In the order in which I found them:
• "The Scientist and Engineer's Guide to Digital Signal Processing" by Steven W. Smith. This book is a little gem. If you flick through quickly you will see copious examples and illustrations. What you do not see is lots of equations and impenetrable notation. I need just one quote: "[this book] … is written for those who want to use DSP as a tool, not a new career." My kind of book!
• The Analog Devices web-site [1]. This contains a wealth of both theoretical and practical information - and specifically the electronic version of the above book. Most valuable to me were lots of DSP code examples for their ADSP-218x processors. The first incarnation of STAR was built by six of us on their ADSP-2181 EZLITE evaluation board which had become somewhat a standard over the years. Then over one fateful weekend when this project was 'finished', its price went from $90 to $275 - which spurred the challenge to home-brew a compatible and reproducible DSP board.
• DSP-10, a 2m DSP transceiver project

Early integration testing. Bottom left is my Third Method transceiver (borrowed front-end and PA), top right is Pic 'N Mix DDS still on its original breadboard (injection and controls) - and in the middle is the new DSP module under development. Note that Pic 'N Mix provides all the transceiver controls, leading to a clean and compact front panel.

© G3XJP
PIC-A-STAR
Page 1
published by QST in Sept-Oct 1999 - and reviewed in RadCom, Feb 2000. Although featured for VHF/UHF applications, the DSP core is totally universal. This project was designed by Bob Larkin, W7PUA [2] and I am indebted to Bob not only for the inspiration for this project but for a significant amount of advice and help - including some code written specifically for PIC-A-STAR. Above all, Bob showed it can be done and whenever I get into problems, his material is the first place I look for understanding.

INTEGRATING PIC-A-STAR
THE DSP MODULE - designed to combine with the Tx/Rx RF stages of your choice - operates at a final IF of 15kHz as shown in Fig 1. This is a high enough frequency to make it immune from image responses yet low enough to be affordable. And it is not a DSP audio add-on, which coming after the product detector will always struggle.

RF STAGES
Your HF IF can be derived from any reasonable transceiver front-end. My Third Method Transceiver [3] and G3TSO's Modular Transceiver [4] have both been tested as representative - and there are lots of them out there. CDG2000 looks like a powerful approach and their front-end could well be my next increment. The choice will substantially determine the overall receiver strong-signal handling capability - but not the basic effectiveness of downstream DSP.

IF STAGES
In principle (and possibly in practice) you could modify an existing IF board so that its product detector produced a 15kHz output instead of straight audio but I don't recommend it in the long run. You would have to completely rebuild all the audio filtering to pass 15kHz both on transmit and on receive. And unless the crystal filter were wider than usual, you would be passing up the opportunity to enjoy the pleasures of full-bandwidth SSB reception under good conditions. Some of the older IF amplifiers are not noted for their noise figure, so, to cut a long story short, this design includes an IF board built for the job. Details of this follow later, but it only needs a modest roofing filter (at any HF IF of your choosing) since all the serious filtering is implemented in DSP.

CONVERSION INJECTION
You won't be surprised to see Pic 'N Mix [5] used as the injection source to mix from RF to your chosen HF IF. This is not mandatory but my records show 281 of them out there, so it is a non-trivial population.

COMMAND AND CONTROL
You need the ability to command the DSP for all the functions normally associated with front-panel controls. You may be somewhat surprised to see Pic 'N Mix used for this purpose as well.

A small adapter board is used to fit a more versatile and powerful PIC - which not only controls all the original DDS capability but extends the existing keypad, display and tuning knob to control all the transceiver features.

Although highly recommended, use of Pic 'N Mix is not mandatory. As an alternative, you can use your PC to load and control the transceiver - and a BASIC utility is provided to achieve this.

PIC-A-STAR FEATURES IN BRIEF
- SSB and CW detection and generation
- a bank of high-performance Rx filters
- impulse noise blanking
- non-coherent noise reduction
- auto-notch heterodyne(s) removal
- variable AGC decay time
- synthetic stereo reception
- adjustable RF clipping on transmit
- very fast VOX and QSK operation
- the flexibility to change!
REFERENCES
SOFTWARE is this month's topic, namely an outline of what it does, how it works, how it is packaged and how you obtain it.

The essentials of programming PICs has already been covered [6] so this project will concentrate on the DSP dimension.

PIC-A-STAR DSP

ILLUSTRATED in Fig 2 is the functionality implemented in software. You will have seen not dissimilar block diagrams implemented in analogue hardware - but not at this price and not inside a 28mm² chip!

Actually, there is an intrinsic overhead, namely that the analogue signals need converting to digital form before processing - and back to analogue after. This is the purpose of the CODEC (encoder/decoder) referenced on several inputs and outputs - and is implemented on a separate chip.

The greatest appeal of the software approach, not least to the amateur, is the flexibility to change the line-up at a touch of the keyboard, so to speak. This allows easy experimentation (or overt tinkering, if you prefer) since at any time you can abandon the change and go back to the previous version. There are other subtleties.

For example, you will find five 15kHz oscillators scattered around the diagram. In fact their frequency changes depending on mode ie USB/LSB/CW. In DSP software terms the sinusoidal oscillator is simply a subroutine. To invoke it, all you need do is tell it what frequency/phase you want on any given occasion - and it is done.

Another example is the 'delay' in the Rx front-end image-cancelling I/Q mixer. In one path there is a 90° phase shift, in the other a delay. The latter arises because it takes real elapsed time to produce the phase shift, so an equal amount of time has to be 'wasted' in the other channel to maintain that phase relationship.

TIME IS OF THE ESSENCE

The basic understanding you need in order to grasp how DSP works is to note that time is the critical commodity. Every functional box in fig 2 takes time to execute. So does every individual instruction that goes to make up that functionality.

This would be of little concern were it not for our old friend Nyquist. He stated that in order to faithfully process a signal you must sample it at twice (at least) the rate of the highest frequency present.

For example, the incoming Rx signal is around 15kHz and so needs to be sampled at 30kHz or more. In fact, 48kHz is used to provide a useful margin.

The consequence of this is that having grabbed one sample you have no more than 20.83µs (by simple arithmetic) to do all the processing required before you have to get back to handle the next one. (Actually if you don't achieve it, the processor will interrupt whatever you are doing and drag you back, so important is it.)

So just how much processing can be achieved in 20 millionths of a second? The ADSP-2181 processor in this design executes an instruction in 30 nanoseconds. The simplistic answer is therefore 666 in-
stutions-worth. But this is far from the whole story. During one processor cycle it can, for example, fetch two 16-bit numbers, multiply them to give a 32-bit product and add the result to a 40-bit accumulator. This MAC (Multiply & Accumulate) instruction is the essence of filter implementation and is critical because you need to loop around it many times. Meanwhile, in the back-
ground, the processor is also organising data samples in and out of the CODEC as well as handling any serial communications port activity.

All these features (and more) characterise a processor capable of serious real-time DSP.

Fig 3 shows a snatch of PIC-A-STAR code so you can visualise just how much radio you get from each line of code.

MULTI-RATE PROCESSING

There is more a structural solution to the issue of buying some time - which equally derives from Nyquist. Namely, once the Rx signal has been mixed down to audio you

an English word) leads to some com-
plification in describing the various modules. The context will become clearer once the hardware functionality has been covered. Suffice it to say that at this stage that from an operator's perspective the system is totally transparent ie you just switch it on, wait about 20 seconds (as if for the valves to warm up) and then use it. The software comes in the following modules:-

DSP BOOT UTILITY

This code resides in PROM on the DSP board. At power-on time, besides running some basic hardware checks, it manages the on-board serial port to load the target DSP code. This utility was written by Bob Larkin, W7PUA for PIC-A-STAR based on the original AD code.

DSP TX/RX CODE

This runs on the DSP board and provides the core functionality as in fig 2. It needs to be loaded at power-on time, a process which takes some 20 seconds. Subsequent to loading it, you also need to be able to

command it.

DPS LOADER

This is a QBASIC utility which runs on your PC. It is writ-

ten in very basic BASIC to enable you to adapt it or port it if you wish. It has two distinct alternative func-
tions:-

- To load and subsequently com-
mand the DSP code directly to the DSP board, via a COM port and a 9.6kB serial link.

- To load a new (or, of course, first) release of the DSP code to the PicAdapter board (see next) in Pic 'N' Mix. Subse-
quenty, Pic 'N' Mix automatically loads the code at power-on time - and provides the command user interface.

These two alternatives are not mutually exclusive. For early testing and use, the former gets you going quickly. The latter frees up your PC and in my view, gives a much cleaner user interface - albeit with a little practice. The choice is yours.

(There is a further option here. You could build a dedicated controller using any programmable device with an RS232 capa-
bility. The command syntax is simple and also provided - and is in any event self-evident from the QBASIC code. With some loss of maintainability, you could also burn the entire Tx/Rx code into the boot PROM/EPROM.)

PIC 'N' MIX PICADAPTER

Written in MicroChip Assembler, this code runs on a 16F870 (which replaces the present 16x84) to provide all the original DDS control functionality of Pic 'N' Mix and in addition, it now integrates the ability to:-

- Download new release DSP code from your PC (via the web)
- Subsequently upload that same code to the DSP board at power-on time
- Command the DSP using the self-

same keypad, tuning knob and display as already fitted to Pic 'N' Mix.

TIMER BOARD

Also in MicroChip Assembler, this code runs on a 16F627. It provides the sequenc-
ing and timing of receive/transmit transitions - both ways - to make them as clean and fast as possible. This board is designed to be general and will find uses on other transceiver projects.

BARGRAPH'S METER

This is both optional for PIC-A-STAR and equally of general application. Also run-
ning on a 16F627 it controls a 12 LED bar-
graph on the Status board. It was built at all because 10 LEDs as provided by most con-

tral chips are not enough - and in any event, the PIC provides a lower cost solution.

SOFTWARE DISTRIBUTION

ALL THE SOFTWARE itemised above will be available for your personal use at no charge. However, this does not mean it comes entirely free. The 'price' is that you need to send me an e-mail note requesting the software - giving an explicit undertaking that it is for your personal use and for the purpose of self-education.

Not least, this allows me to maintain a list of 'customers' to advise when updates be-

come available; as mentioned previously, this is, by intent, a project without end.

By software, I mean at this stage the loadable object code. Source code avail-
ability mechanisms are still under consid-
eration but at the least, it will not be for many months.

If however you want me to use my re-

sources to program chips for you then I will supply them ready-programmed at £8 per chip - plus return postage. It is worth point-
ing out in this context that you could build a programmer yourself for about £10.

REFERENCES

HARDWARE infrastructure is this month’s focus. Firstly, the process for producing the PCBs. Specific detail on mounting IC25 and IC27 and any other board-specific notes follow later. Secondly, the project component list - so you can contemplate costs and sources. Details of front-end components follow.

PCB MANUFACTURE
IT HAS BECOME a tradition with my projects that each has been produced by a different one-off PCB production technique - in an attempt to dispel any unwarranted mystique and even some phobia. And frankly I want to advance my own craft skills with every project. On this occasion I used iron-on laser film to speed up the development cycle - and as a matter of necessity for the DSP board - and found the results to be excellent.

I am indebted to Ed, EI9GQ and subsequently Harold, W4ZCB for sharing their experiences with this approach.

PROCESS OVERVIEW
In outline, the process is to photocopy the published artwork onto the film; then transfer the toner from the film to the board using heat and pressure from a clothes iron. This toner then acts as a superb resist while etching the copper in the normal way.

This is not entirely a precision engineering process and there are some experiential skills. Cleanliness is everything! Although incredibly fine lines and small spacings reproduce well in my experience, ironically there is sometimes difficulty with large black areas. But equally, these are the easiest to touch up with an indelible pen before etching - and at times, you absolutely will need to.

RESOURCES
You need access to a black-and-white laser photocopier. Almost all modern machines use this technology. It may well be that the copier in the corner shop will not be up to the job and you should probably consider the small cost of taking it to a professional copy shop as money well spent.

Some sheets of laser film (sold nowadays by several suppliers for this purpose); a block of flat scrap wood larger than the PCB; and a domestic clothes iron constitute the tools.

The latter should preferably not be a steam-iron. If it is, ensure it is fully drained since water/steam and this process do not mix. Also the steam holes in the sole-plate are unhelpful. Avoid if possible the more modern easy-iron technology which has fine ridges on the sole-plate. Check that the sole-plate is flat. Some have a slight curvature. If faced with these problems, it is best to use several (say, three) intervening layers of clean paper to provide a more evenly distributed heat source. Experiment!

The PCB material (all double-sided) can start out badly discoloured but must not be mechanically damaged ie no scratches. 1oz or more copper is better, but I used merely 0.5oz on GRP for all my boards.

THE PROCESS

(1) Firstly, test copy the artwork onto plain paper in order to check for copier quality and acceptable scaling error. Use the maximum contrast consistent with retaining a clean white background.

(2) Copy the artwork onto the film. When viewed with the toner (matt) side down, you want to end up at the correct orientation ie as if viewing the finished board. For most published artwork this requires the extra step of firstly copying it to a transparency, flipping it over and then copying that to the iron-on film. In order to avoid this extra step - with some inevitable degradation - the PCB artwork in this project will be printed pre-flipped so to speak - and therefore should be copied directly to the film. The film itself is not ‘sided’.

(3) Cut the PCB to size (or preferably somewhat over-size for now). Remove all burrs and sharp edges. With cold water, wet a soap-impregnated wire-wool pad and use it to polish the copper with increasingly light strokes - until immaculate; do not touch the surface thereafter. Polish both sides and then wash off all traces of soap residue with a clean paint-brush and cold water - and dry with kitchen paper.

(4) Place the PCB on the scrap wood and clean it with some kitchen paper (uncoloured) moistened in acetone, isopropyl alcohol or cellulose thinners.

(5) Heat the iron to about 140°C (cotton setting) and leave it for a few minutes to attain an even temperature across the sole-plate. At this temperature it should just scorch plain 80gsm copier paper.

(6) Cut out the artwork to no larger than the PCB and register it to the board.

(7) With at least one sheet of clean paper interposed, lower the iron vertically onto the middle of the board and let it rest there for some 5 seconds. This will establish the registration of the artwork to the copper.

(8) If the board is bigger than the iron, continuously lift the iron off and relocate it every few seconds. Under no circumstances use an “ironing” motion. Simply raise and lower it vertically - and frequently until all the board has seen the iron and some applied pressure for about 20 seconds. For pressure, the weight of the iron plus about as much again is near enough and is not critical.

Too little pressure and the toner will not transfer. Too much and the toner will migrate to widen the lines (ie smear) and reduce its depth. The former is correctable, the latter is absolutely not.

(9) Inspect the result. You may see any areas which have not transferred as still white. Repeat selectively as necessary. Pay particular attention to the edges.

(10) Allow the board to cool naturally back to room temperature.

(11) Carefully peel back the film from each corner and note that the toner has transferred. If any critical areas have not...
taken, the artwork will still be registered and you can selectively repeat.
(12) Touch up any blemishes or areas of visibly thin toner with an indelible pen.
(13) Now spray-mask the opposite side of the board and etch as normal.
(14) Before removing the etching resist, centre-pop and/or drill the holes. They are easier to see at this stage. Clean off the etching resist with cellulose thinners and gently re-polish the board.
(15) At this stage I lightly spray the board with SK10 which is both a protective lacquer and a flux. Available from Rapid Electronics, this makes for clean soldering and prevents contamination of the copper.

COMPONENT LIST
RESISTORS, 1/8-1/4W, 5-10%
R1 .. 47R
R2, R48, R49, R76, R77 100R
R3 .. 220R
R4 .. 470R
R5, R6 .. 560R
R7, R50, R64-R71 1k
R10, R43, R52, R72 2k
R11 ... 2k7
R12, R34, R37 22k
R13-R15 ... 3k3
R16-R19 .. 4k7
R20 .. 5k6
R21-R32, R45-R57, R53-R55, R63, R73, R78 10k
R33, R51, R59-R61 47k
R35, R36 100k
R38 ... 120k
R56-R58 10R
R59 ... 100k
R74 ... 1k x 4 SIL network (5 pin)
R75 ... 1k x 8 SIL network (9 pin)
RV1, RV2, RV6 100k horizontal preset
RV3, RV4 10k horizontal preset
RV5 ... 47k horizontal preset

RESISTORS SMD 1206 SIZE, 5%
R8, R9, R93 1k
R39, R40 22k
R41, R42, R97 220k
R44 ... 3k3
R79-R89 10k
R90 ... 330k
R91, R92 2k
R94-R96, R100-R103 4k7
R98, R99 100k
R104, R105 47k

CAPACITORS, 16V RATING
C1-C19 .. In solder-in feedthrough
(C11 and C12 may be replaced with a stereo jack socket)
C21 .. 10p ceramic plate
C20, C22, C23, C26, C69 220a axial
C24 ... 10µ radial
C25, C75, C76, C84 33µ radial
C27 .. 47µ axial
C28 ... 2µ2 radial
C29 ... 4µ7 radial
C30 ... 2µ2 radial
C31-C34 220µ ceramic
C35, C36 1n ceramic
C37-C44, C59, C70, C71 10µ ceramic
C45 ... 22n ceramic
C46-C58, C60-C65, C67, C68 10µn ceramic
C74, C77-C83, C85-C89 100n ceramic
C72, C73 15p ceramic plate
C90, C91 22p ceramic plate
C92, C93 270p NPO ceramic
C94 ... 47n ceramic
C95, C96 220µ ceramic
C97 ... 18p ceramic plate
C120, C121 18p ceramic plate
C122, C131 4p7 radial
C123-C125, C128, C132 10µ radial
C126, C127, C129, C130, C133 1µ radial
C66, C69-C119 100n SMD 1206 size
VC1-3 100p polyethylene trimmer (1)

INDUCTORS
RFC1-RFC3, RFC6, RFC7 1mH axial choke
RFC4, 5, RFC8-RFC10 100µH axial choke
RFC12 .. 330µH axial choke
L1 ... 4.85µH 38t 30swg on T50-2 (2)
T1 ... 6x31 36swg on FT37-43 (2)
T2 ... 10x35 30swg on FT37-43
T3 ... 20t:4:24 swg on T50-2 (3)
FB ... 1 turn through small ferrite bead

SEMICONDUCTORS
IC1, IC13, IC15, IC17-IC19 78L05 regulator, 5V
IC2 ... AD603AQ (DIL)
IC3, IC4 FST312SM (SMD)
IC5 ... SBL-1 (7)
IC6, IC7, IC22 TL072 (DIL)
IC8 ... TLP7524CD (SMD)
IC9 ... PIC16F870-ISP (DIL)
IC10 ... 24LC256-IP (DIL)
IC11, IC28 PIC16F873-04P (DIL)
IC12 ... ULN2803A (DIL)
IC14 ... 7810 regulator, 10V
IC16 ... 4094 (DIL)
IC20 ... 74LWX125 (SMD)
IC21 ... ST232N (DIL)
IC23 ... 74HC14 (SMD)
IC24 ... LE33CZ regulator, 3V3
IC25 ... AD1885ST
IC26 ... 27C512 512K PROM, programmed
IC27 ... ADSP-2181 KS130 or KS160
TR1, TR2 J310
TR3-TR5, TR12 2N3904
TR6 ... 2N3906
TR7, TR8 BC517
TR9-TR11 VP0300LS P.ch MOSFET
D1-D6, D11, D15 1N4148
D7-D10 BA244 (8)
D12-D14, D25 1N4007 or similar
D16-D20, D35 3mm LED, red
D21 ... 3mm LED, red/green/tricolour
D22-D33 1.8mm LED, colours for S-meter
ZD1 ... 4V7 200mW Zener diode

MISCELLANEOUS
FL1 ... Crystal roofing filter (4)
X1 ... wire-ended BFO crystal (5)
X2 ... 16.767MHz, probably custom
X3 ... 2.4576MHz low profile, Rapid Electronics
S-meter ... 1mA, optional
S1 ... 8 pole on/off PCB DIL switch
S2, S3 skeleton push-to-make switch
All screened RF leads RG174
Other screened leads thin microphone lead
IC25 are manufactured by Analog Devices.
They have an enlightened marketing policy
for promoting interest in their products such
that for many of their devices, individuals
can order up to two as free samples. You
do this via their web-site - and the first time
round you have to register and answer a few
questions. You do not have to be a
commercial organisation; the occupation of
"Amateur Radio" at your private address and
for the purpose of "training and self-
education" are entirely acceptable.

Suppliers
Most of the components were sourced from Farnell or Rapid Electronics.
the exceptions are the components which I bought from Mainline - and the crystal filter whose specification is loose enough that it should be possible to find a surplus one.
The two critical chips, namely IC25 and IC27 are manufactured by Analog Devices.
Provided, of course, you do not attempt to abuse their generosity - which would reflect on the amateur community as a whole. Personally, I consider ordering chips whose MTF exceeds your life-span as spares; ordering just in case one day you might find a use; or the simple inability to turn down a free offer - would all constitute abuse. My ethical test is that I never order a free sample if I can purchase small quantities.

THE FINAL IRONY
Don't forget to reset the clothes iron to a more modest temperature before putting it away. 140°C will melt many synthetic materials and add alarmingly to the project costs. Even this has been Beta tested!
HIS MONTH covers the concept of Super VOX. This apparently
innocent topic was picked as exemplifying how a large number of little
tweaks can be made in DSP at no incremental cost to significantly improve
operating pleasure and practice. And it is
time to practice your ironing skills on an
easy one. And why Super? Well, read on.

I suppose that if there is one thing I
dislike more than long monologue 'overs', it is long 'doubles'. I have personally always
operated VOX and indeed for many years
did not bother to fit any PTT capability at all. Perhaps it would help the psychology if
that switch on the microphone were known
as 'Lift To Listen'.

The system has two elements, namely a
timed solid-state switch for the various DC
T/R lines and any relays; and an intelligent
VOX system, implemented within DSP. But note that the Timer board has been
designed as a flexible and stand-alone
general solution to manage the T/R
switching in any transceiver.

VOX PREREQUISITES
TO BE EFFECTIVE, any VOX system
needs both T/R transitions to be free from
clicks and thumps - both electrical and
mechanical. The first step to achieving this
is to leave the maximum amount of
circuitry powered up on both transmit and
receive. Certainly all DC switching should
be solid-state (hence the Timer Board) but
the RF changeover can be more of an issue,
especially at higher power levels. I use the
circuit published in the 1988 ARRL
Handbook, but hope to do better before the
end of this series. Even if you use relays
there are still significant benefits, though
personally I just hate those acoustic rattling
noises.

TIMER BOARD
THE T/R Timer board circuit is shown in
Fig 4 and manages both the R to T and the
T to R transitions.

The benefit of this approach is that the
two transition sequences and timing can be
- as indeed they should be - different. This
cannot be achieved with the typical window
comparator approach.

This board has one significant input, namely T/R Status from the DSP Assembly.
This is a +5v logic signal (or floating) when on receive - and grounded to 0v to switch to transmit.

The PIC is a 16F627 which has the benefit of not needing an external crystal if
timing accuracy requirements are modest.

And as a result the two crystal pins can be
used for digital I/O purposes.

There are five timed outputs - which have been arbitrarily named for their most
obvious general use. The 'External Linear' and 'Local PA c/o' lines are grounded on transmit, can sink 500mA - and are thus
suitable for relay or solid-state switch control.
The other three lines are at +12v when active and are explicitly grounded otherwise. They can each source/sink
500mA. They behave as follows:-

RECEIVE TO TRANSMIT (R/T)
The sequence for this transition follows, each step being followed by a timed delay:-
External linear to Tx - T1
Local PA c/o to Tx. - T2
12v Rx off - T3
12v Tx on - T4
Tx PA bias on

There then follows a re-triggerable hang
time, T5. This whole transition is not
interruptible, see below.

TRANSMIT TO RECEIVE (T/R)
For this transition the sequence is:-
Tx PA bias off
External linear to Rx
Local PA c/o to Rx - T6
12v Tx off - T7
12 Rx on

This transition is interruptible after step 1.

That is, if you are part way through
dropping back to receive when a transmit
demand occurs, the T/R sequence will be
aborted and the R/T sequence executed
immediately. This interrupt logic is based
on the view that it is always better to risk
losing a moment of reception than to risk
'hot' switching.

Note that the 12v Tx and 12v Rx lines
can never be energised at the same time.

Following a T/R transition, the PIC goes
to SLEEP; that is all dynamic activity
ceases including its internal clock. Thus it
can never act as a noise source to your
receiver.

The process for adjusting the times for

Fig 4: Timer board circuit diagram. This provides timed transitions between transmit and receive
- in both directions. Sw1 allows you to set up the timing for your installation - and covers the
range from slow relay-based RF T/R switching through to solid-state QSK.
your installation will be covered later.

CONSTRUCTION NOTES

Fig 5 shows the PCB artwork ready for the iron-on process described last month. The 10v regulator chip IC14 provides power to the STAR DSP board and may be omitted (as in the photograph) if you don't require this unswitched rail. Mounting holes for IC14 and the board (optional) have not been specified.

Start by fitting IC13, C76, C78 and C80, soldering one lead to the top groundplane. Then fit the socket for IC11 and solder pin 5 to the groundplane. Then the socket for IC12 with pin 9 grounded. The remaining construction sequence is not critical. Mount the otherwise symmetrical switch so that with the switches set away from the PIC, they are open circuit.

SUPER VOX IN DSP

THE CONCEPT USED here was inspired by a conversation with Bill, W7AAZ.

Sadistically, I did not enable the PTT line on the STAR Beta build for some six months, so the whole VOX system - the only way to get to transmit - has had a good thrashing.

CONVENTIONAL VOX

When VOX detects the beginning of your speech it initiates the R to T transition - which is going to take at least 3ms to complete. Further, if you have a T/R relay then the design must ensure the relay has settled in the transmit position before letting the RF through, typically adding a further 20-30ms. The result is that the leading edge of your speech is clipped off. Not by much in a good design, but often noticeable.

To disguise this effect, a VOX hang time is incorporated which is set to drop back to receive if you pause for breath, which at least minimises the number of truncated words. The other workaround you often hear from VOX operators is that they do not answer a direct question with "Yes". They tend to say "um, yes" - probably subconsciously - in order to avoid it coming over as merely "esss".

How much better it would be if your transceiver started the R to T transition in anticipation, ie just before you started to speak! Sounds fanciful? In effect, this is what Super VOX does. And by the way, it applies equally to QSK CW operation.

SUPER VOX

The idea is to trigger the R to T transition immediately on detection of your voice, but then delay the ‘voice’ in DSP for the time it takes for the transition to complete. Thus the leading edge can never be clipped off.

Critically, this means in turn that you need no hang-time, since there is now no desire to minimise the number of transitions. Of course your delayed voice is still coming 'out of the antenna' for a few milliseconds after you stopped talking so you need to stay on transmit for that time - but absolutely no longer.

The net effect is that at a normal conversational speaking speed, you drop back onto receive not between breaths and sentences, but between every word - and often enough, between *syllables* - and if your T/R transitions are fast enough, you can listen through. Equally someone listening to your transmission would be totally unaware that you were spending a significant percentage of your over on receive - in short but very frequent bursts.

The overall effect is very close in sensation to full duplex as in a normal (and therefore interruptable) conversation and if widely practiced would do much to turn many a QSO into a conversation rather than a series of speeches.

ANTI-VOX

This normally works by comparing the microphone input with the speaker output - and if the same, concludes that it *not* you speaking. STAR incorporates a further refinement in that the microphone input is compared to the output that *did* come from the speaker 4ms earlier. Why 4ms? Because this is the time it takes sound to travel 4ft in air, an assumed reasonable distance between the speaker and microphone. The improvement is noticeable and is worth having because the few extra lines of code don't cost anything.

AGC IMPLICATIONS

Normally, the AGC voltage decays to nothing shortly after you go to transmit. The result is that the receiver comes back on full gain in VOX gaps - which is not very comfortable in an 'S9' QSO.

The approach adopted by STAR is to retain the AGC level established by the last 2 second period of continuous receive - and apply that level during the gaps. It is important to ignore AGC levels established during the gaps for this purpose, so 2 seconds was chosen as an arbitrary interval which is clearly longer than a casual pause. And if at any time somebody other than you starts speaking, the normal AGC attack takes care of any adjustment in a few milliseconds.

So this is, if you like, extended hang AGC - where the 'hang' is extended over periods of transmission.

THE SOUND OF SUPER VOX

On the Members' Web site, you will find a number of .WAV files so you can hear what a STAR sounds like in action. One of these gives a good feel for the VOX operation.

© G3XJP

PIC-A-STAR

Page 2
HIS MONTH covers the DSP board circuit diagram. The board is based on (and is not incompatible with) the Analog Devices 2181 EZLITE board. That is, aspects of that board which are not used either by STAR or by W7PUA’s DSP-10 have been omitted; the physical construction is completely different; and a current production and superior CODEC chip has been used. But conversely, the EZLITE board can be (and has been) used in this application and if you already have your hands on one, e-mail me for further detail. Signal names as defined by Analog Devices are used throughout.

MOTHER BOARD

THE MOTHER board with her two daughters is shown in Fig 6. This form of construction was adopted to spread the risk during board manufacture and to allow upgrade of either the CODEC or Processor chips later.

Each board has its own regulator chips to spread the heat dissipation and to maintain modularity.

The CODEC daughter converts analogue signals to/from digital/analogue form for the benefit of the Processor. The digital signals are passed back and forth using a 12.288MHz industry standard AC ‘97 serial bus - which multiplexes data in, data out and commands. The Processor daughter does the DSP processing (no surprises there) - but has other control inputs/outputs as well.
Unlike the EZLITE board, the DSP Board carries IC8 and IC22/Tr5 for generating AGC voltages for use on the IF Board - accepts inputs from KEY and PTT lines - and generates the controlling system T/R line as a function of mode and control parameters eg VOX/QSK operation - thus customising it from the general to this particular transcendier application.

IC21 control RS232 communications from a host - either your PC or the PIC in Pic 'N' Mix and is used to upload the operational DSP code. It also accepts user commands to control the entire transceiver. IC23 buffers manual resets and interrupts - and drives an LED to show status.

PROCESSOR BOARD

This comprises the processor chip - and some memory used only at power-on (or Reset) time to boot load the real operational code. See Fig 7. For further detail, see the ADSP-2181 data sheet.

Being mostly track, the board is very quick and easy to build.

CODEC BOARD

This is a standard (albeit minimal) implementation of the AD1885JST CODEC chip. See Fig 8. For further detail, consult the data sheet.

The CODEC uses a 3v3 digital rail, but 5v on the analogue side; IC20 translates the 5v logic signals from the Processor to this 3v3 level. Outbound 3v3 lines to the Processor are already within its logic 1/0 definition range.

NEXT/SUBSEQUENT MONTHS

Cover the component layout, PCBs and construction detail of these boards.

WWW

For detail and applications of the ADSP-2181 and AD1885, visit www.analog.com.
MONTH concludes the 'DSP' phase of the project. The procedure for a stand-alone test of the completed board is provided. Next month concludes the 'DSP' phase of the construction with PCB artwork and construction notes.

COMPONENT SPECIFICATION

SMD COMPONENTS have been specified here where space, cost, or performance considerations require them - but not otherwise. 1206-size devices are used and these are no more difficult to handle than conventional leaded components.

Specifically, SMD electrolytic capacitors are not used since these are expensive - and the small space savings which are achievable are not needed. All the small coupling and decoupling capacitors are 100n and in general, they are SMD. However, on the CODEC board, C85-C89 are specified as wire-ended disc ceramic units because their leads are used to couple power and ground between the two sides of the board.

SMD resistors are used throughout since these save a great deal of space. The single exception is R78 - where I positively needed a larger component to span an otherwise unbridgeable gap.

In any event, all components are mounted on the track surface, but in some cases, leads are also soldered underneath. You need not take this to extremes, but every reasonable opportunity should be taken to interconnect the top and bottom grounds.

EZLITE COMPATIBILITY

IT IS ANTICIPATED that this DSP board will find application on other DSP projects. If you are contemplating this, contact the author of that project in the first place for current status. This hardware is a functionally compatible subset. It has the same overall dimensions albeit with a different connector location. The address, data and emulation expansion sockets have not been provided on this board - and nor, realistically could they be. PIC-A-STAR uses a different CODEC chip which requires a different DSP code module to handle it. A source code shell for this is available on request.

HARDWARE TEST

AS THE DSP board is progressively completed, it is highly desirable to test it in stand-alone mode before moving on. This process also proves the interface to your PC - which will be needed operationally later.

PREREQUISITES

The first requirement is that you are running QBASIC under Windows on your PC. On older machines it is a standard application; later it was provided on the archive disc and on Windows ME it is not provided at all - but does run. In any event, it is an absolute prerequisite. The PC itself is totally uncritical.

You need to make up a lead from your PC serial port - but only two of the lines are used. These are pin 3, the signal - and pin 5, the ground. These connect (temporarily) to the mother board at "DSP code and user commands" as per fig 9. Ensure the ground lead is indeed grounded.

SET UP

On your PC, establish a new directory. The software assumes C:\STAR but you can edit the software for any other location. In that directory, place the file testxx.xjp - where xx is the current version number of the test program - and XJPload.bas which is the utility used to load all STAR DSP software, not least this test program.

Open QBASIC and from there, open XJPload.bas. To run the test program, just follow the on-screen instructions!

PROCESSOR TEST

This requires the Mother board with Processor daughter - but not necessarily the CODEC. The test process starts with D35 flashing. Once you start to load the test program, the LED will be permanently lit. Once the program has loaded, the LED will be off if the CODEC was successfully initialised, on if it was not (particularly if it is not yet even fitted). In either event, if you press the Interrupt switch, Sw3, the LED will toggle on and off. This verifies that the code has loaded and that the processor is running and is in (or indeed, under) control. This also establishes your capability of loading any code over the serial link and unless and until you can achieve this, no further progress can be made.

CODEC TEST

Once the CODEC daughter has been fitted and the previous test successfully repeated, power down and connect a patch lead from the CODEC left and right outputs to a stereo amplifier.

Power on again and re-load the test program. A damp finger placed on the CODEC left or right inputs should now produce a corresponding hum on the respective output. Should you prefer something more exciting, you could connect up a microphone or any standard line-level stereo input.

This is a test of a full loop-back on both channels. That is, the input is being digitised, sent to the processor where a minimal operation occurs in the digital domain before it comes back to the CODEC - where it is converted back to analogue form and thence to your ears.

Thus when this test works, you have completely proved the CODEC and the vast majority of the processor functionality - and the interface between them.

If, however, it should fail yet the processor successfully loaded the test program in the first place, the problem almost certainly lies on the CODEC board.
itself - or the link between it and the processor.

A 12.288MHz clock train is generated by the CODEC on the Bit Clock line. In response, the processor provides a 48kHz clock on the Sync line. If these are both present and you can see data pulses on the Data in/out lines, then the problem is probably on the analogue side of the CODEC. But if you rigorously checked the board in the first place, then there can't be a problem, can there?

The DSP mother board, ready for daughter board fitting and test. Note IC8 and its associated components are located under the Processor daughter board. In fact, neither they nor IC22 need be fitted for standalone testing.

The finished Processor daughter board. Note that the crystal X3 is fitted after bending its leads - to reduce height. C120 and C121 are fitted under the board. IC26, when fitted in its socket defines the overall height of the complete DSP board.

Fig 9: DSP boards component location diagram. SMD capacitors are shown as rectangles, disc ceramics with ‘rounded’ ends. The Processor daughter should be rotated clockwise through a right-angle to visualise the fit on the mother board. A significant number of pins on PL8 and SK8 are not used by PIC-A-STAR, but were included for compatibility with Analog Devices EZLITE board. These locations need not be populated for STAR. For a photograph of the CODEC board, see Part 3.
AKING THE DSP board PCBs and assembling them is this month's specific topic. But before we get to that, since this series is approaching the half-way point it is an opportune moment to take some time out for a factual summary - as well as to share a speculative prediction of where this "project without end" may be going.

SUMMARY

ONE OF THE DELIGHTS of software control is that once you have all the hardware elements, integrating them into a working transceiver is very quick - given the lack of system cabling. See WWW for some web sites where you can see pictures of other STAR implementations.

The less good news is that you do still need hardware to run all this software on; but from now on the constructional pace picks up and you will be lucky to keep up!

A few words on Beta testing since many have asked. All the engineering diagrams for this project (eg circuit diagrams, PCB artwork etc) as published in *RadCom* are the actual master drawings which several people have used to verify the build. In other words they were neither produced retrospectively - nor were they redrawn for publication.

These drawings are therefore extremely valuable, especially if you are building hardware you may not completely understand (and therefore can't instinctively spot any errors).

The same principle applies to the software. You can either use mine, supplied and tested; build your own; or migrate over time. The self-education opportunity is obvious.

HARDWARE

This month sees the completion of the DSP board ie the mother and her two daughters. Subsequent months cover the IF board and its integration with the DSP board; the Status board; and the PicAdapter board. That will complete the hardware covered by the Components List in Part 3.

Following on from there is a 10-band Band Pass Filter which has just completed Beta test as I write. This uses FST3126 band switches which perform delightfully - and result in a compact layout which befits the scale of the rest of the transceiver. You can see it in the photographs.

A fundamental frequency injection H-mode mixer using home-made transformers is the next development - and a post-mix amplifier. The next phase is a plug-in upgrade for the AD9850 in Pic 'N' Mix. Designs for a stereo audio amplifier and a solid-state T/R switch are also planned. But long before any of these developments appear, you should have a fully functional transceiver.

SOFTWARE

All of the software described in Part 2 is now up, running and available either as code or as ready-programmed plug-and-go chips. It has been rigorously tested before release. See Part 2 for the packaging detail and the release process.

Further development is now under way to allow tailoring of both transmit and receive audio - and the addition of some simple utilities such as a 2-tone test generator.

Instructions for building your own DSP filters will also be provided. These plug in as alternatives to mine as required.

DSP CODE DEVELOPMENT

IF YOU WANT TO develop your own code, you will need the tools.

My code was developed using Analog Devices older DOS-based development tools - which used to be supplied with their EZLITE board. These are available from their FTP site - see WWW. Nowadays they supply their VisualDSP++ environment which has the merit of a C compiler. As an evaluation package it also has a program memory limit though at the time of writing, STAR would only use about half this limit. This world can change very quickly so visit the AD site for the latest information.

DSP BOARD CONSTRUCTION

ALTHOUGH targeted specifically at the STAR DSP board, the technique for mounting the chips is totally general.

There are no special tools required to mount these 'difficult' chips - except a positive attitude. I have heard much...
moaning about how these chips spell the end of home-brew construction - but it turns out the opposite is true. You can lay these chips down with a minimum of histrionics and I am indebted to Russ, AA7QU for the process - which is completely repeatable.

TOOLS

Firstly, the soldering iron. I used an Antex CS series iron (17w) with a 0.1mm tip, filed back from a mere point to a small chisel. Any bit about 1-2mm is fine. The other ingredients are:-
- Laser film, Farnell 895-945
- some common solder
- desolder braid, 2.7mm or less
- a flux pen, Farnell 891-186
- jam (home-brew, of course) or toothpaste.

The latter is for holding the CODEC chip in place long enough to tack its legs down and needs to be home-brew so it is neither runny nor full of seeds. Seriously, any water-soluble non-setting stick is fine.

CONSTRUCTION SEQUENCE

Make all three PCBs first as per Fig 10 using the iron-on process previously described.

The daughter boards are double-sided but, by design, only just. Under all circumstances, treat these as 2-pass single-sided boards. Any attempt to etch both sides in one pass is simply taking unnecessary risks. Do the complex top-side first. If you want to use the artwork for the second side, drill all the holes, register the artwork with pins through those holes and then iron it on. But much easier, just sketch the trivial track and ground-plane in with an indelible pen, then iron it on. When etching either side, merely spray mask the other.

When you have fully etched a board, absolutely check every track for continuity or shorts, either inter-track or to ground. If you get an open-circuit track the likelihood is that it will merely not work till you find the problem. If you have shorted tracks, however, the likelihood is that you will cook a chip and never find the problem.

If you have not used SMD Rs and Cs before, just tack one end down crudely while holding it in position with a vertical screw-driver. Then solder the other end properly - and then revisit the first end.

MOTHER BOARD

Build this first, less the daughter board sockets. This board is completely unetched on the reverse (ground plane) side. The only point to watch is the sockets for IC21 and IC22. Cut all their pins back to the shoulder except the grounded ones, which are soldered both sides. Check that all the obviously grounded areas on the board are indeed continuous and if not, add links through to the ground plane side.

For the external connections, I simply countersunk the holes on the ground side, soldered stub wires to the pads on the track side - and then applied epoxy resin on the ground side to fabricate instant feed-through insulators.

PROCESSOR BOARD

Fit the inter-side links first. Then check the integrity of the tracking.

IC26 socket comes next. Cut the pins back which solder only to the top track; note that exceptionally, pins 14 and 28 are soldered both sides.

Next the processor chip. Although it has more pins than the CODEC, it is somewhat easier to mount since the pin spacing is greater and the chip is quite heavy so it is less inclined to skid around. The target time to mount this 128-pin PQFP chip is no more than 15 minutes - or you are doing something wrong!

Line the chip to the pads. Please check the orientation as you only have a 25% chance if you leave it to luck. The good news is that the correct quad-pack chip location on the board is totally unambiguous. Get someone else to hold it down while you roughly tack down a few legs in the middle of each side. It sounds cruel, but trust me, it feels no pain.

Running the iron and solder along each side at the point where the pins meet the track, run in a fillet of solder paying (almost) no attention to bridging the pins or the tracks. The only requirement at this stage is that every pin is indeed soldered to its track. 3 minutes elapsed.

Saturate some desolder braid with flux. Rest some fresh braid - over the top of the chip - on the bridged pins. Lightly apply the iron to the braid and when you see the solder appear on the braid, withdraw. Then repeat as needed. Lay the braid on any bridged tracks - and repeat until all surplus solder has been removed. Do not draw the braid across the tracks, only along them. 8 minutes elapsed.

Using a continuity meter, preferably with a 'beep' and fabricating some probes from sewing needles, check that all bridges have indeed been removed. Finally, wash off any surplus flux under tepid water - and air dry. Job done, 7 seconds per pin.

Note that C120 and C121 mount on the pads of X3 on the underside of the board. Use IL6 plug strip for both PL7 and PL8 - but use only the minimum population needed for the latter. Ensure the smaller diameter end of the plugs mates with the sockets. For the sockets on the mother board, cut back the pins - except the grounded ones which solder both sides. Fit the connectors dry to both the mother and daughter to ensure alignment - and then solder them to their respective boards.

The partial assembly may now be tested. Apply 8-10v power to the mother board and check the voltage rails before and then after fitting IC21 and IC22. Then plug in the Processor daughter and after power up, D35 should flash at about 1Hz. Pressing the Reset button S2 should cause a momentary hesitation before the flash resumes. Now run the test program, details of which were provided last month.

CODEC BOARD

Having established that the digital and analogue ground planes are mutually isolated, fit a wire link via a ferrite bead (FB) to join them. Then mount the CODEC chip as described for the processor, but in this case, use a very small amount of jam to hold the chip in register at first.

Then fit IC20 and C85-C89 and check integrity of ground and power. The other components are easiest mounted working outward from the chip, leaving the electrolytics till last.

Finally, after rigorous checking and probing of every pin and every track (it must be right first time), I mounted the daughter to the mother using short lengths of component lead. In the case of the left and right inputs and outputs, their leads pass right through the mother board.

With this approach, should you ever want to remove the daughter subsequently, cut each wire first and then desolder both ends.

![Processor chip before and after removing excess solder. The target time to mount this 128-pin chip and clean up is 15 minutes.](image1)

![CODEC chip before and after desoldering. Do not panic, it works!](image2)
The complete board may now be tested by again running the test program, details of which were provided last month. The pleasure and pride of success at this stage is indescribable!

Fig 10: DSP boards PCB artwork. NB all these images are mirrored for direct copying to laser film. Should you wish to use an indelible pen to apply the artwork to the back of the daughter boards, the image needs to be flipped (or simply viewed in a mirror). All holes are 0.7mm.

WWW.
STAR beta build web sites:-
http://www.barville.freeserve.co.uk/star_build.htm
http://homepage.eircom.net/~ei9gq/pex.html
http://www.w4zcb.com

Analog Devices FTP download
You need the two files titled: disk1.zip disk2.zip
T HIS MONTH COVERS the IF board circuitry; next month the construction detail. As you can see from the photograph, this board is nothing like as 'tight' as the DSP board but, by contrast, there are many more components.

IF BOARD OVERVIEW
The block diagram was covered in Part 1. The board has a bi-directional IF port - which is then translated to / from 15kHz where the DSP takes over both on transmit and receive.

The IF frequency can be at any HF frequency of your choosing, typically in the range 5-12Mhz. The determinant is the availability of the crystal filter, FL1.

Pic 'N' Mix allows you to change the IF frequency injection offset in a matter of seconds, so there are no issues there.

CIRCUIT DESCRIPTION
REFERING TO Fig ?, the 50Ω IF is matched to FL1 by L1 / VC3. This is a standard L-match and should be modified - applying the text-book L-match equations - for your filter's frequency and impedance. VC3 is adjusted for maximum output in the first place but thereafter for minimum pass-band ripple. The turns ratio of T1 also needs to be established for your filter impedance. The values given assume a 10.7MHz filter with 2kΩ impedance.

TR1 is the ubiquitous bi-directional J310 IF amplifier. It offers modest and quiet gain, a stable load and much convenience.

IC3 and IC4 provide fast (and silent) T / R signal switching - with high isolation and only a few ohms on-resistance. Resistive divider networks are used throughout to bias the signal paths to mid-rail.

ON RECEIVE
IC3 routes the signal to IC2, the AD603 IF amplifier. This is a quiet device with good AGC characteristics. As used here, it has a gain range from 0-40dB - with a linear in dB response to a linear DC control voltage (an increase in control voltage produces an increase in gain). It is not the most inexpensive device available, but if you have been brought up on IF amplifiers which emulate snakes, you will appreciate the difference.

This 40dB AGC range is combined with a further 45dB in DSP to give some 85dB in total - more than plenty by most standards.

The process for setting RV1 and RV2 follows later. The two AGC control signals ('wide' and 'narrow') are generated on the DSP board and summed at the junction of R38 and RFC3. The 'wide' AGC voltage is generated by detection over the full FL1 bandwidth - and there only for emergency gain back-off in the presence of a very strong signal outside the DSP filter bandwidth. Normally the 'narrow' control voltage dominates - and it is also routed via a buffer, IC7b, to drive the 'S' meter. This latter is shown as a 1mA movement - but later I will be offering a bar-graph alternative - in which case RV3 sets the zero point and RV4 is not fitted at all.

The output from IC2 is routed via IC3 to the SBL-1 mixer, IC5. You may ultimately wish to fit a stronger device here - depending on the width of your roofing filter and your operational needs. The mixer injection port is fed from a basic crystal oscillator - and this could also be 'beefed up' if required.

C38 and R1 terminate the sum (HF) mixer product - whereas RFC12, C39 and C51 pass the wanted 15kHz difference component.

TR3 is a low-noise, modest-gain amplifier which feeds IC6b. This latter has modest gain at low frequencies with the response rolled off rapidly by heavy negative feedback provided by C59.

ON TRANSMIT
IC7a provides modest shaping of the microphone audio and significant gain to get the level up to that required by the CODEC on the DSP board.

You should alter the input arrangements of IC7a to suit your microphone impedance - and C45 in particular for a good mid-range audio response with your voice. Some tailoring options may later be added in DSP as well.

The output of IC7a is routed unconditionally to one input of the DSP - since it needs to continuously monitor the mic input for VOX purposes.

The transmit signal next appears as a 15kHz SSB or CW signal from DSP - which is routed via IC4 to the buffer IC6a. This in turn drives the complimentary pair TR4 and TR6 which are there to deliver power into the low-impedance load presented by the SBL-1.

On transmit, the AD603 is out of circuit and IC3 routes the signal directly to the J310, TR1 - and from there to the filter FL1 - and thence out to your transmit IF strip.

T/R SWITCHING CONTROL
The J310 is switched by the 12VRx and 12VTx lines, the inactive one being taken to near ground. All other T / R switching is managed by IC3 and IC4. Their switching voltages are derived from the 12VRx line only, with TR12 acting as a simple inverter. This approach is designed to prevent you from being on transmit and receive at the same time - in the event of loss of either the 12VTx or 12VRx supplies.

SOFTWARE TRANSMITTER AND RECEIVER
Fig 11: IF board circuit diagram. Takes an HF IF feed from a typical bi-directional mixer and post-mix amp and translates it to/from 15kHz. This board mounts back-to-back with the DSP board. All components are mounted on the track side except for the crystal filter FL1 and the SBL-1. The roofing filter is your choice and X1 must correspond. The switches in the receive path are shown as closed for illustration purposes only.
BUILDING THE IF board is detailed this month. Next month covers its commissioning - and integration with the DSP board.

IF BOARD FORMAT
THE IF BOARD comprises a traditional PCB - with two end-plates soldered on to form an H-section as shown in Fig 12. The DSP board is subsequently mounted on the IF board as illustrated.

This form of construction is not strictly necessary. You could build the IF board and DSP board into two separate enclosures but this approach was chosen because these two boards are highly interconnected.

The IF PCB dimensions are determined by the size of (and are just larger than) the DSP board - resulting in generous spacing between the functional blocks. The surplus board area has been allocated around the crystal filter and the crystal oscillator: the former so that any reasonable sized filter may be fitted, the latter to give room for a more sophisticated oscillator if desired.

CONSTRUCTION NOTES
THE PCB is assembled by soldering most of the components to the track side. This approach makes signal tracing easier and minimises the amount of hole drilling. SMD components were not specified here since they are not needed but most of the components are in fact mounted SMD-style.

Mask, etch and drill the PCB using the iron-on laser film technique covered in Part 3. On the groundplane side, countersink the ungrounded holes associated with FL1 and the SBL-1. Both the coax lead to the SBL-1 and C37 are soldered directly to the SBL-1 pins - as opposed to PCB track - so drill generous clearance holes for these pins. All other holes are grounded both sides of the board and are not countersunk.

END-PLATE DIMENSIONS
The width of the end-plates is that of the IF board. The task now is to determine their height - which is principally (but not entirely) determined by that of your crystal filter.

Fit FL1 and then using spacers somewhat longer than the height of this filter, crudely trial-mount the DSP board as in fig 12. The height of the end-plates is now that of this assembly plus at least 20mm for the IF board components. The approximate sum is 24mm for the DSP board plus 20mm for the IF board components plus 2mm for the PCB thickness plus the height of your chosen crystal filter plus 3mm margin. The latter two measurements also sum to give you the length of the four mounting spacers. Be generous.

END-PLATE FITTING
The end-plates are fitted before mounting the components since this makes the board easier to build - and to handle without contaminating it with finger marks.

Mark the target position of both boards on the inside of the end-plates and then looking at fig 13, lay off the position of the feedthrough capacitors from the IF board. Drill holes for these now, but leave fitting the capacitors till later.

Clean both sides of the IF board and end-plates immaculately - and apply a light coat of spray flux/lacquer to both sides.

Now solder the end-plates to the IF board with a large iron. If you mount both at the same time, you will be able to check on the geometry by eye. Progressively checking all remains true and working both sides of the IF board, use small single tacks first of all, then multiple tacks and finally form neat fillets.

COMPONENT MOUNTING
Refer to Fig 13. Tin all the pads except those under the FST3125s. Mount both FST3125 chips. Align the chip and tack down two opposite corners to the larger pads provided. For the remaining pins, offer the iron and solder to the track just short of the pin - and the solder will spread along the board and wet the pins by capillary action.

Fit the wire link across IC4. Sorry about this, but I just could not design out that one link.

Cutting their ungrounded leads so that they sit just above the board, mount all the other components - except the preset capacitors. A pair of tweezers is useful for handling the smaller components.

To surface mount the DIL ICs, cut off all the pins back to the shoulder except any grounded pins which pass through the board. Do not use sockets.

Fit the feedthrough capacitors - which are typically made off to the IF board by using a series RFC as a flying lead. Mount RFC1 and RFC2 at right-angles to each other in the vertical plane to minimise mutual coupling.

Trim and solder all the grounded leads on the back of the board. Check with a continuity meter that all grounded track is in fact grounded. Also perform all the usual basic tests such as checking isolation and integrity of the power rails.

Mask the preset resistors and give both sides of the board a final and generous coat of spray lacquer. Finally, fit the preset capacitors, definitely unlaquered.

Fig 12: DSP assembly illustration and recognition drawing, not to scale. The IF board and two end-plates are seam soldered to form an H-section. The height of the end-plates is typically 6cm as a minimum but can be up to the full height of the Tx/Rx enclosure. The DSP board is bolted to the back of the IF board. Note that critically, the external connections are brought out at different ‘levels’ depending on which side of which board they connect to - and at different ends depending on the destination. Two further sides and a top and bottom (not shown) complete the screening but are not added until after final commissioning.

© G3XJP
Fig 13: IF board PCB layout on double-sided board. The reverse side is completely unetched to form a continuous ground plane and screen. All components with the exception of the crystal filter FL1 and the SBL-1 mixer, IC5 are mounted on the track side. You may need to customise the tracking to suit your crystal filter. The 'holes' are shown on the component layout only to define the tracks should you be producing the PCB by some manual method. Only components which feed through to the back of the board require actual drilled holes and these are as defined on the tracking template. The tracking template image is mirrored (ie flipped left-to-right) for direct copying to iron-on laser film. The basic drilling size is 0.7mm - with holes for mounting, feedthroughs etc drilled larger to suit. Some internal screening partitions are made from PCB material or brass shim stock. Those around the X1 crystal oscillator need to be particularly RF-tight to prevent oscillator leakage into the IF strip.
OPERATIONAL SOFTWARE

Reset the DSP board (ie press and release S2) and load in the operational software as per the loader on-screen instructions.

Loading is complete when you are looking at user controls on the screen as in *Fig 15* - and the DSP board LED is out. If the LED remains - or reverts to - flashing, this indicates a comms failure during loading.

At this stage the DSP Rx should be operational. To verify this, feed a sniff of RF at your IF frequency into the IF in/out coax. Just tack a few inches of wire to the coax inner and put it near some suitable signal source eg the DDS or a GDO. As you tune across the IF, you should hear the beat note - and the LED on the DSP board should light in the presence of signal.

Turn the RF gain up and down on the PC to verify that you are in control.

If you speak into the microphone, this should also light the LED. Grounding the PTT line should mute the Rx - and the T/R Status line should go to near 0V.

On the PC, switch to CW. Grounding the KEY line should then produce sidetone. The T/R Status line may now be connected to the Timer board and its operation verified. Under no circumstances be tempted to connect T/R Status to some external PTT line, say on your transceiver.

Getting to this point is a major milestone. But if any of the preceding fails, stop and correct the problem before going further.

INTEGRATION TESTING

THIS STAGE IS NOT strictly necessary. You could wait until you have a completed transceiver. But I commend this as the better approach - not least because any problems will be confined to the new-build DSP hardware.

RECEIVER

Connect a short fat ground strap from your Tx/Rx to the DSP Assembly.

Locate a suitable bi-directional 50Ω point on your Tx/Rx; after the mixer, after any post-mix amplifier, after any pad is best - but the 50Ω IF port on your mixer will suffice for test purposes. Patch in the IF in/out coax via a series 100Ω instead of your existing IF strip.

Arrange to be able to switch your Tx/Rx between transmit and receive. Turn the AF gain down on your Tx/Rx - and any other Rx gain controls to maximum; and Tx gain controls to minimum.
Power up on an LF band and then load the operational software as previously. Inject signal frequency plus FL1 centre frequency into your Tx/Rx mixer - and you should hear resolved LSB signals from both speakers. On a quiet frequency (LED is out), peak VC3 for maximum band noise. Then peak RV1.

Connect a ‘scope (DC, 1V/cm) to the ‘S’ meter output. This should show about 4V on weak signals and progressively less as AGC action occurs. Find a signal giving about 2.5V and adjust RV2 until it is slightly less. While listening on a noisy band, adjust RV6 until the AGC loop is clearly unstable and hunting - and then back it off until it is smooth. That completes a crude setting up of the AGC system, enough to verify that the hardware is working.

At this stage, with the DSP Assembly unscreened, there may be evidence of white noise on the higher bands.

TRANSMITTER INTEGRATION TEST

With your Tx drive level well down, set Tx Drive on the PC to 10. With your Tx/Rx connected to a dummy load, and preferably monitoring on another receiver, set up to observe the Tx output on a ‘scope for flat topping etc.

Put your Tx/Rx on transmit. When you ground the DSP PTT line, this will put the DSP assembly onto transmit as well. The Mike Gain on the PC should be increased as far as possible - but only so long as there is no evidence of any clipping, compression or distortion.

If all is well, bring up the drive on your Tx to its normal setting. Then increase the Tx Drive on the PC, ensuring the output remains clean - up to your normal power level.

Now would be a good time to screen the xtal oscillator and add the other screens on top of the IF board. The fully screened enclosure is best left until the very end.

PC CONTROL OPTION

THIS IS A TIMELY opportunity to outline the behaviour of the PC control panel. Fig 15 shows the screen of the loader after the DSP code and the controllable parameter values have been downloaded to the DSP assembly - at 9.6KB.

Adjustment and use of the various DSP features themselves follows later. Here, I am concerned only with the mechanics. Simply key the appropriate number to change a switch state, the upper-case letter to increase a parameter value - and the lower-case letter to decrease it.

SYNTAX

The BASIC control software has been optimised for simplicity. That is, only the most basic syntax has been used - and if you have ever written any software in any language (very nearly, English will suffice) - then you will have no trouble following it.
This month we take a break from construction and discuss some of the rationale behind the PIC-A-STAR User Interface (UI). This has had significant impact on the front-panel layout and ultimately on the entire transceiver enclosure.

UNTIL RECENTLY

I had followed a philosophy of fixing the front panel controls with those anybody could reasonably need to drive any transceiver - on the grounds that these controls were essentially independent of the inner workings. That approach bought me 25 years development of four fundamentally different transceivers - all using the same housing and front panel.

But times they are a-changing! I have come to appreciate that the opposite approach is more appropriate for a transceiver with a significant software content. Fig 16 shows, not least, the consequences to the overall dimensions.

PIC-A-STAR UI

A significant amount of effort has gone into achieving an effective UI. The challenge is to avoid the extremes. On the one hand, it is easy to end up with a system whose complexity exceeds human intellectual capacity. We have all listened in on those amazing menu comparison QSOs which usually end in "I know I am supposed to hit Return. How hard?". On the other hand, personal preferences do vary and you shouldn't be prevented by the designer from adjusting a parameter merely for the sake of a simpler UI.

The clue to the best approach came very early.

NO PAIN - NO AF GAIN

During the early evolutionary development, there was, of necessity, a period of several weeks when I had absolutely no adjustable controls whatsoever. To increase the AF gain, for example, I had to edit the DSP code, re-assemble it and download the whole suite - including this one changed parameter. As you can imagine, I did not bother very often. Actually, it encouraged me to focus on improving the functionality so that the built-in control systems would take care of the 'variables' without undue manual intervention.

The background thought here is that as a design evolves - perhaps over several years - the number and purpose of the controls can swing wildly. And as technology evolves, so do the opportunities. Who would have thought I would need an Auto-notch on / off switch even 15 years ago? And when I designed Pic 'N Mix, I can assure you the thought that it had the intrinsic flexibility to control the entire transceiver never crossed my mind.

SO THIS TIME ...

I have taken the minimalist approach - starting with the observation that all controls can be classified under two generic categories, namely "switches" and "amounts". Thus PIC-A-STAR has two (and exactly only two) corresponding physical controls, namely:

- a knob which alters "amounts" and...
• a keypad which handles the "switches" - as well as specifying which "amount" the knob is connected to.

By "amounts" I mean, for example, amount of AF Gain, amount of RF Clipping and indeed amount of Frequency. By "switches" I probably better mean "choices" eg '80m' instead of '15m' and 'Autonotch on' as opposed to 'Autonotch off'.

Having settled the mechanical issue, then at any time I can have more or less as many "free" knobs as I like - by simply assigning them in the software. And at the same time, saving much cash on real pots, knobs, switches - and that real nightmare, the consequential system cabling.

Now that my STAR is in daily operational use - besides changing bands and frequency - the biggest strain on the UI is saving much cash on real pots, knobs, switches - and that real nightmare, the consequential system cabling.

FRONT PANEL
The template used to make my front panel is shown in Fig 17. This is designed to last a lifetime in the sense that I can allocate any function to any switch - including a cluster of related controls as a simple sequential menu list. And thereafter, any range of values to the menu items - and so on.

The worst-case change issue is that one day I may need some new legends on my keypad overlay. I have never been an advocate of beautiful home-made radios versus functional home-made radios (given a finite life-time, you have to choose) - but one non-trivial benefit of this approach is that the front panel is less than A4 (and US Letter) in size - so I can print off a new one and stick it on anytime. Upholstery or foam-backed carpet adhesive is the answer to your next question.

A bar-graph 'S' meter is shown but is not mandatory. A small edge-wise movement could be accommodated above the keypad, but a 'real' one would need an increase in the front-panel width to accommodate.

The bar-graph LEDs, six status LEDs and the keypad all mount on the Status board.

NEXT MONTH
Sees a start on building that Status board as well as the PicAdapter board.
his month covers the circuits of the Pic Adapter and Status boards. Constructional detail follows next month. You don’t need these boards to first commission STAR since you can load and control the DSP software from your PC.

Thereafter, in terms of constructional sequence, you need the Pic Adapter first, which then allows DSP code download from your PC and subsequent upload to the DSP assembly. Thereafter, you need the Status board to complete the user interface.

RS232 CONNECTIONS

First the wires! The required cabling at any one time is one of the following:-

- From PC to DSP - early test
- From PC to Pic Adapter - load new code
- From Pic Adapter to DSP - normal use

Fig 18 shows a simple implementation.

The lead with the female connector for mating with the PC serial cable should be fitted for occasional use - if at all. Certainly the lead should not be routed via the RF section of the transceiver to the rear panel - to avoid any potential EMC coupling. I keep mine in the drawer and get it out when I need it.

The link to the PC is needed only to load new releases of DSP code whereas the link to the DSP assembly is used continuously. Normally the lead(s) plug into the Pic Adapter board, but for loading and controlling the DSP assembly directly from the PC, a trivial connector with TX wired to Ground and RX to receive, ‘0’ on transmit.

PIC ADAPTER BOARD

This plugs into the original PIC socket on the Pic ‘N’ Mix DDS board. The circuit diagram is shown in **Fig 19**.

For compatibility reasons, the PIC, IC9 uses essentially the original Pic ‘N’ Mix code to provide all the original Pic ‘N’ Mix functionality. However for STAR purposes, it has 4 incremental tasks:-

1. To download new release DSP code together with control parameter values from your PC - and retain these in IC10, a serial EEPROM - for subsequent normal use.
2. At power-on time, to read the DSP code and parameters from the EEPROM - and load them to the DSP board.
3. During normal operational use, to communicate any changes you make to the control parameters (eg AF Gain) - to the DSP board. The changed values are also retained in EEPROM and thereby survive power-down.
4. To drive data out to the Status board to control the state of the LEDs.

STATUS BOARD

This board carries the bar-graph ‘S’ meter, the latch and Latch pins which simply drive the Status board LEDs. Because this board is self-contained, it can be programmed - as an assembly - in the 18-pin socket of a PIC programmer. For test purposes this board, once programmed, should provide full normal Pic ‘N’ Mix DDS operation, albeit with slightly longer key presses being required than Pic ‘N’ Mix users will be familiar with.

Split operation should finally be verified with the T/R Status line connected.

Fig 18: RS232 connections. This can be made up as one composite loom - or as two separate leads.

© G3XJP
option of not fitting any of these functional elements should it suit you - and the PCB is laid out so that you can "cut bits off" should you wish. Equally and conversely, these elements were designed explicitly to be used stand-alone in totally differing situations should you wish.

The circuit diagram is shown in Fig 20. IC16 is a conventional serial-in, parallel-out driver. It is identical in function to those already fitted to Pic 'N' Mix for band-switching purposes.

IC28, the PIC, exemplifies the pin-out efficiency of the current generation of PICs. Of the 18 pins, only three are assigned to 'overheads' - ie ground, power and reset, the other 15 all being available for I/O. Of these, one is programmed as an analogue voltage input (the AGC voltage) - twelve as outputs driving LEDs - and two are spare. So far, that is.

IC28 is a mere voltmeter which displays 'S' units on receive and relative power on transmit. R73 determines its sensitivity - and I can visualise some non-STAR applications where you may need to tune its value.

Fig 19: PicAdapter board circuit diagram. This board plugs into the 18-pin PIC socket on the original Pic 'N' Mix DDS board and upgrades the PIC to a more recent and versatile PIC, the 16F870.

Fig 20: Status board circuit diagram. The status LEDs and driver are functionally unrelated to the 'S' meter LEDs and driver but they are co-located around the keypad. Not shown here are some merely passive tracks which are used to make off the 7-way ribbon cable to the keypad. The connector shown on RB7 is for future development only.
his month covers a suitable stereo AF amplifier - and concludes the construction of the PicAdapter board and Status board.

STEREO AMPLIFIER

It is not easy to find a good stereo amplifier which works well on a 12V rail. If you have a scrap car radio with speakers, that would provide an instant solution.

Fig 21 shows the circuit diagram of an inexpensive amplifier from the bottom end of the range. Reduce C7 and C8 for more top response. The PCB is given in Fig 22.

Should you need something with more output, take a look at the TDA2004 or TDA2005. In any event you will need to use decent speakers to get the full benefit of PIC-A-STAR's audio quality. Several builders have found it difficult to move away from 20W per channel into 12" speakers - including me.

PICADAPTER BOARD

See also the photograph last month. This board is pretty tight since it needs to fit within the envelope of the original DDS board. So, as you can see from Fig 23, it is somewhat three-dimensional. The spacing is eminently achievable provided the components are loaded in the correct sequence - which is critical.

Check meticulously for continuity and isolation as you proceed. When inserting the sockets / plugs, ensure the pin shoulders do not ground on the opposite side.

1) Fit C73 underneath (ie on the groundplane side).
2) Fit IC9 socket and ground pins 8 & 19 on the groundplane side.
3) Fit R43, underneath.
4) Cut a 9-way SIL header strip. Noting the larger diameter end fits to the PCB, cut off that end of pin 3 and insert to make PL1 pins 1-9 ie the inner strip. Solder all track-side pins - and pin 5 to ground underneath.
5) Repeat for the outer strip of PL1 - but cutting off the larger diameter end of pins 15 & 16. Use a spare 18 pin socket to ensure alignment.
6) Fit TR8, C72, R44.
7) Fit IC10 socket, grounding pins 1, 2, 3, 4 & 7 both sides.
8) Fit C68.
9) Fit SK2, grounding the centre pin underneath.

10) Fit TR7, grounding the emitter underneath.
11) Fit R46, R45, C67, R47 and last, X2.
1) If there is any chance of the board fouling the Pic 'N' Mix Display board, chamfer the copper both sides.

The original 4MHz crystal on the DDS board may be recovered and reused elsewhere, though you may want to postpone this until the PicAdapter is working.

STATUS BOARD

There are no special constructional issues here.

Cut all the IC socket pins back to their shoulders - except the grounded ones. A small trick for soldering the socket on the component side; fit another socket or a scrap chip into the socket first. This prevents the pins from wandering as they get hot.

Please note that should you wish to program this PIC in situ, you may not be able to do so with D31 fitted, since it loads the programmer. For this reason, avoid giving reports to stations who are "12dB over S9" until the end of full integration and test - when this LED is finally fitted.

Fig 22: Double-sided stereo amplifier PCB. This is a "conventional" board with components mounted on the top, the track underneath. The component side is completely unetched. No connectors are specified, but the relevant pads have a 0.1" pitch.

Fig 23: Double-sided PicAdapter board PCB. The cut-out is to give access to the existing programming socket. IC10 and IC9 should definitely be mounted in sockets. To achieve the clearance height required you may need to first fit an extra 18-pin socket into the existing Pic 'N' Mix socket - as a spacer. SIL plugs / sockets are used for the remaining leads - with the sockets soldered directly to the track.

Fig 24: Double-sided Status board PCB with the ground-plane side unetched. The width of this board (3") accommodates that of my RF front-end which sits behind the Status board. All components except the LEDs are surface-mounted on the track side. This allows access to both the components and to the LED pads. The latter is needed to adjust the LED lead lengths for flush-fit to the front panel. The four mounting holes are for the keypad which is mounted using short spacers. The 7-way ribbon cable from the Pic 'N' Mix Display board is routed between this board and the keypad and made off to pads / tracks provided on this board and thence via short wire links to the keypad itself. IC16 and IC28 are mounted in sockets with all pins - except their respective ground pin - cut back for surface mounting. No connectors are specified. The relevant pads have a 0.1" pitch.
PIC-A-STAR
SOFTWARE TRANSMITTER AND RECEIVER

Part 14 by Peter Rhodes, BSc, G3XJP

Fig 25: DDS key sequences

The keypad sequences are summarised in

<table>
<thead>
<tr>
<th>DDS KEY SEQUENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The keypad sequences are summarised in Fig 25. These include the increments for STAR operation.</td>
</tr>
<tr>
<td>See separate user document for latest</td>
</tr>
</tbody>
</table>

Fig 25: DDS key sequences.
Sequences shown with a leading $ save the current frequency in the respective location if the 2-key sequence is preceded by the 9 (Save) key.

PIC 'N' MIX CODE CHANGES
The following apply to code shipped explicitly for use with PIC-A-STAR:
- The opportunity has been taken to more vigorously de-bounce the keypad.
- CW offset calibration (previously 34) is no longer required since the CW offset is now managed in DSP. The procedure for calibrating the reference clock and SSB IF offsets is unchanged. However, the reference clock frequency calibration may now be loaded directly from your PC.
- For IF offset calibration you will find it useful to switch the DSP filters off - so that you can hear right down to zero-beat. A CRO connected to the receiver audio output is also invaluable for seeing the exact zero-beat point. When both SSB offsets are correct, there should be a difference of precisely 2.7kHz between them.
- CW is now received either upper or lower sideband - so you have the choice of tuning direction. Either in the same direction as SSB signals on the same band - or always tuning CW in the same direction whatever the band. The frequency readout always shows your transmitted frequency (not least, for legal reasons) and your receive frequency is displaced from this by the CW offset - which is your chosen and preferred beat note.
- If you are in CW mode and you key 44 again, this will toggle reverse CW. This switches both receive sideband and injection frequency to give the same beat-note, but "from the other side". It can be useful in clearing QRM and for checking you are properly netted since if not, the beat note will change.
- PIC 'N' Mix now has 5MHz (60m) capability. The latch output previously marked "15MHz WWV" is now active if any 5MHz frequency is selected and - exceptionally - if you go to 5MHz, the default sideband is now USB.
- The first 5 memory locations (60-64) are loaded with the UK 5MHz channels. These are the correct frequencies for upper sideband operation. If you don't want this feature, you can re-program these allocations with any other frequencies (and re-enter the 5MHz ones yourself any time).
- You may now fit an AD9851 DDS chip which has the ability to multiply the frequency by 6. Toggle this feature on/off. See later for more detail.
- There is a latched output bit labelled 'spare'. This may be toggled by keying 48. It was designed so that you can switch any device eg a pre-amp, attenuator, transverter etc - from the keypad. This switch has been used to configure the STAR mixer and post-mixer amplifier - to be described later.
- The output bit labelled 'broadband' 72 is now a spare uncommitted toggle switch.
- QSK Split operation has been improved. Previously it was limited to about 20wpm.
- The frequency display is dimmed after about 3 minutes of user inactivity - to reduce heat dissipation and to prolong LED life. Toggle this feature on/off.
- All frequencies from 0-29MHz now activate the nearest band select line.
- XIT/RIT operation may be selected instead of Split. This is still under development and details will follow.
- Part-way through any DDS key sequence, the # key now aborts it.

PIC 'N' MIX HARDWARE
Since first designing Pic 'N' Mix five years ago, some detailed improvements have evolved. What will never change is the requirement for meticulous (albeit textbook) screening, decoupling and filtering practice - if the DDS spur level is to be contained. This cannot be overstated and is the starting point for what follows.

The following modifications produce incremental reductions in DDS spur and noise improvement options. The latter complement the performance of the STAR receiver front-end, details of which follow later - but they are of general application for any DDS.

Fig 27: Butler oscillator for either 5th or 7th overtone operation - with crystal temperature control.

Fig 26: 26-40MHz injection filter to strip both unwanted high-order spur and those at the IF from the DDS output - on the higher HF bands only. Not needed if switched out on lower bands.

© G3XJP
are easy enough to do to make them all worthwhile. If you are building STAR I countenance you not to implement any of them until you have everything else working - and until you have truly attended to the meticulous bits mentioned above.

- Fit a separate 7805 regulator for the DDS chip carrier assembly. There is a simple track cut under the DDS board which removes the +5V rail from the DDS Assembly. Mount a separate 7805 on the rear vertical panel with 100n on both the 12V in and 5V out leads - and run a flying lead from the latter through a ferrite bead - and solder it to the 5V top foil on the DDS chip carrier together with a 100µF electrolytic to ground.

- Fit 1n, 1n, 10n 1206 SMD capacitors - in a stack - on at least 2 corners of the DDS assembly from the +5V rail to ground. In other words, whatever it takes to ensure that the +5V rail and ground-plane are at the same AC potential - AF to VHF.

- Add a filter in the LO feed to the mixer. Figs 26 and 28 show a suitable arrangement for high-side injection with any IF between 8MHz and 11MHz. This filter offers at least 30dB attenuation at the IF and a similar figure at 50MHz - and rising. If all else is right, this produces dramatic results.

- It does not need any exceptional screening if mounted within the already-screened volume of Pic 'N Mix. It is shown switched in by band-select lines, diode-OR'ed. You should wire in diodes for any bands for which your LO falls in the range 26-40MHz. However, for evaluation purposes, it would be prudent to control it with a simple toggle switch to +5V/0V in the first instance.

- You may simply substitute an AD9851 on the DDS Assembly in lieu of an AD9850 under all circumstances ie it is completely hardware and software compatible. The AD9851 allows higher reference clock frequencies - which may be useful if you have a relatively high IF. This gets you away from the 1/3 reference clock zone.

In addition it offers a 6x multiplier option for the reference clock. So, for example, you could clock it at a mere 30MHz yet have the effective benefit of a 180MHz clock. There are small spur and significant phase noise performance disadvantages for which see the AD9851 data sheet; but convenience issues may predominate for you. A facility for specifying a 6x clock is now built into STAR software. You may instead want to try locking your existing AD9850 much faster.

Fig 27 shows a reference oscillator which will operate on either the 5th or 7th overtone of a crystal in the 22-25MHz range - simply by tuning VC1. Typically the 5th overtone is used with an AD9850 and the 7th overtone with an AD9851. In this latter case the x6 feature would not be invoked.

Also included in fig 27 is an arrangement for stabilising the crystal temperature, the detail design of which is due to Harry, G3NHR. It works so well, I have since stuck (literally) a similar arrangement on my IF board translation oscillator.

The thermistor TH1 and the TIP122 tab are secured to opposite faces of the crystal can. Heat-shrink sleeving is highly recommended - or failing that, super glue. For smaller crystals, cut off the excess TIP122 tab to reduce height.

Set VR1 to maximum resistance and then adjust for 100mV drop across R1. Repeat for each crystal. This gives 6dB more LO output and further spur reduction. The core for this transformer is the EPCOS B62152A4X1 available from ElectroValue. (You will need 4 more of them for the mixer later.)

The primary is 3 bifilar turns 32SWG and the secondary is 12 turns wound over the centre-tap. Ground one side of the transformer. Connect instead the primary to pins 20 and 21 of the DDS chip, grounding the core. Ground one side of the secondary and take the other via a 100n blocking capacitor to pin 19 on the 28-pin carrier.

If you are not confident your mixer will stand the extra 6dB, fit a pad on its LO port. (The STAR mixer - yet to be described - is fine.) To reduce DDS spurs to a highly acceptable level (ie virtually none) you may or may not need any or all of these changes.

As with all flexible designs, there are intelligent user choices to be made. Such is amateur radio!

© G3XJP

Pic-A-Star Page 2
STAR has more useful facilities than most home-brew designs - and getting a feel for their value may well determine if this is the project for you. The user interface is also detailed this month - with explicit adjustment and use instructions packaged with the software. Those who don't have these facilities refer to them as 'bells and whistles'. Those of us who do just grin - and keep ringing them bells and blowing them whistles. Always assuming they are underpinned by a rock-solid base receiver performance, that is.

SSB / CW MODE MANAGEMENT

Switching between SSB and CW - and transmit and receive for that matter - are non-trivial design problems if the result is to be user friendly. So some background discussion is helpful in understanding what follows. See also ref [1]. You may also care to critically compare the behaviour of commercial transceivers. If I can find anything friendlier than STAR, I will simply change the design until it isn't. I have, as I write, already invested in the architectural infrastructure to make all this possible.

CW OPERATION

In days of old, especially with 'separates', it was easy, reliable - but a bit torturous. You would zero-beat an incoming QO on your receiver, then zero-beat your transmitter - and finally move your receiver off to get a comfortable beat note.

With modern filters there is a snag. You can't hear anywhere near down to zero beat, so this process produces totally unacceptable errors.

However it does establish two critical principles, namely:- both stations must transmit on the same frequency - and both must operate 'split' if they are to hear a beat note. CW is inherently a 'split' mode.

With a multi-mode transceiver you must either explicitly operate 'split' for CW - or the design must take care of it transparently. PIC-A-STAR is in the latter category. If you are in SSB mode and hear a CW station you want to work, when you switch to CW mode the received pitch will not alter and you will not have to retune. And vice versa if starting out from CW mode.

While on the topic of CW, take a look at the photograph of STAR's transmitted waveform. You won't find better.

SSB OPERATION

When you change sideband, neither your indicated nor actual frequency should alter. This is common currency nowadays. There are some but not many occasions when this matters - given that we don't usually operate on the 'wrong' sideband. If you operate via OSCAR or into a transverter or on 60m, it is critical.

This point also reinforces a principle which should be obvious - namely that if a given feature is critical to a minority interest, provided it is not imposed on the majority - then there is no good excuse for not providing it.

Pic 'N Mix also gives you the option to switch between high- and low-side injection. Since this implies a sideband inversion, the software puts in an equal and opposite change of sideband - and you end up on the same net frequency.

But be aware that many band-pass filters are optimised for injection from a preferred side. The STAR front-end is optimised for use with high-side injection; and the optional filter in the LO line also assumes high-side injection on the higher bands.

PTT AND KEY BEHAVIOIR

PIC-A-STAR uses the simple conventions that on CW, the microphone audio is ignored - and on SSB the key is ignored.

If on CW and you merely key, you will produce only sidetone. This is for CW practice since to actually transmit you either need to switch QSK on - or hold down the PTT line for non-QSK operation.

If on SSB, then you must either switch on VOX - or hold down the PTT line - before anything will happen.

AT POWER ON TIME

The display shows your chosen start-up frequency, but flashing. You then have four structurally different options:-

- Upload DSP code from Pic 'N Mix to the DSP Assembly. This is normal every-day operational use. The Status board LEDs flash strangely so you know something is happening.
- Run the DDS without loading DSP code. This is mainly a diagnostic mode.
- Enter a DDS reference clock frequency from your PC. A useful utility.
- Download a new (or your first) DSP software release - via the Internet to your PC - and thence to Pic 'N Mix. This latter process takes several minutes. During this period the incoming bytes are counted on the display - albeit faster than the eye can follow - much like money on a petrol pump. Unlike petrol it gives you a warm feeling you are getting good value - and the fact that it is counting at all signifies that it is working. Once the new code and the default control values are all in, you can then proceed to upload them to the DSP Assembly thereafter.

KEYPAD / DISPLAY MODES

There are now two main modes, namely "DDS mode" and "DSP mode". The former was outlined last month. The latter lets you tune all of the STAR DSP controls.

Fig 30 shows a suitable keypad overlay with the DSP legends in yellow; the DDS ones in white or blue. But before we get to that …. **SPLIT OR XIT/RIT**

This is a new sub-mode choice for DDS use. One of these is always enabled - and your choice is retained at power-down. Both give you the potential to transmit and
receive on different frequencies. See also ref [2] for a general discussion.

Split mode is unchanged from Pic 'N' Mix - but with enhancements. It operates on the two independent VFOs, 'A' and 'B'.

Conversely, XIT/RIT operates on either one of the VFOs - and that choice determines the initial Tx and Rx frequency. But thereafter the Tx and / or the Rx frequencies can be independently changed - and retained throughout an XIT/RIT session. Meanwhile, the 'other' VFO remains uncontaminated - and available.

What are the differences between Split and XIT/RIT? Split can be cross-band and/or cross-mode and 'rests' on your Rx frequency when off. Conversely, the XIT/RIT tuning range is the current band, current mode. It 'rests' on your Tx frequency when off - thus providing an RIT on/off capability - which Split doesn't give you.

SPLIT AND XIT/RIT USE

Besides pure transceive when switched off, both modes have the following options:-

- Tune only the receive frequency while your transmit frequency remains fixed (ie RIT). If you call CQ and a station answers off-frequency, this option (in either mode) is the answer. However, in a net with one station off-frequency, XIT/RIT mode is better since you can turn XIT/RIT off when the offending station is not transmitting.
- Tune only the transmit frequency while continuing to monitor your receive channel (ie XIT). To call a DX station who is operating split, use in either mode to tune your Tx quickly to the specified DX listening frequency - while not missing a word on your receive channel.
- Tune the transmit frequency while monitoring what is about to be your transmit channel (ie REV XIT). Use this to check for a quiet spot before calling. You can do any of the above - independently - in any order using merely one key-press to define your choice. On receive, the frequency displayed will be that which you are changing - and on transmit, always your Tx frequency.
- Further utility options let you swap the two VFO frequencies - or initialise them as the same. Likewise for the XIT/RIT frequencies. Initialisation is done for you in XIT/RIT mode should you change VFO; or band; or frequency by more than 2.5kHz while on pure transceive - on the grounds that any difference must then be irrelevant.

DDS / DSP MODE SWITCHING

As supplied, the DDS mode is permanently engaged and you would be unaware that there is any other. This is deliberate in order that you can check out the DDS functionality after first commissioning - without distraction.

Once you are happy here the DSP mode becomes available following the first time you download DSP code from your PC to Pic 'N' Mix. The remainder of this discussion assumes that this has happened.

In normal use, STAR 'rests' in DDS mode and displays frequency. The key to switching to DSP mode is the duration of the first key press. A quick press on a key activates DSP mode; whereas a longer press invokes the "business-as-usual" DDS function. The resultant displays are quite different so it will only take you a few minutes to get the 'feel' ingrained.

The DSP functionality is given this priority because most DSP functions are needed quickly in real operating conditions. For example, turning the auto-notch on when that tuner starts up is a more immediate issue than, say, changing bands.

Certainly a 'quick press' need not be tentative, merely not overtly sustained. Once the mode has been determined by the duration of the first key press, the duration of subsequent key presses is unimportant.

The very deliberate exception is the bottom row of keys - which act to give DDS functions - and which therefore have no DSP functionality as the first key-press. Once you are in DSP mode if you neither press a key nor alter a value for about 3 seconds, PIC-A-STAR will revert to DDS mode. You can prevent this by pressing the # key - which toggles holding the display in DSP mode. This is invaluable when setting up the DSP control settings.

USING THE DSP MENU

The DSP controls are grouped to form a menu as shown in Fig 31. This menu detail will change over time, but not the intrinsic structure. Project without end, right?

MENU GROUPINGS

The menu is ordered with the more commonly used controls near the 'top' of each menu group - and rarely used ones near the 'bottom'. In practice, some of these latter items can be regarded as presets.

There are no sub-menus, so the system is inherently limited to 99 controls in 9 groups times 2 modes - a limitation I for one can live with.

See separate user document for latest

Fig 31: DSP menu structure.

The menu is intrinsically SSB/CW modal in the sense that if you are in SSB mode then you simply can't get at controls which are unique to CW - and vice versa. These controls are annotated 'SSB only' or 'CW only'. Some controls share one common value for both modes and are annotated 'both'. Two controls, namely 2.2 and 8.1 have different values per band.

Conversely, all other menu items that are not peculiar to mode have different settings stored for SSB and CW. For example, different AGC time constants, Denoisser settings and so on can be set up, varied - and retained independently for SSB and CW. This applies also to the on/off switch settings.

All this is designed to foster a "set-and-forget" philosophy.

HOW TO PIC FROM THE MENU

Immediately after you (quickly) press a 1-9 key, the display will switch to DSP mode. For example, a dab on the 7 key will show '7.1 13' where 7.1 denotes the first control in that menu group, namely VOX/QSK hang time - and 13 is its present value. See also the photograph.

If you want to move on to the second control in the same group, press the 7 key again - and so on. If you want to move back up through the group, press 0. If you want to move to a completely different menu group, simply press the corresponding key.

CHANGING VALUES

After you have selected a control, if you want to change its value, turn the knob - clockwise for more, anti-clockwise for less. There are maximum and minimum values for each control - and the rate of change is proportional to the range.

ON / OFF SWITCHES

To switch a DSP feature on/off, press the corresponding key (1, 4, 7, 3, 6, 9) followed by . The adjacent LED will change to provide visible status thereafter.

For example 7 will switch VOX on/off if in SSB - and QSK on/off if in CW mode. In fact, irrespective of which menu item in a group you are addressing, the . key will toggle the associated switch and you will revert immediately to DDS mode.
MUTE
2● near-mutes the receiver and suspends VOX operation. This is the 'panic' button for unexpected interruptions eg when the phone rings. Any subsequent key press or knob turn restores your pre-panic state.

QUICK SWITCH OPTION
8● toggles the quick switch facility. When engaged, any of the 1, 4, 7, 3, 9 keys - when pressed - simply toggles its respective DSP switch. Because you are thereby not presented with the values for those menu groups, you would not want to use this option until those groups are set up. Conversely, once the values are tuned and you have gained familiarity, I think this is the mode of choice. It is for me, anyway.

RESETTING CONTROL VALUES
5● resets the control values (both SSB and CW) to those that you last downloaded from the PC - with the exception of RF Gain and Tx Drive - whose latest per-band values are retained. All the DSP values are remembered across a power down, but not switch settings - which initialise to off but with the DSP filter on - and in SSB mode.

DSP FEATURES DESCRIPTION
A few words are in order for some of the more esoteric features you may not have met before. In roughly menu order:-

DENOISER
This is rather more a comfort feature than a performance one. It acts to reduce background white noise - and when working well, is not unlike squelch on FM. It is especially effective on CW and very useful if just monitoring a quiet (albeit noisy) channel. The 'right' combination of settings is somewhat subjective and can occasionally vary from one signal to another - and certainly by mode. It is best with the RF gain turned up and with longer AGC hang times. Experiment!

Both the Denoiser and Autonotch (see later) are essentially as implemented in DSP-10 by Bob Larkin. See also refs [3] - [6] for the pioneering work and the theory.

RF GAIN
This comes right at the front of the DSP receiver chain and is used to set the SNR for differing conditions. It should normally be turned well up so that AGC action produces constant audio output - and the best possible SNR. This also contributes to clean VOX operation.

STEREO EFFECT
This gives body and presence to signals and warrants a decent stereo audio amplifier and speakers. Some folks report an increase in readability on weak signals. Personally, I just love it! For me, it completely transforms the listening experience.

STEREO BALANCE
Values above 100 decrease the right channel output; those below 100 decrease the left channel output. Another scratchy pot saved.

NOISE BLANKER
As opposed to the Denoiser which acts on white noise, this acts on impulse interference - eg ignition noise, thermostats, electric fences and the like.

AUTO NOTCH
This removes an interfering heterodyne - and in many circumstances, several. It works best on pure tones and especially lower pitched ones. It has exactly one use in CW mode, namely for monitoring key clicks ie what's left after removing the tone. One very popular commercial transceiver shows up here every time.

Auto notch is applied after the filter bank and is outside the DSP AGC loop - to avoid strong-signal overload of the DSP.

CW OFFSET
This is your preferred beat note and may be pre-set (when you download from your PC) to 5, 6, 7, 8 or 900Hz. The centre frequency of the CW filters is changed to match.

If you are interfacing with other than Pic ‘N Mix, you will need to adjust your Tx/Rx mixer injection frequency by mode. So, for the record, the following are the exact DSP IFs (in kHz) used by PIC-A-STAR:-

- LSB: Tx = Rx = 16.35
- LSB CW: Tx = 16.35, Rx = Tx + CW offset
- USB: Tx = Rx = 13.65
- USB CW: Tx = 13.65, Rx = Tx - CW offset

There is also a Reverse CW option and if set:-

- LSB CW: Tx = 16.35, Rx = Tx - CW offset
- USB CW: Tx = 13.65, Rx = Tx + CW offset

This allows you to set the receiver filter width by turning the knob (or on/off using 6●). There are currently six filters provided, three each for SSB and CW (though any one can be used in either mode). See Figs 32 and 33. The status LED is tri-colour and corresponds to wide, medium, narrow - or off.

Turning the filter off is a useful way of checking if a signal has stopped transmitting or has just slipped out of the pass-band, since when you switch the filter back on again, it reverts to the previous filter width.

FILTER DEPTH
This allows you to set the receiver filter width by turning the knob (or on/off using 6●). There are currently six filters provided, three each for SSB and CW (though any one can be used in either mode). See Figs 32 and 33. The status LED is tri-colour and corresponds to wide, medium, narrow - or off.

Turning the filter off is a useful way of checking if a signal has stopped transmitting or has just slipped out of the pass-band, since when you switch the filter back on again, it reverts to the previous filter width.

SIDETONE FREQUENCY
Not to be confused with CW Offset, this is the tone you hear when sending CW. The QSK experts tell me it can be useful to have this at a different pitch from an inbound signal - so you can intuitively tell the difference between you and the station being worked when using fast break-in.

To enhance this effect, the sidetone comes from one speaker only, the inbound signal from both. The pitch may be excessively varied between 10Hz and 2.5kHz in 10Hz increments - this extended range being useful should you need it to double as an instant audio signal generator.

CW TONES 1 OR 2
This allows 2-tone testing. The two tones are 700Hz and 600Hz. If you have not used a 2-tone test for linearity checking before, be aware that the duty cycle is very high - so use only short or pulsed bursts.

AGC HANG TIME
This can be set anywhere between very short and very long. I understand that most people usually only change this per QSO for CW work - and so you can vary the CW setting without altering the SSB setting. A value of 0 turns DSP AGC off.

While actually changing frequency, the hang-time is set to short to avoid annoying hangs after tuning across large signals.

FILTER WIDTH
This allows you to adjust the sidetone filter width by turning the knob (or on/off using 6●). There are currently six filters provided, three each for SSB and CW (though any one can be used in either mode). See Figs 32 and 33. The status LED is tri-colour and corresponds to wide, medium, narrow - or off.

Turning the filter off is a useful way of checking if a signal has stopped transmitting or has just slipped out of the pass-band, since when you switch the filter back on again, it reverts to the previous filter width.

FILTER DEPTH
This allows you to set the receiver filter width by turning the knob (or on/off using 6●). There are currently six filters provided, three each for SSB and CW (though any one can be used in either mode). See Figs 32 and 33. The status LED is tri-colour and corresponds to wide, medium, narrow - or off.

Turning the filter off is a useful way of checking if a signal has stopped transmitting or has just slipped out of the pass-band, since when you switch the filter back on again, it reverts to the previous filter width.

FILTER WIDTH
This allows you to adjust the sidetone filter width by turning the knob (or on/off using 6●). There are currently six filters provided, three each for SSB and CW (though any one can be used in either mode). See Figs 32 and 33. The status LED is tri-colour and corresponds to wide, medium, narrow - or off.

Turning the filter off is a useful way of checking if a signal has stopped transmitting or has just slipped out of the pass-band, since when you switch the filter back on again, it reverts to the previous filter width.
having tuned a wanted signal to the centre of the pass-band, you simply increase the filter depth (ie the stop-band rejection) until the QRM is reduced to any level you feel comfortable with. Putting it another way, you come up to periscope depth to find a target - centre it up - and then go down again so the nearby destroyers can't get you.

VOX AND QSK
The hang time is the duration spent on transmit after you have stopped speaking (or keying) before PIC-A-STAR reverts to receive. If you have a relay-free T/R system, then there is no need to set other than a very low value here. With relays, any greater setting will minimise the number of rattling occasions. It is adjusted to allow the trailing edge of your transmission to pass - before switching to receive.

The Rx-Tx pre-delay is the time your signal is delayed by DSP to allow for relay settling when switching to transmit. It is adjusted so that the leading edge of a transmission is not truncated - just.

The Tx-Rx blank time is the duration of DSP receiver blanking immediately after reverting to receive. It should be set to the minimal value possible, consistent with no objectionable click coming from the receiver after the transition. With a full STAR configuration, this is simply zero.

The above three parameters are separately set for SSB and CW. For SSB only, VOX and anti-VOX gains may also be set. See Part 4 for further discussion.

TX DRIVE
This is the power setting control. When on transmit, the 'S' meter reading corresponds to Tx drive level - and is therefore modal.

MONITOR LEVEL
On SSB this control sets the level at which you monitor your own voice - after all VOX processing and filtering. If, for example, you turn the Rx-Tx pre-delay up high, you will - somewhat disconcertingly - hear your very delayed voice. And you will hear leading or trailing edge truncation if the timing is not set up properly. For operational use, however, the level should be kept low to avoid any feedback; or worse, confusion of the VOX software.

On CW, this control sets the sidetone level; and you do not hear a delayed signal - since this would play havoc with your sending.

MIKE GAIN
In conjunction with the Mic Gain preset on the IF board (RV5), this should be set to provide adequate input to the software VOGAD. The latter will hold the audio amplitude at a substantially constant level even in moments of excitement.

BASS AND TREBLE BOOST
These act independently to tailor the transmitted audio profile.

RF CLIPPING
I have always found this the most effective form of SSB processing - as opposed to audio compression. It increases the average power while holding the peak power steady. In mechanical engineering terms, it increases your transmitted signal's power-to-weight ratio. So it also increases the strain on your power supply, linear and ATU.

Use it only sparingly and when necessary (and not because it is there), bearing in mind that any form of processing - by definition - introduces distortion.

CW SPOT LEVEL
A 'spot' tone (equal in frequency to your CW offset) may be injected into the receiver output. As you net onto an incoming CW signal you will hear it beat with the 'spot' tone - and when they are on the same frequency, you are indeed netted.

This control alters the minimum amplitude. However the amplitude is also increased automatically with the strength of the incoming signal. This is done because it is easier to beat two notes of similar amplitude - especially when the 'spot' tone amplitude tracks the inbound keying.

FINALLY ….
Check with me for the latest changes, please. Project without end, right?

Next month, we start on the front-end, the determinant of that rock-solid base receiver performance.

REFERENCES
[1] In Practice by Ian White, G3SEK RadCom Feb 2003
Pic-A-Star

SOFTWARE TRANSMITTER AND RECEIVER

Part 16 by Peter Rhodes, BSc, G3XJP

The next four episodes cover the design and construction of the STAR front-end, namely the mixer/ amplifier and band-pass filters. This development is of general application.

HOW GOOD?

When it comes to receiver front-ends, there are those who would scale the highest IP3 mountains; and those who explore the depths of classic simplicity and minimalism.

Both pursuits are valid and fascinating in their own right. I am typically to be found sitting on a fence (at sea level?), aware that better performance is always achievable - but unclear if it is of real operational value. Aware also that the law of diminishing returns cuts in exponentially when it comes to cost and complexity.

Conversely, faced with the delightful quality emanating from the STAR DSP, it would have been remiss not to provide it with a proportionate front-end. “How good?” is, as ever, the question.

I much enjoyed “HF Receiver Dynamic Range: How Much Do We Need?” in QEX of May/June 2002 by Peter Chadwick, G3RZP not least because it was written in practical and tangible terms. See also TT in RadCom of February 2003 for a summary.

I conclude from this paper:-

- Phase noise performance is critical especially when there are many unwanted strong signals in the pass-band.
- The strong-signal Dynamic Range requirement is not horrendous - if you are prepared to shift the DR up and down to suit conditions. That is, sometimes you need good sensitivity; sometimes you need good strong-signal performance. Rarely, in practice, can you use both. So I don't think I can use all the dynamic range offered by, for example, the CDG2000 design [1].

This argument absolutely assumes you are not blessed with a specific point-source problem such as a strong nearby transmitter. Normally propagated signals are assumed to apply. In real life - in Europe - the ability to handle 40m at night is the pragmatic test.

Pic 'N' Mix has intrinsically good phase noise performance. The trick is to avoid degrading it (eg by adding a crude PLL) to get round the issue of DDS spurs.

The strategy of moving the DR up and down is equally compatible with the need to extract the maximum possible range from a finite number of bits in down-stream DSP. STAR achieves this with the ability to dynamically reconfigure the receiver gain distribution.

Fig 34: Dynamically configurable H-mode mixer - and quad J310 amplifier, better known as the 'Magic Roundabout'. The 'Rx Mode' line is set to +5V ie logic '1' for best intercept (IP3) - or to logic '0' for best noise figure (NF). 12VTx - when taken to +12V - selects the transmit configuration. The mixer requires fundamental frequency injection between -10 and +10dBm.
THE MAGIC ROUNDABOUT

With early STAR, I used a mere SBL-1 mixer both with a bi-directional 2N3866 post-mix amplifier - and with a bi-directional J310. They both ‘work’.

But in 1998 Colin Horrabin, G3SBI showed that there are no technical excuses for not using an H-mode mixer [2] - and Giancarlo Moda, I7SWX showed that with a fast bus switch, it can be truly affordable - except - in my view - for those very expensive transformers.

However, I can’t turn away the opportunity of an H-mode mixer with home-brew transformers since although this degrades the intercept somewhat, there is still plenty in hand. And no great cost.

In fact there is so much in hand that I contemplated the heresy of fitting an RF amplifier before the mixer. Or should I settle for less sensitivity and instead fit an IF amplifier after the mixer? I wanted both options; and after doing the performance arithmetic, I was convinced I needed both under different operational circumstances. Typically, on 10m I want the sensitivity, on 40m I want the higher intercept.

So, pragmatically, I decided to make it configurable - so that I indeed have both options and can compare and contrast them under differing real-life conditions - at the touch of a button.

Thus I can switch between ‘best NF’ and ‘best IP3’ modes to suit the prevailing conditions - with the key related benefit that I can have enough RF gain so that DDS spurs are below the band noise.

This approach takes care of T/R switching also - and the whole concept has become known in STAR circles as the Magic Roundabout.

The circuit diagram is shown in Fig 34 and the switching arrangements are summarised in Fig 35. The switch references are common to both.

CIRCUIT DESCRIPTION

The LO injection is squared up and made symmetrical by IC3. Critically, this removes the even harmonics. RV1 is best adjusted for minimum DDS spurii on 10m. In ‘best NF’ mode these should be very hard to find. IC4 is a conventional fundamental-injection H-mode mixer. See also [2].

TR1-TR4 comprise a quad J310 amplifier used either as an RF or IF amplifier. I first saw the feedback arrangement in "Introduction to RF Design" by Wes Hayward, W7ZOI; and the use of multiple FETs (to raise the intercept) in an IF amplifier design by Bill Carver, W7AAZ.

With an 8dB pad (R35-R37) in ‘best IP3’ mode only, the system gain is essentially constant in either receive mode. On transmit, the J310s are always used as an IF amplifier - irrespective of the receive mode.

IC5 and 6 with TR5 and TR6 control the roundabout switching.

I7SWX IMPROVEMENTS

Fig 34 uses the original squarer and mixer from [2] - but in private correspondence with Giancarlo in early 2003, he suggested two improvements. You may wish to incorporate either or both. I certainly have and commend them.

Fig 36 shows changes to the squarer which improve the symmetry and ‘squareness’ of the switching waveform. Also, IC3 now does not require (nor gets hot in the absence of) LO drive.

Some people (including myself) have reported unstable lumps of RF energy apparently emanating from the original squarer - and with this modification I have seen/hard no further evidence of them.

Giancarlo omitted the balance arrangements; but I prefer to retain them for the STAR application. The LO injection level requirement is between 0dBm and +10dBm.

Fig 37 shows Giancarlo’s two-transistor mixer. This is to be preferred in principle since when it comes to improving the mixer intercept, the only really good ferrite transformer is an eliminated one.

REFERENCES

[1] The CDG2000 HF Transceiver by Colin Horrabin G3SBI, Dave Roberts G8KBB, George Fare G3OQG in RadCom June-December 2002
Completion of the Magic Roundabout construction is this month's mission. Refer to last month for the circuit and option details. The complete receiver performance is also discussed here.

ROUNDABOUT CONSTRUCTION
The PCB component layout and artwork is illustrated in Fig 38. It is again made using the iron-on process. The board is double-sided with the underside unetched except for small pads to mount R11 and R12 - and to make off the Rx Mode and 12VTx lines.

Thus the underside of the board provides a ground-plane as well as screening. R11 and R12 are mounted in the thickness of the PCB as 'feedthrough resistors'.

There are a number of wire links on the board for which I apologise. These derive from the need to make this board as small and radiation.

The RF Port requires a DC blocking capacitor. For STAR, this is fitted on the BPF board. Do not omit it!

TRACK OPTIONS
The board is shown tracked for all options. If you are definitely fitting the 2-transformer H-mode mixer, then you should remove all the tracking between T4 and T5 and T3, T4 and T5 are illustrated as MCL mixers. To 'remove' the track layout. For one-off purposes, however, the two 1n wire-ended capacitors fit beautifully - as shown - across the top of IC3. If you want to retain the original mixer configuration, simply replace them with wire-links; omit the 'blue-outlined' components; and revert to the values in fig 34 last month.

CONSTRUCTION SEQUENCE
The holes in the grounded areas of the board are for links through to the ground-plane. These should be fitted first and soldered both sides.

Then mount all the SMD components; then the discrete devices with the exception of TR1; then the wire links (ideally using thin self-fluxing wire) and finally the mixers. The gap between TR2 and TR3 is to give space for the feedthrough to the BPF board - via RFC4. Slip a small ferrite bead over each J310 drain lead before soldering. Before fitting, connect each coil in parallel with its resonating capacitor, pass a single turn through the toroid and loosely couple it to a GDO; and dip it at your IF frequency.

MIXER TRANSFORMERS
T3, T4 and T5 are illustrated as MCL transformers and the tracking is appropriate. For small pads to mount R11 and R12 - and for one-off purposes, however, the two 1n wire-ended capacitors fit beautifully - as shown - across the top of IC3. If you want to retain the original mixer configuration, simply replace them with wire-links; omit the 'blue-outlined' components; and revert to the values in fig 34 last month.

CONSTRUCTION SEQUENCE
The holes in the grounded areas of the board are for links through to the ground-plane. These should be fitted first and soldered both sides.

Then mount all the SMD components; then the discrete devices with the exception of TR1; then the wire links (ideally using thin self-fluxing wire) and finally the mixers.

Note the gap between TR2 and TR3 is to give space for the feedthrough to the BPF board - via RFC4. Slip a small ferrite bead over each J310 drain lead before soldering. Before fitting, connect each coil in parallel with its resonating capacitor, pass a single turn through the toroid and loosely couple it to a GDO; and dip it at your IF frequency.

MIXER TRANSFORMERS
T3, T4 and T5 are illustrated as MCL transformers and the tracking is appropriate. For one-off purposes, however, the two 1n wire-ended capacitors fit beautifully - as shown - across the top of IC3. If you want to retain the original mixer configuration, simply replace them with wire-links; omit the 'blue-outlined' components; and revert to the values in fig 34 last month.

CONSTRUCTION SEQUENCE
The holes in the grounded areas of the board are for links through to the ground-plane. These should be fitted first and soldered both sides.

Then mount all the SMD components; then the discrete devices with the exception of TR1; then the wire links (ideally using thin self-fluxing wire) and finally the mixers.

Note the gap between TR2 and TR3 is to give space for the feedthrough to the BPF board - via RFC4. Slip a small ferrite bead over each J310 drain lead before soldering.

If building the 2-transformer version, then see fig 37 last month for the circuit diagram and Fig 39 for the mechanical result. This may indeed turn out to be the definitive test of your understanding of 'the phasing dot convention' but if you follow the steps below you can build it by rote.

Fig 38: Magic Roundabout component layout and PCB artwork. This board is designed to mate mechanically with the BPF assembly described next month. Components shown in blue are for the improved squarer. Track shown in blue may optionally be removed (see text) for the 2-transformer H-mode mixer.
T6 is wound with 5 parallel strands of self-fluxing wire - untwisted. Cut 5 lengths of wire to some 20cm long. Solder one end of all of them together to retain them. Then trim them all to exactly the same length and solder the other ends together.

Now wind 4 turns on the core under modest and continuous tension - passing alternate ends through the core.

Cut off the surplus wire equally and initially to approximately 5cm. Tin all 10 ends. Using a continuity meter, locate one pair and twist them to form the IF port feed. That was easy!

Now locate 2 more 'pairs' and cross-connect a start/end (and twist them together) to form the centre-tap. Repeat for the remaining 2 pairs.

Locate T6 on top of IC4 and trim the 4 leads that are made off to the track to the same length. Those going to pins 6 and 8 pads define that length. Tin and solder them to their pads as per Fig 39.

Then make off the IF port leads to the end of the diplexer.

Now wind the trifilar transformer T3. Solder the centre-tap to the track first, then the RF port feed. Finally trim off the flying leads to T6 equally; and as short as reasonably possible; and solder them up.

J310 TRANSFORMERS

T2 is a conventional bifilar transformer with no complications. The input transformer T1 needs a little explanation. See Fig 40.

The T1 feedback turn is made from a length of miniature coax braid. Form the U-shaped primary turn - with plenty of excess lead length. Pierce and spread the braid to fill the tubular holes in the core - from both ends of the core. Make off the braid leads to the PCB track.

Wind the 4 turns - inside the braid - out the back of the core, across and back through the braid on the other side - and solder to the track. As far as possible, then tease the braid back round the turns on the non-lead end (as W4ZCB says, so nobody can see how it was done).

TR1 may now be fitted.

INCREMENTAL TESTING

Depending on your personal style and confidence, you may want to functionally test this board progressively. By lifting one end of some RF chokes you can selectively enable parts of the circuit. 100m wire-ended capacitors should be used to couple RF in and out of each circuit element under test.

You can test the J310 amplifier is indeed amplifying by placing it in the down-lead of some receiver. Equally the squarer and mixer - with suitable injection - can be tested as a crude converter.

SYSTEM INTERFACE

You could control the Roundabout with a simple switch and a status LED. Arguably, you could do worse than driving it from the SSB select lines, ie 'best NF' on the USB bands, 'best IP3' on the LSB bands. But 60m is exceptional and complete user choice is desirable until you see how it works for you. It depends not least on what antennas you have. I control it from the 'spare' output on Pic 'N' Mix - with a 1k5 resistor in series with a tell-tale LED across the line. On STAR, this line is toggled by keypad sequence 48.

FINISHING OFF

When all is working well, trim RV1 to minimise DDS spurs on a high band, eg 10m in 'best NF' mode. When connected to a dummy load, you may still be able to hear some. But when connected to even a modest antenna, then although the band may be essentially closed, the ambient band noise should mask them to the point that you will need to try very hard to find them. Finally, enclose and screen the whole board and re-trim RV1.

STAR PERFORMANCE

These performance measurements were made by Harold, W4ZCB using professional test equipment. They were corroborated by myself using both test equipment borrowed from I7SWX - and my own. My thanks to both because these are very important numbers.

All measurements relate to the complete STAR line-up - i.e including the band-pass filters which follow next month. These have, by design, decreasing insertion loss with increasing frequency. So to get the complete picture you need to consider the performance on each band. Four representative bands are shown, the rest being somewhere 'in between'. Since the design features a 'best IP3' or 'best NF' mode, that adds a further dimension.

The mixer is Giancarlo's 2-transformer topology developed by the modified 74AC86 squarer. MDS was measured in a 3kHz bandwidth; IP3 at 20kHz tone spacing.

BEST IP3 MODE

80m MDS -123dBm IP3 +33dBm
40m MDS -122dBm IP3 +35dBm
20m MDS -124dBm IP3 +31dBm
10m MDS -127dBm IP3 +26dBm

BEST NF MODE

80m MDS -127dBm IP3 +30dBm
40m MDS -123dBm IP3 +30dBm
20m MDS -127dBm IP3 +28dBm
10m MDS -130dBm IP3 +25dBm

AGC RANGE

AGC holds the audio output constant within 1dB for a 100dB change of signal. You can place this range anywhere on the amplitude scale by adjusting the RF Gain, but from -95dBm to +5dBm would be typical.

OBSERVATIONS

Note that excess sensitivity is not provided on the lower bands where it could never be used. Instead, it is traded for superior strong-signal performance. For comparison with commercial transceivers see TT of December 2002 - Table 1, the IP3 column in particular. On a stormy 40m night, which would you rather own? And much more to the point, be proud to own!
The next two episodes cover the design and construction of a band-pass filter - for 10 bands - which is compatible with the rest of STAR. I felt a need to improve on my 3rd Method front-end (and add 60m) - and could find nothing suitable in the literature that met my requirements.

This development is of general interest and application.

DESIGN AIMS

Like everyone else, I think I want narrow filters with no insertion loss, superb IP3 performance - and acceptable cost. I definitely want a finished size that does not impact the overall dimensions of my transceiver.

For a fact, you can’t simultaneously optimise all these parameters, so this design - like all others - is a careful compromise.

The prime function of any BPF is to adequately reject the image frequency - and this is achieved by this design (with a little help from a ATU and / or your LPF on the highest bands) provided your IF is 9MHz or higher - and you use high-side injection.

You could use different filter topologies. The mechanical construction is for three inductors (see Fig 41). That is the only practical constraint. The filter capacitors are soldered directly to the coil terminals and there is plenty of room for lots of them in different configurations.

PERFORMANCE REQUIREMENTS

Since on the higher bands Noise Figure is everything I need low insertion loss above all else. Say 1.5dB. The consequence is wider filters which have the significant benefit of spanning more than one band. The other great benefit - and integral to the whole front-end design strategy - is that I need the highest possible signal level going into the mixer so that any DDS spurs are below this level on the higher bands.

As you move down in frequency, Noise Figure becomes increasingly unimportant and greater insertion loss is a positive benefit, adding directly to the mixer intercept. It also helps to keep the power output flat on transmit if like me, it tends to drop off at the higher frequencies. Phrased better, I don’t drop off, but the power does.

COST CONSIDERATIONS

On the cost front, diode switching is the cheapest - but unacceptable for strong-signal performance. Good relays (and you would not want to use bad ones) are very expensive given the quantity involved. I settled on integrated bus switches and use the FST3126. These are a close relative of the FST3125 as typically used in the H-mode mixer, the difference being that the switch control logic is inverted and compatible with direct drive from the Pic ‘N Mix band-switching latches.

As I have configured them, the ON insertion loss is less than I can measure at well under 0.5dB; the OFF isolation is better than 90dB; and IP3 is better than 40dB. They are very inexpensive.

I settled for Toko coils because they are readily available and also inexpensive - but I used the larger cup-core inductors where possible ie on all bands up to and including 20m.

As a gross alternative, you could use fixed torroidal inductors and trimmer capacitors if the Toko coil Q or IP3 performance are issues for you.

COMPONENT LIST

FOR THE OVERALL BPF ASSEMBLY:

<table>
<thead>
<tr>
<th>Resistors 1206 SMD</th>
<th></th>
<th>1k</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7</td>
<td></td>
<td>8R</td>
</tr>
<tr>
<td>R9</td>
<td>....</td>
<td>OR link</td>
</tr>
<tr>
<td>R10</td>
<td>2k</td>
<td>R11</td>
</tr>
</tbody>
</table>

C7-C13.......................100n 1206 SMD

C14...........................1nf feedthrough

C15...........................100m disc ceramic

C16.........................text

Inductors

R6C1, RFC2...............100µH axial choke

L1..............Toko BTKANS-9445HM 3µ

Integrated circuits

IC1.........................FST3126M

IC2..........................78L05 regulator

PER BPF FILTER BLOCK:

<table>
<thead>
<tr>
<th>Resistors, 1206 SMD</th>
<th></th>
<th>1k</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R6, R12...........</td>
<td></td>
<td>10k</td>
</tr>
</tbody>
</table>

Capacitors C1-C6.............100n 1206 SMD

Filter capacitors Polystyrene or silver mica

For values, see fig 42.

Inductors for filters

For example, the 40m and 20m blocks require 6 capacitors of near 20pf. The exact values were found from a small selection of 20pf and 22pf 5% capacitors.

For the T/R switch (IC1), three sections are paralleled on receive and one is used on transmit. L1 and C16 form a series-tuned IF trap and C16 should be chosen to resonate with L1 at your chosen IF frequency.

A spare filter position is provided for experimental purposes eg different topologies, different frequencies.

The filter capacitor exact theoretical values are given in fig 42 and the nearer you can get to them, the better. I obtained a large bag of assorted polystyrene capacitors and arrived at the values to within 1pf (as measured on my DVM) with never more than two in parallel - by measuring the actual values within the tolerance range.

CIRCUIT DESCRIPTION

The filters (see Fig 42) are all 0.01dB Chebyshev designs. They are switched by identical switches at each end (IC3 and IC4). For each switch, two sections are paralleled to reduce `on’ insertion loss, one section inverts the control logic and one section grounds the filter when ‘off’. For the
PERFORMANCE SUMMARY

Up to 20m the filters give >100dB image rejection. By 12m/10m this has fallen to some 50dB so you could benefit from some incremental filtering provided by low-pass filters or an ATU or even a beam.

Insertion loss is around 5dB on the lower bands, falling to 3dB on 20m, 1.6dB on 17m, 1dB on 15m, 1.5dB on 12m and a delightful 1dB at 28MHz rising to a mere 1.3dB at 29.7MHz.

30m is exceptional because of the proximity to my IF. Here a 5dB in-band insertion loss rises to 18dB at 10.7MHz and 55dB at 9MHz. Depending on your mixer balance and trap tuning, this could be marginal with a 10.7MHz IF.

My compromises, your call!
This month concludes the band-pass filters with the layout in Fig 43 and the PCB artwork in Fig 44. There are no special constructional issues.

FILTER ADJUSTMENT

In the first instance, put the entire filter assembly in series with the antenna of an existing receiver and check that all the filter switches work and the coils peak.

There are sophisticated ways of tuning these filters, but if all coils are peaked mid-band and then the two end coils are peaked at the two band edges, you will not be far out. A refinement of this is to put Pic ‘N’ Mix in wobbulator mode [58] across the segment of interest; and while on low power CW, transmit into dummy load and tweak for a flat pass-band.

ACKNOWLEDGEMENTS

These filters were designed by Harold, W4ZCB to whom I am much indebted. He in turn credits ELSIE, a filter design package by Jim Tonne, WB6BLD - which did all the sums. I have subsequently become a fan of this software. Delightful! Harold also independently measured the switching performance.

Fig 43: Component layout for band-pass filters. Three filters are shown, the remainder being constructionally identical. More space has been allocated to the 160m and 80m filters to accommodate larger filter capacitors. The components are all mounted on the track-side except for the Toko coils, the RF in / out bus-bars (22SWG tinned wire) and C15. The bus-bars are connected to the IC switches with through-board wire links. Note that the middle Toko coil is rotated by 180° relative to the outer two. Unused coil pins are cut back so they do not appear on the opposite side.
PCB dims:-
Filter board 2.90" x 5.60"
Side plates 1.65" x 5.60"
End plates 3.00" x 1.65"
Complete assembly:-
3" x 1.65" x 5.757"
assuming 2mm thick PCB

NB This image is mirrored

Drill these holes for tight fit on 1206 resistors

Drill several holes (not shown) through each side- and end-plate - and intimately connect the inner and outer grounded faces.

Fig 44: Band-pass filters PCB layout for 9 filter blocks. This assembles into an H-section brick (for the want of a better term). The filter board is single-sided - and SRBP if you want to save on drill bits; the side and end-plates are double-sided. Ensure opposite sides of all the double-sided boards are intimately connected. The outside faces of both end-plates have simple oval pads to make off the feedthrough resistors to the band-select lines at one end - and the 12VTx and Rx lines at the other. The artwork for this is not provided since some elementary removal of the masking spray after drilling and prior to etching will achieve the desired and non-critical result.
This is the concluding episode of the article - but the project lives on. So if you are waiting the end before you start, this is your beginning!

In summary, the hardware design feels completely stable so I have more time available now to support other builders - and to continuously enhance the software. Which remains the objective.

MODULARITY IS EVERYTHING
From the outset this project has been modular by design. Both in the sense that several people have substituted different blocks of hardware and software in their STAR; and conversely have used STAR blocks in other applications.

To summarise the whole article with an emphasis on the modularity dimension:-

Part 1 - a discussion of STAR hardware integration possibilities.
Part 2 - a discussion of software options and flexibility.
Part 3 - a generalised process for producing precision one-off PCBs.
Part 4 - a T/R changeover timer that would suit any Tx/Rx.
Parts 5 & 6 - details of a DSP processor assembly that could be the basis for any DSP project. With modular daughter boards to allow future upgrades.
Part 7 - a completely repeatable generalised process for mounting SMD ICs with lots of closely spaced (eg 0.5mm) pins.

Parts 8 & 9 - a bi-directional IF strip that could be readily adapted for use in any home-brew design.
Part 10 - a PC based loader and controller that could be adapted for any Analog Devices 218x DSP project.
Part 11 - one of a number of possible physical implementations. A glance at the photo shows you that every builder exercised completely different options here. There are no two the same.
Parts 12 & 13 - an adapter to replace an 18-pin PIC to give greater I/O and more processing capability generally. And a bargraph ‘S’-meter.
Part 14 - a spur reduction filter for any DDS. And a stable reference oscillator.
Part 15 - a useful DSP shopping list, at the least. Check out the competition!
Parts 16 & 17 - a general purpose bi-directional mixer/amplifier with configurable topology. Of the strong and silent type.
Parts 18 & 19 - a universal front-end that could drop into almost any existing HF Tx/Rx.

So you don't have to be building a STAR to find something of interest here.

HALF A MILLION POUNDS?
Yes, at the most conservative consultancy rate, this is the cost to date of my development time. That of the Beta team was not recorded and I would estimate it to be about the same again.

For your interest, this splits down approximately 15% on hardware development, 65% on software development, 10% on creating and maintaining the project documentation - including this article - and 10% on offering explicit help to others.

By comparison, the materials cost is completely buried in the noise - and certainly significantly less than the price of a new commercial Tx/Rx. Strangely, the cost of ink-jet ink was the single largest line item for me. Horrendous!

WHAT DOES THIS DO FOR ME?
This 'time to materials ratio' is about as good as you can get in any hobby since the time is in fact free - and yet spending it is also the source of all the pleasure, reward and satisfaction.

At the very least when I am having a QSO, I know that it is truly me having the satisfaction of that QSO - and not merely my acting as the surrogate operator on behalf of some RF design engineer in a far-away land. If you have never experienced the difference, you have missed out on one of the unique thrills of the hobby.

And you get that pleasure with every single QSO.

© G3XJP

PIC-A-STAR
SOFTWARE TRANSMITTER AND RECEIVER

The Constellation Beta.

Starry-eyed and legless after their much-acclaimed performance in the accordion band competition.
WHAT DOES THIS DO FOR YOU?
Well, all the fruits of this development are available to you at no charge provided only that they are for your personal use.
To obtain all the software - including the source code - follow the process given in Part 2. For all the PCB artwork, any enhancements and all ongoing support, simply join the Group (see WWW).
You don’t need to understand DSP. At least not to use my STAR code and get your Tx/Rx going. Thereafter, it is entirely both up to you - and down to you.

DIY DSP FILTERS
This is the last technical topic I want to touch on - and that, briefly. There is not much prescriptive that can be said here. The trick is to search the web for a program that will generate coefficients for FIR filters. From time to time these are available in the public domain. These coefficients then need converting to a format suitable for loading.

"Experimental Methods in RF Design" by Hayward, Campbell and Larkin is also a useful source of understanding - pages 10.13 to 10.19 in particular. This tells you how to do it - and provides the software on the CD to let you.

I suggest the best way to prove the process in the first place is to see if you can build the existing medium-width SSB filter (FL5), plug it in and prove to yourself that yours is no different.

To this end, all the Rx filters are packaged individually and discretely. The specification for the existing FL5 is:-
Sample rate = 8kHz
Remez equiripple - but not mandatory
Order = 198, ie 199 coefficients
Passband = 320Hz - 2264Hz
Lower stop = 177Hz
Upper stop = 2400Hz
Once you have replicated this and proved the process, you can rapidly produce filters for any specialised applications eg RTTY.

STAR BUILD SEQUENCE
Most receiver designs start from the antenna and logically follow the signal flow to the loudspeaker. This project has taken (more or less) the opposite approach. This is to encourage you to build the more tricky bits first.

I think it is a better strategy anyway since once you have some sort of noise coming out of the speakers, you can work back towards the antenna using the completed elements to test the new build. I commend it to you.

Once you have the STAR Rx working, then the few incremental components to get the Tx going can be taken from any of the many HF designs. You need a driver, PA and low-pass filters - commensurate with the amount of power you want to run.

CORRECTIONS
At the time of writing there are no known unpublished errors in this article - and hence to the hardware build. But as somebody famous once said, we still await the unknown known errors.

This is down to the diligence of the Beta team. And to RadCom which - on this project - published the original masters of the engineering drawings (Figs 1-44) from which we all built.

All of these published drawings were hand-crafted using a drawing package with no engineering intelligence.

This is because I have never found affordable layout software that can do a better job than I can - and I enjoy the challenge. But this approach does increase the risk of errors - and it is a credit to the team that we have not had a single significant one. Yet! In any event, for the latest state of play, please see WWW.

On the software side, with some 4,000 lines of DSP assembler and about the same again for the PIC code there have been one or two interesting learning opportunities. But the great logistics attraction here is that your updated radio is never more than an e-mail attachment away.

ACKNOWLEDGEMENTS
There are lots of these since this was and continues to be a truly collaborative and international effort. In summary and in no special order:-

THE ORIGINAL BETA TEAM
The photograph shows the original team that still today builds, evaluates, tests and continuously suggests improvements - for both the hardware and software.
Left to right: top row:- Alan G3TIE, Harry G3NHR, Les GW3PEX, Peter G3XJS. Bottom row:- David G4HMC, Eddie G0SEY, Peter G3XJP, Bill W7AAZ and Harold W4ZCB with Harold’s STAR.

INFRASTRUCTURE & UTILITIES
My thanks to David Tait for his latest and greatest TOPIC (PIC programming software). Jim Tonne WB6BLD for ELSIE (filter design software). Analog Devices for their DSP utilities and code fragments.

INSPIRATION & ACTUAL HELP
Lee G3SEW for much useful discussion on the UI in the early days. Gian I7SWX for use of his test equipment and mixer design. Bill W7AAZ for many, many ideas and encouragement. Harold W4ZCB for the design of the front-end filters, for much performance evaluation - and his unwavering enthusiasm. (it took him 3 weeks to work DXCC with his new STAR).
Keith G3OHN, Paul G0OER, Mike G3XYG, Jim G3ZQC, Michel ON4MJ, John G6AK - for much building and testing and the benefit of their diverse skills and wide-ranging experience.
Frai for the proof reading. She is starting to lose her value here - since she is developing a dangerous understanding!

George Brown M5ACN, the Technical Editor of RadCom for steering all this into print with his oft-tested but never-phased sense of humour.
And last, but by no means least, our thanks to Bob Larkin W7PUA for sharing his original DSP-10 work, the DSP chapters in "Experimental Methods in RF Design", the adaptation of the STAR boot code, his advice and suggestions - and the ultimate inspiration for the whole STAR project.

THE LINEARITY CONUNDRUM
Why does a STAR sound so good both on receive and transmit? There can only ever be one answer. It is because it is linear.

Because STAR is an IF processor it has a built-in head start over any AF add-on. The latter may indeed be better than nothing, but if the DSP has neither control of the AGC nor of the detection process then the damage has already been done - so to speak - before there is any chance to benefit from subsequent DSP.
Thereafter, most of the ‘star quality’ derives from the inherent nature of digital (as opposed to linear analogue) signal processing.

With analogue processing the quality is determined ultimately by device linearity. Any non-linearity - and all devices have some - results in intermodulation distortion products which can fall within the pass-band. And to a varying extent they grate on the human ear - which is particularly sensitive to their presence.

With digital processing the nature of any distortion is quite different. It arises from rounding errors, quantisation errors and lack of arithmetic precision generally.

So long as the system is not grossly overloaded (in which case it would fall apart in a big way) these errors do not result in discrete in-band IMD products.

Rather they result in a general noise floor - of trivial amplitude. And in any practical HF radio communication system this noise is indistinguishable from and is buried well below the band noise. There are simply no conventional IMD products to hear.

So the answer to the conundrum is this - and it may not be instinctive. Digital signal processing is inherently more linear … than linear analogue processing.

This is the technical rationale for the PIC-A-STAR project. And the ultimate rationale for the project? You may have guessed it by now. Promoting the interests of amateur radio.

WWW join the interest Group at http://uk.groups.yahoo.com/group/picastar/