Many factors come into play in circuit design with respect to etching, surface finishing and mechanical fabrication processes; such as holes, flatness, singulation and tolerances.

Fabrication of Thermal Clad is similar to traditional FR-4 circuit boards with regard to imaging and wet processing operations. However, secondary mechanical operations are unique, so the consideration of specific design recommendations are critical to ensure the manufacture of reliable, cost-effective T-Clad circuits. This white paper will address design recommendations for circuit image, soldermask, legend and mechanical fabrication. Additional consideration for trace widths, spacing and clearances may be required for electrical integrity based on application voltage.

Cost-Effective Basic Materials For An Optimal Design

Ideas For Minimizing Cost

Material Stack-Up - 5052 aluminum is the most cost effective base material. 6061-T6 aluminum is also available for applications which utilize the copper clad as a base for retaining fasteners or when considering specific fabrication applications.

Base Material Thickness - Using standard gauges will help control cost. Most common standard aluminum thicknesses are 10mm (0.040") and 16mm (0.062") and standard copper is 10mm (0.40"). Other thicknesses are also available.

Dielectrics - The majority of applications are able to utilize our MP (multi-purpose) dielectric. If your application requires higher thermal performance or dielectric strength, please reference our characteristics of dielectric summary within our T-Clad Selection Guide.

Copper Circuit Foil - The thinner the circuit foil chosen, the lower the cost. As a result of Bergquist thermally conductive dielectrics, it is common for customers to realize a 40% increase in current carrying capability as compared to FR-4 (see Figure 1). Copper thickness can often be reduced by using T-Clad.

Acceptable File Types For Design Submission

1. Preferred data format Gerber RS274X – include all layers (with embedded aperture list). DXF and some other formats are acceptable but take time to convert to Gerber and may become corrupted in the conversion process.
2. Provide mechanical print with part and array dimensions, identify material, soldermask type and color and surface finish.
3. Identify areas of possible design violation.
4. Include operating voltage and maximum operating temperature.
5. Include engineering or circuit design contact information.
Circuit Design

Material Utilization

Independent of the fabrication method chosen, square or rectangular designs will utilize the material most efficiently. The usable area of an 457 x 610mm (18.0" x 24.0") panel is 432 x 584mm (17.0" x 23.0") for a 508 x 610mm (20.0" x 24.0") panel it is 483 x 584mm (19.0" x 23.0") and for a 437 x 635mm (17.0" x 25.0") panel it is 432 x 610mm (17.0" x 24.0%). For best cost value, maximize use of this usable area. The shape of the part affects cost, so please reference the section on part angulation for helpful guidelines.

Surface Finish

- Green is the most commonly used soldermask color in the industry, and as a result it is the most cost-effective. Other colors such as black, white, red and blue are also available.
- If possible, try to include legend (nomenclature) in the soldermask design. If not possible, consider white costs less than black.
- Non-rectangular designs typically require additional spacing in the array for milling or punching the shape. A typical combination of scoring and milling/punching is required to create the part shape and allow parts to be separated from the array after assembly. Additional process steps and reduced material utilization can impact cost.
- Parts spaced apart, lack of common score lines
- Parts moved together for common score lines
- Parts moved together for common score lines

Baseplate Finish

- When using aluminum, a brushed finish is typical. Other finishes like anodize and iridite are available for additional cost. With copper, a brushed finish is also typical but may oxidize from handling and atmospheric conditions. Other finishes like bright electrolless nickel are available to prevent oxidation but will drive cost up.
- When considering finishing the part edge and/or through hole edge, please note that an unfinished edge is more economical.

Hole Piercing / Perimeter Blanking

Hole piercing and perimeter blanking are some of the most cost effective processes for moderate to high volume applications. Blank tooling can accommodate complex part geometries and can be held to very tight tolerances. In addition to blanking the part perimeter, piercing patterns of internal holes can be produced with the most accuracy and the greatest degree of repeatability. However, T-Clad that is to be blanked in production should be considered as early in the design process as possible. Part design is critical to ensure blanking feasibility as there are specific guidelines to be considered. Each design should be evaluated to the recommendations defined in this document prior to beginning the tool planning process (see Section 1.3 on page 4 of this document).

Material Selection and Fabrication

Two-layer designs incorporate additional amounts of copper and dielectric thickness over single-layer designs. As a result, additional considerations must be made with regard to material construction choices and fabrication.

- Flatness is affected by the amount of copper so CTE rules must be considered in the equation. Most heavy copper constructions will require a thicker aluminum substrate or copper base to prevent bowing.
- The additional dielectric thickness will also create the need for larger minimum distances in drilling, scoring, routing and punching. See the section regarding fabrication.

Designing A Non-Rectangular Part Array

Two-Layer Design Considerations

Benefits and Considerations

T-Clad dielectrics in two-layer constructions have significant benefits in overall design when compared to two-layer FR-4 constructions. These benefits include:

- Higher power density, electromagnetic shielding and/or improved capacitive coupling.
- Reduce the lower thermal impedance of T-Clad dielectric as compared to FR-4. Thermal via’s are not usually required. However, if thermal via’s are used better thermal performance can be achieved.

Material Utilization

- Inner layer copper thickness is limited to <140 micron (4 oz.) before plating.

Design Considerations For Better Material Utilization

- All rails required for assembly! Rails consume material that will be discarded after parts are separated from the array. When designing an array, size and number of rails should be considered to optimize panel utilization. The reduced rail design in Figure 9 uses less material than Figure 8 and even less material is required for the design with no rails in Figure 10.

Part size is an important consideration in cost control. In Figure 2 part size is 146 x 149mm (5.75" x 5.71") and panel utilization is 90%. The high utilization was achieved by reducing part size from the original 146 x 149mm (5.75" x 5.71") only a 3mm change. The result is an increase in parts per panel from 8 to 12 utilizing the same amount of material (20% gain in panel utilization).

Figure 2: Layout For Effective Use Of Space

Figure 3: V-Scoring Guidelines

Figure 4: Electroless Nickel on Copper

Figure 9: Improved Design

- Parts spaced apart, lack of common score lines
- Will assembled components require parts to be spaced further apart? This can result in multiple score lines and reduced material utilization. Consider part orientation in the array. Alternating orientation may allow components to nest, maximizing material utilization. In Figure 8 parts are spaced further apart and use more material as compared to the common score lines used in Figures 9 and 10.

Figure 10: Optimized Design

- Parts moved together for common score lines

Figure 11: Original Array Design

- Parts moved together for common score lines

Figure 12: Improved Design

- Parts moved together for common score lines

Figure 13: Optimized Design

- Parts moved together for common score lines

Figure 14: Original Array Design

- Parts moved together for common score lines

Figure 15: Improved Design

- Parts moved together for common score lines

Figure 16: Optimized Design

- Parts moved together for common score lines
Testing Options

Electrical Opens and Shorts
Verification can be done with two methods.
1. For single-layer boards: using a C-QL (Circuit Quality Level).
2. The more traditional “Bed-of-Nails” testing is also available. This requires a fixture charge and is a higher cost method. It is the only viable method for two-layer constructions.

Proof Testing or (HiPot)
Testing is done to verify dielectric strength integrity of a T-Clad board.

Advanced Circuit Processing

1. **Proof testing done in panel form is the most cost-effective method**. This form of testing is done at post-etch condition, prior to surface finish or final fabrication.
2. The recommended method for safety agency requirements on T-Clad assemblies is an individual piece-part or array-part test. This method 100% tests and marks each finished board and/or array. This method requires a fixture charge.
3. When higher test voltages are required to meet safety agency requirements; standard clearances for fabrication may not be enough to allow for "Creepage Clearance" to meet test voltages. These minimum creepage distances can be found in safety agency standards or IPC-2221 for reference.

Part Forming
Thermal Clad is designed with a copper or aluminum baseplate that can be formed. In order to maintain thermal and electrical integrity, circuits cannot go across the formed area.

Ultra Thin Circuits
Ultra Thin Circuits (UTC) utilize T-Clad ® dielectrics without the typical thick base layer. These circuits are often used for component level packaging where the thick aluminum or copper base is not required for mechanical or thermal mass. The circuit layer can be a “stand-alone” ceramic submount replacement. The total profile of a UTC can be as thin as 0.23mm (0.009”) and can be built up into multilayer structures.

Part Fabrication

Milling / Drilling
Milling/drilling processes are typically used for prototype or low-volume production with complex geometries. These processes are typically not cost-effective for moderate to high volume applications.

Circuit to Edge
When planning to blank a part perimeter the distance between the circuit pattern and the part edge is critical. To allow for sufficient relief for the circuitry (See Figure 4), the standard minimum distance from circuit to part edge is one material thickness plus 0.5mm (0.020”), if the circuit foil is 2 oz. or thicker the face of the perimeter punch must be designed to allow for uniform support around the part perimeter.

Flatness
Part design, as well as the manufacturing process, affects flatness of an Insulated Metal Substrate (IMS ®) board. There is also an effect from the differential coefficient of thermal expansion (CTE) between the circuit and the baseplate layer. That effect is determined by the base plate material selection and ratio of copper foil to baseplate thickness and the percentage of circuitry per layer.

Testing Options

1. Photographic example of a UTC versus a standard 1.57mm (0.062”) aluminum substrate.

Note: Use of a soldermask is recommended.

Bold numbers within these drawings reference tables on pages 4-5 of this document.
Design Parameter

Minimum Line Width

- 0.15mm (0.006")
- 0.20mm (0.008")

Drilled Hole Diameter

- 0.15mm (0.006")
- 0.20mm (0.008")

Minimum Punched Hole Size

- 1.5x baseplate material thickness
- 0.76mm (0.030")

Recommended Minimum Distance from Hole to Edge

- One baseplate material thickness

Recommended Minimum Distance from Nomenclature to Nearest Pad

- 0.25mm (0.010")

Circuit to Edge Distance

- 0.13mm (0.005")
- 0.38mm (0.015")

Minimum Character Height/Width

- 0.36mm (0.014")
- 0.76mm (0.030")

Soldermask Pad Apertures

- Minimum line width: 0.76mm (0.030")

Copper Land with Non-Plated Through Holes

- Material Thickness: 350µm (10 oz)
- 280µm (8 oz)
- 140µm (4 oz)

Guidelines

- **Guideline 1.3**: The minimum circuit to edge blanking distance allows the punch to engage the metal baseplate and dielectric without damaging adjacent circuitry and improves tool life.
- **Guideline 1.4**: The minimum distance from circuit to edge must be met to provide isolation from the circuitry to the baseplate. Note: Additional distance from circuit to hole may be required depending on application and proof testing requirements.
- **Guideline 1.5**: The minimum conductor to hole edge distance must be achieved to provide isolation from circuitry to the base.
- **Guideline 1.6**: The minimum character height for etched nomenclature must be met for optimum legibility.
- **Guideline 2.1**: Minimum soldermask line width is needed for proper adhesion of the soldermask to the board surface. This is also an important consideration for maintaining separation between pads (solderdams).
- **Guideline 2.2**: Solder pad apertures designed with overlap ensure proper adhesion of the soldermask to the board surface and prevention of exposure to copper and bridging between features.
- **Guideline 2.3**: The minimum soldermask specification keeps the pads exposed so they can accept the surface plating and ensures the pad will remain large enough to be functional.
- **Guideline 2.4**: A standard minimum character height and width is set to ensure legibility.
- **Guideline 3.1**: A character width and height are specified for silk screening to assure legibility and adhesion.
- **Guideline 3.2**: The minimum distance from silk screen to the nearest pad is required for registration to keep the legend ink off of solderable surfaces.
- **Guideline 3.3**: A minimum distance to board edge is specified to ensure clearance for punch land, registration purposes and to maintain legibility.
- **Guideline 4.1**: A minimum distance from hole edge to board edge is important to avoid material distortion during processing.
- **Guideline 4.2**: A minimum punched hole size is recommended to ensure tool strength integrity during processing and to avoid premature tool wear.
- **Guideline 4.3**: A minimum drilled hole diameter for the copper baseplate is in place to ensure tool strength integrity during processing and to avoid premature tool wear.
- **Guideline 4.4**: The aluminum baseplate has a minimum drilled hole diameter specification to ensure tool strength integrity during processing and to avoid premature tool wear.
- **Guideline 4.5**: The circuit layer’s recommended minimum drilled via diameter ensures tool strength integrity during processing and helps to avoid premature tool wear.

The shaded blue areas represent Bergquist circuit processing capabilities. If your application requires different specifications, please contact Bergquist Sales.
DESIGN CATEGORY

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>STANDARD DESIGN RECOMMENDATION AND SPECIFICATION</th>
<th>TOLERANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Circuit Design</td>
<td>Circuit Thickness</td>
<td>Minimum Line Width</td>
</tr>
<tr>
<td>1.1 Minimum Circuit Width</td>
<td>35µm (1 oz)</td>
<td>0.10mm (0.004")</td>
</tr>
<tr>
<td></td>
<td>70µm (2 oz)</td>
<td>0.15mm (0.006")</td>
</tr>
<tr>
<td></td>
<td>105µm (3 oz)</td>
<td>0.19mm (0.008")</td>
</tr>
<tr>
<td></td>
<td>140µm (4 oz)</td>
<td>0.23mm (0.009")</td>
</tr>
<tr>
<td></td>
<td>210µm (6 oz)</td>
<td>0.31mm (0.012")</td>
</tr>
<tr>
<td></td>
<td>280µm (8 oz)</td>
<td>0.39mm (0.015")</td>
</tr>
<tr>
<td></td>
<td>350µm (10 oz)</td>
<td>0.48mm (0.019")</td>
</tr>
<tr>
<td>1.2 Minimum Space and Gap Single Layer</td>
<td>Single Layer (non-plated)</td>
<td>Multiple Layer (plated)</td>
</tr>
<tr>
<td></td>
<td>210µm (6 oz) - 0.28mm (0.011")</td>
<td>70µm (2 oz) - 0.028mm (0.001")</td>
</tr>
<tr>
<td></td>
<td>105µm (3 oz) - 0.036mm (0.001")</td>
<td>50µm (1 oz) - 0.020mm (0.000")</td>
</tr>
<tr>
<td></td>
<td>140µm (4 oz) - 0.031mm (0.001")</td>
<td>70µm (2 oz) - 0.028mm (0.001")</td>
</tr>
<tr>
<td></td>
<td>210µm (6 oz) - 0.042mm (0.001")</td>
<td>50µm (1 oz) - 0.020mm (0.000")</td>
</tr>
<tr>
<td></td>
<td>280µm (8 oz) - 0.052mm (0.002")</td>
<td>50µm (1 oz) - 0.020mm (0.000")</td>
</tr>
<tr>
<td></td>
<td>350µm (10 oz) - 0.065mm (0.002")</td>
<td>350µm (10 oz) - 0.065mm (0.002")</td>
</tr>
<tr>
<td>1.3 Minimum Circuit to Edge Blanking</td>
<td>One baseplate material thickness + 0.5mm (0.02")</td>
<td></td>
</tr>
<tr>
<td>1.4a Minimum Circuit to Edge V-scored</td>
<td>Material Thickness</td>
<td>Circuit to Edge Distance</td>
</tr>
<tr>
<td></td>
<td>1.0mm (0.04")</td>
<td>0.64mm (0.025")</td>
</tr>
<tr>
<td></td>
<td>1.6mm (0.06")</td>
<td>0.74mm (0.029")</td>
</tr>
<tr>
<td></td>
<td>2.0mm (0.08")</td>
<td>0.79mm (0.031")</td>
</tr>
<tr>
<td></td>
<td>3.2mm (0.12")</td>
<td>0.94mm (0.037")</td>
</tr>
<tr>
<td>1.4b Minimum Circuit to Edge, Milled</td>
<td>0.5mm (0.02")</td>
<td></td>
</tr>
<tr>
<td>1.5 Minimum Conductor to Hole Edge</td>
<td>One baseplate material thickness</td>
<td></td>
</tr>
<tr>
<td>1.6 Copper Land with Plated Through Holes</td>
<td>Punched non-plated via-hole is 0.18mm (0.007") minimum</td>
<td></td>
</tr>
<tr>
<td>1.7 Minimum Character Height for Etched Nomenclature</td>
<td>1.5mm (0.06")</td>
<td></td>
</tr>
<tr>
<td>2.0 Soldermask Design</td>
<td>Minimum Soldermask Line Width</td>
<td>0.20mm (0.008")</td>
</tr>
<tr>
<td>2.1 Soldermask Pad Aperture</td>
<td>Bergquist recommends that whenever possible, design the soldermask overlap to top of 0.25mm (0.01") copper foil or 0.3mm (0.012") larger than exposed copper</td>
<td></td>
</tr>
<tr>
<td>2.2 Minimum Soldermask Aperture</td>
<td>0.25mm x 0.25mm (0.01" x 0.01")</td>
<td></td>
</tr>
<tr>
<td>2.3 Minimum Character Height and Line Width for Nonetched Nomenclature</td>
<td>0.32mm x 0.32mm (0.013" x 0.013")</td>
<td></td>
</tr>
<tr>
<td>2.4 Minimum Character Height and Line Width for Soldermask Non-etched</td>
<td>0.32mm x 0.32mm (0.013" x 0.013")</td>
<td></td>
</tr>
<tr>
<td>2.5 Soldermask Color</td>
<td>Green, White, Black, Red, Blue are available</td>
<td></td>
</tr>
<tr>
<td>2.6 Character Height/Width (in Soldermask)</td>
<td>Minimum character height / Minimum line width 0.32mm (0.013")</td>
<td></td>
</tr>
<tr>
<td>3.0 Legend Design</td>
<td>Nomenclature Color</td>
<td>Recommended min. distance from nomenclature feature to nearest pad or 0.25mm (0.01")</td>
</tr>
<tr>
<td>3.1 Nomenclature to Pad (ink jet printing)</td>
<td>1.5mm (0.06") minimum height, 0.15mm (0.006") minimum width</td>
<td></td>
</tr>
<tr>
<td>3.2 Character Height / Width</td>
<td>One baseplate material thickness</td>
<td></td>
</tr>
<tr>
<td>3.3 Minimum Distance to Board Edge</td>
<td>Minimum printed hole size is 1.5x baseplate material thickness</td>
<td></td>
</tr>
<tr>
<td>3.4 Nonetched Nomenclature Color</td>
<td>White is standard (black optional)</td>
<td></td>
</tr>
<tr>
<td>4.0 Surface Finish</td>
<td>HAIL lead-free HASL ENIG, OSP (Seamless), immersion Au, immersion Sn Sn</td>
<td></td>
</tr>
<tr>
<td>4.1 Surface Finish Availability</td>
<td>Min. distance from edge of holes to edge of board is one baseplate material thickness</td>
<td></td>
</tr>
<tr>
<td>5.1 Hole to Board Edge</td>
<td>Minimum printed hole size is 1.5x baseplate material thickness</td>
<td></td>
</tr>
<tr>
<td>5.2 Plated Hole Size</td>
<td>Minimum printed hole size is 1.5x baseplate material thickness</td>
<td></td>
</tr>
<tr>
<td>5.3 Minimum Plated Holes Diameter - Copper Baseplate</td>
<td>One baseplate material thickness</td>
<td></td>
</tr>
<tr>
<td>5.4 Minimum Plated Holes Diameter - Aluminum Baseplate</td>
<td>Material Thickness</td>
<td>Drilled Hole Diameter</td>
</tr>
<tr>
<td></td>
<td>1.0mm (0.04")</td>
<td>0.76mm</td>
</tr>
<tr>
<td></td>
<td>1.6mm (0.06")</td>
<td>0.76mm (0.03")</td>
</tr>
<tr>
<td></td>
<td>2.0mm (0.08")</td>
<td>1.0mm (0.04")</td>
</tr>
<tr>
<td></td>
<td>3.2mm (0.13")</td>
<td>1.6mm (0.06")</td>
</tr>
<tr>
<td>5.5 Minimum Drilled Via Diameter for Circuit Layer</td>
<td>0.32mm (0.013")</td>
<td></td>
</tr>
<tr>
<td>5.6 Minimum Edge Radius</td>
<td>One baseplate material thickness for blanking, so radius for V-cutting</td>
<td></td>
</tr>
</tbody>
</table>

Guideline 1.3: The minimum circuit to edge blanking distance allows the punch to engage the metal baseplate and dielectric without damaging adjacent circuitry and improves tool life.

Guideline 1.4: The minimum distance from circuit to edge must be met to provide isolation from the circuitry to the baseplate. Note: Additional distance from circuit to hole may be required depending on application and proof testing requirements.

Guideline 1.5: The minimum conductor to hole edge distance must be achieved to provide isolation from circuitry to the base.

Guideline 1.7: The minimum character height for etched nomenclature must be set for optimum legibility.

Guideline 2.1: Minimum soldermask line width is needed for proper adhesion of the soldermask to the board surface. This is also an important consideration for maintaining separation between pads (solderdams).

Guideline 2.2: Solder pad apertures designed with overlap ensure proper adhesion of the soldermask to the board surface and prevention of exposure to copper and bridging between features.

Guideline 2.3: The minimum soldermask specification keeps the pads exposed so they can accept the surface plating and ensures the pad will remain large enough to be functional.

Guideline 2.4: A standard minimum character height and width is set to ensure legibility.

Guideline 3.1: A character width and height are specified for silk screening to assure legibility and adhesion.

Guideline 3.2: The minimum distance from silk screen to the nearest pad is required for registration to keep the legend ink off of solderable surfaces.

Guideline 3.3: A minimum distance to board edge is specified to ensure clearance for punch land, for registration purposes and to maintain legibility.

Guideline 5.1: The minimum distance from hole edge to board edge is important to avoid material distortion during processing.

Guideline 5.2: A minimum punched hole size is recommended to ensure tool strength integrity during processing and to avoid premature tool wear.

Guideline 5.3: A minimum drilled hole diameter for the copper baseplate is in place to ensure tool strength integrity during processing and to avoid premature tool wear.

Guideline 5.4: The aluminum baseplate has a minimum drilled hole diameter specification to ensure tool strength integrity during processing and to avoid premature tool wear.

Guideline 5.5: The circuit layer’s recommended minimum drilled via diameter ensures tool strength integrity during processing and helps to avoid premature tool wear.
Testing Options

Electrical Opens and Shorts
Verification can be done with two methods.
1. For single-layer boards: using A-01 (Automatic Optical Inspection) is the most cost-effective method. Using original Gerber data to compare to the etch panel will find any anomalies, even in an etch-down condition.
2. The more traditional “Bed-of-Nails” testing is also available. This requires a fixture charge and is a higher cost method. It is the only viable method for two-layer constructions.

Proof Testing or (HiPot)
Testing is done to verify dielectric strength integrity of a T-Clad board.

Advanced Circuit Processing

1. Proof testing done in panel form is the most cost-effective method. This form of testing is done at post-etch condition, prior to surface finish or final fabrication.
2. The recommended method for safety agency requirements on T-Clad assemblies is an individual piece-part or array-part test. This method (100% tests and marks each finished board and/or array) this method requires a fixture charge.
3. When higher test voltages are required to meet safety agency requirements; standard clearances for fabrication may not be enough to allow for “Creepage Clearance” to meet test voltages. These minimum creepage distances can be found in safety agency standards or IPC-2221 for reference.

Part Fabrication

Milling / Drilling
Milling/drilling processes are typically used for prototype or low volume production with complex geometries. These processes are typically not cost-effective for moderate to high volume applications.

Circuit to Edge
When planning to blank a part perimeter the distance between the circuit pattern and the part edge is critical. To allow for sufficient relief for the circuit (See Figure 4), the standard minimum distance from circuit to part edge is one material thickness plus 0.5mm (0.020”) if the circuit foil is 2 oz or thicker; the face of the perimeter punch must be designed to allow for uniform support around the part perimeter.

Active circuitry that needs to be isolated from the base plate should be placed a minimum of one baseplate material thickness plus 0.5mm (0.020”) from the edge of the hole. If the circuit is a ground pattern or same potential as the base plate, then the circuit may be closer. Standard practice is always leave a 1.3mm (0.051”) relief around a pierced hole.

Note: The minimum diameter for a pierced hole is equivalent to one baseplate material thickness. Higher operating voltages may require larger clearances.

Radii on Corners
Punching requires that all inside and outside corners be designed with a minimum radius. It is recommended that one baseplate material thickness minimum radius be on all corners. When desired, it is possible to go down to one half baseplate material thickness radius, however this requires higher tooling costs.

Flatness
Part design, as well as the manufacturing process, affects flatness of an Insulated Metal Substrate (IMS®) board. There is also an effect from the differential coefficient of thermal expansion (CTE) between the circuit and the baseplate layer. That effect is determined by the base plate material selection and ratio of copper foil to baseplate thickness and the percentage of circuitry per layer.

For IMS® panel or part, there is always the potential for some bow caused by the difference in CTE between the circuit layer and the baseplate. Flatness can be further optimized by using copper base metal instead of aluminum and with proper overall design. Generally, if the thickness of the copper layer is less than 10% of the baseplate thickness, the aluminum will be mechanically dominate. Constructions with more circuit copper than 10% of the baseplate thickness can exhibit a bow. Copper foil thicknesses less than 10% of the baseplate thickness can be controlled well within IPC specifications. Flatness can be further optimized with proper tool design or special processing.

Photographic example of T-Clad versus a standard 1.57mm (0.062”) aluminum substrate.

Note: Use of a soldermask is recommended.
Circuit Design

Material Utilization
Independent of the fabrication method chosen, square or rectangular designs will utilize the material most efficiently. The usable area of an 457 x 610mm (18.0” x 24.0”) panel is 432 x 584mm (17.0” x 23.0”), for a 508 x 610mm (20.0” x 24.0”) panel it is 483 x 584mm (19.0” x 23.0”) and for a 457 x 635mm (18.0” x 25.0”) panel it is 432 x 610mm (17.0” x 24.0”). For best cost value, maximize use of this usable area. The shape of the part effects cost, so please reference the section on part singulation for helpful guidelines.

Surface Finish
• Green is the most commonly used soldermask color in the industry, and as a result it is the most cost-effective. Other colors such as black, white, red and blue are also available.
• If possible, try to include legend (nomenclature) in the soldermask design, if not possible consider white costs less than black.
• Regarding solder pad finish, HASL, and Pb-free HASL are the most cost-effective finishes. Other surface finishes such as Immersion Tin or Silver, ENIG, Ag, ENEPIG (for gold wire bond applications) was achieved by reducing part size from the original 146 x 145mm (5.75” x 5.75”) to 116 x 115mm (4.57” x 4.57”) only a 3mm change. The result is an increase in parts per panel from 8 to 12 utilizing the same amount of material (30% gain in panel utilization).

Part Fabrication

V-Scoring
V-scoring is a viable process selection for both low and high volume production because it allows for maximum material utilization. V-scoring is also a preferred process for prototypes with rectangular geometries having the benefit of no tooling costs. Holes can be drilled or punched prior to scoring. Typical tolerances for part shape and allow parts to be separated after milling/punching is required to create the hole. T-Clad that is to be blanked in production can impact cost.

Designing A Non-Rectangular Part Array

Comparing An Array In Three Different Considerations
• Non-rectangular designs typically require additional spacing in the array for milling or punching the shape. Often a combination of scoring and milling/punching is required to create the part shape and allow parts to be separated from the array after assembly. Additional process steps and reduced material utilization can impact cost.

Benefits and Considerations
T-Clad dielectrics in two-layer constructions have significant benefits in overall design when compared to two-layer FR-4 constructions. These benefits include; higher power density, electromagnetic shielding and/or improved capacitive coupling. While designing your two-layer circuit, please keep these items in mind to drive cost up.

Material Selection and Fabrication
Two-layer designs incorporate additional amounts of copper and dielectric thickness over single-layer designs. As a result, additional considerations must be made with regard to material construction choices and fabrication.

A selective dielectric removal process can be used to expose the inner-layer and/or the baseplate for component attachment to these layers if desirable. This type of design reduces thermal resistance.

Design Considerations For Better Material Utilization
• Alternating orientation may allow components to nest, maximizing material utilization. In Figure 8 parts are spaced further apart and use more material as compared to the common score lines used in Figures 9 and 10.

Figure 8: Original Array Design

Figure 9: Improved Design
Parts moved together for common score lines

Figure 10: Optimized Design
Parts moved together for common score lines

Large part with pin holes

Rail size reduced

Pinning off internal holes

Pinning off internal holes

Part size is an important consideration in cost control. In Figure 2 part size is 146 x 145mm (5.75” x 5.75”) and panel utilization is 98%. This high utilization was achieved by reducing part size from the original 146 x 145mm (5.75” x 5.75”) only a 3mm change. The result is an increase in parts per panel from 8 to 12 utilizing the same amount of material (30% gain in panel utilization).

Part size reduced

Flatness is affected by the amount of copper so CTE rules must be considered in the equation. Most heavy copper constructions will require a thicker aluminum base substrate or copper base to prevent bowing.

The additional dielectric thickness will also create the need for larger minimum distances in drilling, scoring, routing and punching. See the section regarding fabrication.

Two-Layer Design Considerations

Benefits and Considerations
T-Clad dielectrics in two-layer constructions have significant benefits in overall design when compared to two-layer FR-4 constructions. These benefits include: higher power density, electromagnetic shielding and/or improved capacitive coupling. While designing your two-layer circuit, please keep these items in mind to drive cost up.

Material Selection and Fabrication
Two-layer designs incorporate additional amounts of copper and dielectric thickness over single-layer designs. As a result, additional considerations must be made with regard to material construction choices and fabrication.

A selective dielectric removal process can be used to expose the inner-layer and/or the baseplate for component attachment to these layers if desirable. This type of design reduces thermal resistance.
Things To Consider When Designing Circuits

Many factors come into play in circuit design with respect to etching, surface finishing and mechanical fabrication processes such as holes, flatness, singulation and tolerances.

Fabrication of Thermal Clad is similar to traditional FR-4 circuit boards with regard to imaging and wet processing operations. However, secondary mechanical operations are unique, so the consideration of specific design recommendations are critical to ensure the manufacture of reliable, cost-effective T-Clad circuits. This white paper will address design recommendations for circuit image, soldermask, legend and mechanical fabrication. Additional consideration for trace widths, spacing and clearances may be required for electrical integrity based on application voltage.

Cost-Effective Basic Materials For An Optimal Design

Ideas For Minimizing Cost

Material Stack-Up - 5052 aluminum is the most cost effective base material. 6061-T6 aluminum is also available for applications which utilize the aluminum as a base for retaining fasteners or when considering specific fabrication applications.

Base Material Thickness - Using standard gauges will help control cost. Most common standard aluminum thicknesses are 10mm (0.040") and 1.6mm (0.062") and standard copper is 10mm (0.040”). Other thicknesses are also available.

Dielectrics - The majority of applications are able to utilize our MP (multi-purpose) dielectric. If your application requires higher thermal performance or dielectric strength, please reference our characteristics of dielectric summary within our T-Clad Selection Guide.

Copper Circuit Foil - The thinner the circuit foil chosen, the lower the cost. As a result of Bergquist thermally conductive dielectrics, it is common for customers to realize a 40% increase in current carrying capability as compared to FR-4 (see Figure 1). Copper thickness can often be reduced by using T-Clad.

Figure 1

Acceptable File Types For Design Submission

1. Preferred data format Gerber RS274X – include all layers (with embedded aperture list). DXF and some other formats are acceptable but take time to convert to Gerber and may become corrupted in the conversion process.
2. Provide mechanical print with part and array dimensions if applicable, identify material, soldermask type and color and surface finish.
3. Identify areas of possible design violation.
4. Include operating voltage and maximum operating temperature.
5. Include engineering or circuit design contact information.