Heat-Resistant Austenitic Stainless Steel
(ASTM : UNS 31060)
(NSSMC-NAR-AH-4)
1 Alloy Design • Features

1. Alloy design of NSSMC-NAR-AH-4

- Oxidation Resistance
- Erosion Resistance
- Creep Rupture Strength
- Microstructural Stability
- Cost Saving
- Weldability

- High Cr≥22.5%
- Addition of rare earth metals
- Solid solution strengthening: Addition of N
- Grain boundary strengthening: Addition of B
- Optimization of CrN / NiN
- Decrease of Si
- Grain size control

0.3%Si-0.07%C-23%Cr-11%Ni-0.2%N-La+Ce+B

2. Superior High Temperature Properties

- Higher tensile strength and creep strength at high temperature than SUS310S (JIS G4303).
- Excellent oxidation resistance at 900—1000°C superior to SUS310S.
- Superior structure stability after long-term exposure to high temperature (700—900°C), without a drastic drop in toughness like SUS310S.

3. Superior Weldability

- Lower sensitivity of weld hot cracking than SUS310S, especially favorable for thick plates welding.

4. Cost Saving

- Reasonably designed chemical composition as compared with SUS310S.

Notice: While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader’s risk and no warranty is implied or expressed by Nippon Steel & Sumitomo Metal Corporation with respect to the use of the information contained herein. The information in this publication is subject to change or modification without notice. Please contact the Nippon Steel & Sumitomo Metal Corporation office for the latest information. Please refrain from unauthorized reproduction or copying of the contents of this publication.

2 Main Use Applications

2. Fuel cell reforming Tube.
3. Auto parts (Exhaust Manifold etc.)
4. Substitute for SUS310S. Especially suited for material requiring high-temperature mechanical strength.

3 Specification and Physical Properties

1. Specification

<table>
<thead>
<tr>
<th>Designation</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>N</th>
<th>other elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSSMC-NAR-AH-4</td>
<td>≤0.05</td>
<td>≤0.10</td>
<td>≤1.50</td>
<td>≤0.040</td>
<td>≥0.030</td>
<td>22.00</td>
<td>10.00</td>
<td>0.18</td>
<td>0.25</td>
</tr>
<tr>
<td>UNS S31060</td>
<td>≤0.05</td>
<td>≤0.10</td>
<td>≤0.50</td>
<td>≤1.00</td>
<td>≤0.040</td>
<td>22.50</td>
<td>10.00</td>
<td>0.18</td>
<td>0.25</td>
</tr>
<tr>
<td>(for reference)</td>
<td>SUS 310S</td>
<td>≤0.08</td>
<td>≤1.50</td>
<td>≤2.00</td>
<td>≤0.045</td>
<td>22.00</td>
<td>19.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

2. Physical Properties

Table 1: Chemical Composition (wt%)
Mechanical Properties

Table 5: Mechanical Properties

<table>
<thead>
<tr>
<th>Designation</th>
<th>0.2% Yield Strength (N/mm²)</th>
<th>Tensile Strength (N/mm²)</th>
<th>Elongation (%)</th>
<th>Hardness (HRB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSSMC-NAR-AH-4</td>
<td>≧280</td>
<td>≧600</td>
<td>≧40</td>
<td>≦95</td>
</tr>
<tr>
<td>UNS S31060</td>
<td>(for reference) SUS 310S</td>
<td>≧205</td>
<td>≧520</td>
<td>≧40</td>
</tr>
</tbody>
</table>

Properties of NSSMC-NAR-AH-4

Chemical Composition

Table 6: Typical Chemical Composition (wt%)

<table>
<thead>
<tr>
<th>Designation</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>N</th>
<th>La+Ce</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSSMC-NAR-AH-4</td>
<td>0.07</td>
<td>0.31</td>
<td>0.48</td>
<td>0.021</td>
<td>0.001</td>
<td>23.11</td>
<td>10.95</td>
<td>0.197</td>
<td>0.03</td>
<td>0.003</td>
</tr>
<tr>
<td>(for reference) SUS 310S</td>
<td>0.05</td>
<td>0.58</td>
<td>1.21</td>
<td>0.023</td>
<td>0.001</td>
<td>24.63</td>
<td>20.25</td>
<td>0.024</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Microstructure

- Austenitic structure
- Grain size: Average grain size of ASTM No.7 or coarser, as measured by Test Methods E112 (Thickness ≧ 6mm)

Photo 1. Typical microstructure after solution heat treated

2.0 μm

High-temperature Properties

Fig.1 Tensile properties at high temperature

Fig.2 Tensile properties at room temperature

Fig.3 Creep rupture properties

Fig.4 Charpy impact properties after aged at 700~900℃

Fig.5 Cyclic oxidation test result in the air

Fig.6 Continuous oxidation test result (200h)
5 Resistance to high-temperature erosion

Fig. 7 Erosion test result (900°C)

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Designation</th>
<th>Erosion Rate @ 900°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1H4</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>SUS 310S</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Maximum depth of eroded area 500µm

6 Weldability

Fig. 8 Hot cracking test result (Longi Varestraint test)

Welding Consumables

For TIG welding

- WEL TIG AH-4
 - 1.2, 1.6, 2.0, 2.4, 3.2mmφ

For SMA welding

- WEL AH-4
 - 2.6, 3.2, 4.0, 5.0mmφ

Available Sizes

- Available maximum length: 6,000mm
- Consult us for custom-made dimensions.