IPC-7095A

Design and Assembly Process Implementation for BGAs

Developed by the Device Manufacturers Interface Committee of IPC

Supersedes:
IPC-7095 - August 2000

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
1.1 Purpose .. 1
1.2 Selection Criteria (Determination of Package Style and Assembly Processes) ... 1
1.2.1 Technology Comparison .. 4

2 APPLICABLE DOCUMENTS 7
2.1 IPC ... 7
2.2 JEDEC ... 7

3 MANAGING BGA IMPLEMENTATION 7
3.1 Description of Infrastructure 8
3.1.1 Land Patterns and Circuit Board Considerations 8
3.1.2 Assembly Equipment Impact 8
3.1.3 Stencil Requirements ... 8
3.1.4 Inspection Requirements 8
3.1.5 Test ... 8
3.2 Time to Market Readiness 9
3.3 Methodology .. 9
3.4 Process Step Analysis ... 9
3.5 BGA Limitations and Issues 9
3.5.1 Visual Inspection ... 9
3.5.2 Moisture Sensitivity .. 9
3.5.3 Thermally Unbalanced BGA Design 10
3.5.4 Rework ... 10
3.5.5 Cost .. 10
3.5.6 Availability .. 10
3.5.7 Voids in BGA ... 10
3.5.8 Standardization Issues 11
3.5.9 Reliability Concerns .. 12

4 COMPONENT CONSIDERATIONS 12
4.1 Component Packaging Comparisons and Drivers 12
4.1.1 Package Feature Comparisons 12
4.1.2 BGA Package Drivers 12
4.1.3 Cost Issues .. 12
4.1.4 Component Handling 12
4.1.5 Thermal Performance 13
4.1.6 Real Estate .. 13
4.1.7 Electrical Performance 13
4.2 Die Mounting in the BGA Package 13
4.2.1 Wire Bond .. 13
4.2.2 Flip Chip .. 14
4.3 Standardization .. 15
4.3.1 Industry Standards for BGA 15
4.3.2 Ball Pitch .. 16
4.3.3 BGA Package Outline 17
4.3.4 Ball Size Relationships 17
4.3.5 Coplanarity .. 17
4.4 Component Packaging Style Considerations 18
4.4.1 Solder Ball Contact Alloy 18
4.4.2 Ball Attach Process ... 18
4.4.3 Ceramic Ball Grid Array 19
4.4.4 Ceramic Column Grid Arrays 19
4.4.5 Tape Ball Grid Arrays 20
4.4.6 Multiple Die Packaging 20
4.4.7 3D Folded Package Technology 21
4.4.8 Ball Stack Packaging 21
4.4.9 Folded and Stacked Packaging 21
4.4.10 Benefits of Multiple Die Packaging 22
4.5 BGA Connectors .. 22
4.5.1 Assembly Considerations for BGA Connectors 22
4.5.2 Material Considerations for BGA Connectors 22
4.6 BGA Construction Materials 23
4.6.1 Types of Substrate Materials 23
4.6.2 Properties of Substrate Materials 24
4.7 BGA Package Design Considerations 24
4.7.1 Power and Ground Planes 24
4.7.2 Signal Integrity ... 25
4.7.3 Heat Spreader Incorporation Inside the Package 25
4.8 BGA Package Acceptance Criteria and Shipping Format 25
4.8.1 Missing Balls .. 25
4.8.2 Voids in Solder Balls .. 25
4.8.3 Solder Ball Attach Integrity 26
4.8.4 Package Coplanarity 26
4.8.5 Moisture Sensitivity (Baking, Storage, Handling, Rebaking) ... 27
4.8.6 Shipping Medium (Tape and Reel, Trays, Tubes) 27

5 PCBs AND OTHER MOUNTING STRUCTURES 28
5.1 Types of Mounting Structures 28
5.1.1 Organic Resin Systems 28
5.1.2 Inorganic Structures 28
8 RELIABILITY ... 88

8.1 Damage Mechanisms and Failure of Solder Attachments 88
8.2 Solder Joints and Attachment Types ... 88
8.2.1 Global Expansion Mismatch ... 88
8.2.2 Local Expansion Mismatch ... 89
8.2.3 Internal Expansion Mismatch ... 89
8.3 Solder Attachment Failure .. 89
8.3.1 Solder Attachment Failure Classification 89
8.3.2 Failure Signature-1: Cold Solder 89
8.3.3 Failure Signature-2: Land, Nonsolderable 89
8.3.4 Failure Signature-3: Ball Drop ... 90
8.3.5 Failure Signature-4: Missing Ball 90
8.3.6 Failure Signature-5: Package Warpage 90
8.3.7 Failure Signature-6: Mechanical Failure 90
8.3.8 Failure Signature-7: Insufficient Reflow 91
8.4 Critical Factors to Impact Reliability 91
8.4.1 Package Technology .. 91
8.4.2 Standoff Height ... 92
8.4.3 PCB Design Considerations ... 92
8.4.4 Reliability of Solder Attachments of Ceramic Grid 93
8.4.5 Lead Free Soldering of BGAs ... 93
8.5 Design-for-Reliability (DfR) Process 98
8.6 Validation and Qualification Tests ... 98
8.7 Screening Procedures .. 99
8.7.1 Solder Joint Defects .. 99
8.7.2 Screening Recommendations .. 99

9 DEFECT AND FAILURE ANALYSIS CASE STUDIES 99

9.1 Soldermask Defined BGA Conditions 99
9.2 Over-Collapse BGA Solder Ball Conditions 99
9.3 Critical Solder Paste Conditions ... 100
9.4 Void Determination Through X-Ray and Microsection 100
9.5 BGA Interposer Bow and Twist ... 101
9.6 Solder Joint Conditions .. 102
9.6.1 Target Solder Condition ... 103
9.6.2 Excessive Oxide .. 103
9.6.3 Evidence of Dewetting ... 103
9.6.4 Mottled Condition .. 103
9.6.5 Cold Solder Joint .. 104
9.6.6 Evidence of Contamination ... 104
9.6.7 Deformed Solder Ball ... 104
9.6.8 Missing Solder Ball .. 105
9.6.9 Solder Bridge ... 105
9.6.10 Disturbed Solder ... 105
9.6.11 Deformed Solder Ball .. 106
9.6.12 Missing Solder Interface .. 106
9.6.13 Reduced Contact ... 106
9.6.14 Solder Bridge ... 106
9.6.15 Incomplete Solder Reflow ... 106
9.6.16 Disturbed Solder ... 107
9.6.17 Missing Solder ... 107

10 GLOSSARY/ACRONYMS ... 108

11 BIBLIOGRAPHY AND REFERENCES 109

Figures

Figure 1-1 Area Array I/O Position Comparisons 2
Figure 1-2 Area Array I/O Position Patterns 3
Figure 1-3 Application Specific Module (ASM) Ball Grid Array Format 3
Figure 1-4 Conductor Width to Pitch Relationship 5
Figure 1-5 Plastic Ball Grid Array, Chip Wire Bonded 5
Figure 1-6 Ball Grid Array, Flip Chip Bonded 6
Figure 1-7 Conductor Routing Strategy 6
Figure 1-8 MCM Type 2S-L-WB .. 7
Figure 3-1 BGA Warpage .. 11
Figure 4-1 BOC BGA Construction .. 14
Figure 4-2 Top of Molded BOC Type BGA 14
Figure 4-3 Cross-Section of a Plastic Ball Grid Array (PBGA) Package 19
Figure 4-4 Cross-Section of a Ceramic Ball Grid Array (CBGA) Package 19
Figure 4-5 Cross-Section of a Ceramic Column Grid Array (CCGA) Package 19
Figure 4-6 Polyimide Film Based Lead-Bond µBGA Package Substrate Furnishes Close Coupling Between Die Pad and Ball Contact 20
Figure 4-7 Comparing In-Package Circuit Routing Capability of the Single Metal Layer Tape Substrate to Two Metal Layer Tape Substrate 20
Figure 4-8 Single Package Die-Stack BGA 21
Figure 6-19 Board Panelization .. 53
Figure 6-20 Comb Pattern Examples 53
Figure 6-21 Heat Sink Attached to a BGA with an Adhesive .. 56
Figure 6-22 Heat Sink Attached to a BGA with a Clip that Hooks onto the Component Substrate .. 56
Figure 6-23 Heat Sink Attached to a BGA with a Clip that Hooks into a Through-Hole on the Printed Circuit Board .. 56
Figure 6-24 Heat Sink Attached to a BGA with a Clip that Hooks onto a Stake Soldered in the Printed Circuit Board .. 57
Figure 6-25 Heat Sink Attached to a BGA by Wave Soldering Its Pins in a Through-Hole in the Printed Circuit Board .. 57
Figure 7-1 High Lead and Eutectic Solder Ball and Joint Comparison .. 60
Figure 7-2 Example of Reflow Temperature Profile 61
Figure 7-3 Effect of Having Solder Mask Relief Around the BGA Lands of the Board 63
Figure 7-4 Breakaway Tabs ... 66
Figure 7-5 Standard Scoring Parameters .. 66
Figure 7-6 Fundamentals of X-Ray Technology 67
Figure 7-7 X-Ray Example of Missing Solder Balls 68
Figure 7-8 X-Ray Example of Voiding in Solder Ball Contacts .. 68
Figure 7-9 Manual X-Ray System Image Quality 68
Figure 7-10 X-Ray Can Be Used to Detect BGA Package “Popcorning” (Pincushion Distortion) .. 69
Figure 7-11 Transmission Image (2D) 69
Figure 7-12 Tomosynthesis Image (3D) 69
Figure 7-13 Laminographic Cross-Section Image (3D) 70
Figure 7-14 Transmission Example 70
Figure 7-15 Oblique Viewing Board Tilt 70
Figure 7-16 Oblique Viewing Detector Tilt 70
Figure 7-17 Top Down View of FBGA Solder Joints 71
Figure 7-18 Oblique View of FBGA Solder Joints 71
Figure 7-19 Tomosynthesis ... 71
Figure 7-20 Scanned-Beam X-Ray Laminography 72
Figure 7-21 Scanning Acoustic Microscopy 73
Figure 7-22 Endoscope Example 73
Figure 7-23 Engineering Crack Evaluation Technique 74
Figure 7-24 A Solder Ball Cross Sectioned Through a Void in the Solder Ball .. 74
Figure 7-25 Cross-Section of a Crack Initiation at the Ball/Pad Interface .. 75
Figure 7-26 No Dye Penetration Under the Ball 75
Figure 7-27 Corner Balls have 80-100% Dye Penetration which Indicate a Crack 75
Figure 7-28 Small Voids Clustered in Mass at the Ball-to-Land Interface .. 78
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-2</td>
<td>Number of Conductors Between Solder Lands for 1.0 mm Pitch BGAs</td>
<td>41</td>
</tr>
<tr>
<td>6-3</td>
<td>Effects of Material Type on Conduction Materials</td>
<td>55</td>
</tr>
<tr>
<td>6-4</td>
<td>Emissivity Ratings for Certain Materials</td>
<td>55</td>
</tr>
<tr>
<td>7-1</td>
<td>Particle Size Comparisons</td>
<td>59</td>
</tr>
<tr>
<td>7-2</td>
<td>Tolerance of Profiles, Cutouts, Notches, and Keying Slots, as Machined, mm</td>
<td>65</td>
</tr>
<tr>
<td>7-3</td>
<td>Standard Scoring Parameters</td>
<td>66</td>
</tr>
<tr>
<td>7-4</td>
<td>Inspection Usage Application Recommendations</td>
<td>67</td>
</tr>
<tr>
<td>7-5</td>
<td>Field of View for Inspection</td>
<td>72</td>
</tr>
<tr>
<td>7-6</td>
<td>Accelerated Testing for End Use Environments</td>
<td>77</td>
</tr>
<tr>
<td>7-7</td>
<td>Void Classification</td>
<td>79</td>
</tr>
<tr>
<td>7-8</td>
<td>Void Size Limitations</td>
<td>82</td>
</tr>
<tr>
<td>7-9</td>
<td>Corrective Action Indicator</td>
<td>82</td>
</tr>
<tr>
<td>7-10</td>
<td>Ball-to-Void Size Image - Comparison for Various Ball Diameters</td>
<td>82</td>
</tr>
<tr>
<td>7-11</td>
<td>C=0 Sampling Plan (Sample Size for Specific Index Value*)</td>
<td>83</td>
</tr>
<tr>
<td>7-12</td>
<td>Repair Process Temperature Profiles for FR-4 Material</td>
<td>87</td>
</tr>
<tr>
<td>8-1</td>
<td>Typical Standoff Heights for Sn/Pb Ball</td>
<td>92</td>
</tr>
<tr>
<td>8-2</td>
<td>Common Lead Free Solders, Their Melting Points, Advantages and Drawbacks</td>
<td>94</td>
</tr>
<tr>
<td>8-3</td>
<td>Comparison of Lead Free Solder Alloy Compositions in the Sn-Ag-Cu Family Selection by Various Consortia</td>
<td>95</td>
</tr>
<tr>
<td>8-4</td>
<td>Types of Lead Free Assemblies Possible</td>
<td>96</td>
</tr>
</tbody>
</table>
Design and Assembly Process Implementation for BGAs

1 SCOPE

This document describes the design and assembly challenges for implementing Ball Grid Array (BGA) and Fine Pitch BGA (FBGA) technology. The effect of BGA and FBGA on current technology and component types is also addressed. The focus on the information contained herein is on critical inspection, repair, and reliability issues associated with BGAs.

1.1 Purpose

The target audiences for this document are managers, design and process engineers, and operators and technicians who deal with the electronic assembly, inspection, and repair processes. The intent is to provide useful and practical information to those who are using BGAs and those who are considering BGA implementation.

1.2 Selection Criteria (Determination of Package Style and Assembly Processes)

Every electronic system consists of various parts: interfaces, electronic storage media, and the printed board assembly. Typically, the complexity of these systems is reflected in both the type of components used and their interconnecting structure. The more complex the components, as judged by the amount of input/output terminals they possess, the more complex is the interconnecting substrate.

Cost and performance drivers have resulted in increased component density, and a greater number of components attached to a single assembly, while the available mounting real estate has shrunk. In addition, the number of functions per device has increased and this is accommodated by using increased I/O count and reduced contact pitch. Reduced contact pitch represents challenges for both assemblers and bare board manufacturers. Assemblers encounter handling, coplanarity and alignment problems.

The board manufacturers must deal with land size issues, solder mask resolution and electrical test problems.

Based on industry predictions one would believe that all component packages have over 200 I/Os and are increasing in I/O count. Actually, components with the highest usage have I/O counts in the 16 to 64 I/O range. Over 50% of all components fall into this category, while only 5% of all components used have over 208 I/Os, which may be the threshold for determining the cross-over point between peripheral leaded component style packages and array type formats.

Many peripherally leaded, lower I/O count devices, such as memory and logic devices, are being converted to area array packaging formats as either BGAs or Fine Pitch BGAs.

Although the percentage of high I/O components used on an electronic assembly is small, they play a big part in driving the industry infrastructure for both bare board and assembly manufacturing. These high I/O components determine the process for bare board imaging, etching, testing and surface finishing. They determine the materials used for fabrication and drive assembly process improvements in a similar manner.

The electronics industry has evolved from using through-hole assembly technology in which the component leads went into the printed board substrate and were either soldered to the bottom side of the board or into a plated-through hole. Surface Mounting Technology (SMT) has advanced to a stage where the majority of electronic components manufactured today are only available in SMT form.

Manufacturing products with SMT in any significant volume requires automation. For low volume, a manually operated machine or a single placement machine may be sufficient. High volume SMT manufacturing requires special solder paste deposition systems, multiple and various placement machines, in-line solder reflow systems and cleaning systems.

The heart of surface mount manufacturing is the machine that places the components onto the printed board land areas prior to soldering. Unlike through-hole (TH) insertion machines, surface mount placement machines are usually capable of placing many different component types. As design densities have increased, new SMT package styles have evolved. Examples are Fine Pitch Technology (FPT), Ultra Fine Pitch Technology (UFPT), and Array Surface Mount (ASM). This latter category consists of the many families of ball or column grid arrays and the chip scale packages (CSP) and Fine Pitch BGAs (FBGA). These parts are all capable of being placed by machines provided that the equipment has the required positioning accuracy.

Increased device complexity has been a primary driving factor for SMT. In order to minimize the component package size, component lead spacing has decreased (e.g., 1.27 mm to 0.65 mm). Further increases in semiconductor integration requiring more than 196 I/Os can drive packages to even closer perimeter lead spacing, such as 0.5 mm, 0.4 mm, 0.3 mm, and 0.25 mm. However, the array package format has become the favorite for high I/O count devices. Area array component package styles have a pitch that originally was much larger than the equivalent peripherally leaded device, however that lead format is now also seeing reductions in pitch configurations.